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Preface and Overview

Let u be a positive Radon measure on a closed subset K of RY and o = (1. .., otg)
a multi-index of nonnegative integers «;. If the integral

se(p) = /Kx‘f‘ coxgtdp(x)

is finite, the number s, = s,(1) is called the a-th moment of the measure . If all
o-th moments exist, the sequence (sq),, e is called the moment sequence of 1.

Moments appear at many places in physics and mathematics. For instance, if K
is a solid body in R? with mass density m(xy, x5, x3), then the number

500,2,0) + 5002 = / (5 + x3) m(x1, x2, x3)dx1dx2dx;
K

is the moment of interia of the body with respect to the x;-axis. Or if X is a random
variable with distribution function F(x), the expectation value of X* is defined by

E[X"] = s = o x*dF(x)

—00

and the variance of X is Var(X) = E[(X — E[X])’] = E[X*] — E[X]* = s, — 5
(provided that these numbers are finite).

The moment problem is a classical mathematical problem. In its simplest form,
the Hamburger moment problem for the real line, it is the following question:

Let s = (8y)nen, be a real sequence. Does there exist a positive Radon measure
W on R such that for all n € Wy the integral fjozo x"du converges and satisfies

+o00
S, = X dp? (1

—00
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That is, the moment problem is the inverse problem of “finding” a representing
measure ;# when the moment sequence s is given.

For a real sequence s = (sn)nen, let Ls denote the linear functional on the
polynomial algebra R[x] (or on C[x]) defined by Ly(x*) = s,, n € INy. By the
linearity of the integral it is clear that (1) holds for all n € IN if and only if we have

+o00
Li(p) = /_ p()du for p € RI. @)

o0

Thus, the moment problem asks whether or not the functional L; on R[x] admits
an integral representation (2) with respect to some positive measure u. To get
some flavour of what this book is about, we sketch without giving proofs some
cornerstones from the theory of the one-dimensional Hamburger problem.

Assume that s = (s,)nen, is the moment sequence of some positive measure [
on R. Then, for any polynomial p(x) = Y ;_, axx* € R[x] we obtain

n

L(p*) = /P(x)z dp = / ( Z akazx\J(H)d/L = Z araisi+; > 0.

k=0 k=0

Therefore, L (pz) > 0 for all p € R[x], that is, the functional L; is positive, and the
Hankel matrix H,(s) := (Sk+1); ;= 1 positive semidefinite for each n € INy. These
are two (equivalent) necessary conditions for a sequence to be a moment sequence.
Hamburger’s theorem (1920) says that each of these necessary conditions is also
sufficient for the existence of a positive measure. That is, the existence problem for
a solution is easily answered in terms of positivity conditions.

The question concerning the uniqueness of representing measures is more subtle.
A moment sequence is called determinate if it has only one representing measure.
For instance, the lognormal distribution

1 1 —(loax)?
F(x) = Jznx(0’+°°)(x)x Lo~ (loan)’/2

gives a probability measure whose moment sequence is not determinate.

Let us assume that s has a representing measure  supported on the bounded
interval [—a,a], a > 0. It is not difficult to show that the support of any other
representing measure, say fi, is also contained in [—a, a]. Then (2) implies that

| fwau= | f@di 3

for f € R[x]. By Weierstrass’ theorem each continuous functions on [—a, a] can
be approximated uniformly by polynomials. Therefore (3) holds for all continuous
functions f on [—a, a]. Hence u = [i, so that s is determinate.



Preface and Overview 3

A useful sufficient criterion for determinacy is the Carleman condition

o0 1

Ton
E $,," = —00.
n=1

Now suppose s is a moment sequence such that Ly(pp) > 0 for p € C[x],p # 0,
or equivalently, s has a representing measure with infinite support. Then

(pv q)Y = Lv(PQ% p,q € C[X],

defines a scalar product on the vector space C[x]. Let X denote the multiplication
operator by the variable x on C[x], that is, (Xp)(x) = xp(x). Applying the Gram—
Schmidt procedure to the sequence (x"),en, of the unitary space (C[x], (-, -);) yields
an orthonormal sequence (p,),en, of polynomials p, € C[x] such that each p, has
degree n and a positive leading coefficient. Then there exist numbers @, > 0 and
b, € R such that the operator X acts on the orthonormal base (p,) by

Xpn(x) = anpu+1(x) + bppu(x) + ap—1pn—1(x), n € Ny, where p_; := 0.
That is, X is unitarily equivalent to the Jacobi operator T; for the Jacobi matrix

b() ao 0 0

ap bl aq 0
J=10 a by a

0 0 ar b3

If A is a self-adjoint extension of 7 on a possibly larger Hilbert space and Ej, is
the spectral measure of A, then u = s9(E4(-)1,1) is a solution of the moment
problem for s. Each solution is of this form. Further, the moment sequence s is
determinate if and only if the closure of the symmetric operator X on the Hilbert
space completion of (C[x], (-, -),) is self-adjoint. All these facts relate the moment
problem to the theory of orthogonal polynomials and to operator theory.

Let s be an indeterminate moment sequence. Nevanlinna’s theorem yields a
parametrization of the solution set. Let *J3 denote the set of holomorphic functions
on the upper half-plane with nonnegative imaginary part and set 3 := B U {oo}.
Then Nevanlinna’s theorem states that there is a bijection ¢ — g of B to the set
of all solutions of the moment problems for s given by

/°° 1 AQR) + ¢(2)C(2)

z diwg(x) = _B(Z)+¢(Z)D(z)’ z€C, Imz> 0.

o0 X —
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Here A, B, C, D are certain entire functions depending only on the sequence s. Thus,
a moment sequence is either determinate or it has a “huge” family of representing
measures. All this and much more is developed in detail in Part I of the book.

There are a number of other variants of the moment problem. The Stieltjes
moment problem asks for representing measures on the half-line [0, +00) and the
Hausdorff moment problem for measures on the interval [0, 1]. If only the first
moments Sy, ..., S, are prescribed, we have a truncated moment problem. In this
case there exist finitely atomic representing measures and one is interested in
measures with “small” numbers of atoms.

The passage from one-dimensional to multidimensional moment problems leads
to fundamental new difficulties. As already observed by Hilbert, there are positive
polynomials in d > 2 variables that are not sums of squares. As a consequence,
there exists a linear functional L on Ry[x] = Rlxy,...,x,] which is positive (that
is, L(p?) > 0 for p € Ry[x]), but L is not a moment functional (that is, it cannot be
written in the form (2)). For this reason the IC-moment problem is invented. It asks
for representing measures with support contained in a given closed subset /C of R,

Let {fi,....fi} be a finite subset of R,[x]. Then the closed set

K={xeR": fix) >0,....fulx) > 0}

is called a semi-algebraic set. For such sets methods from real algebraic geometry
provide powerful tools for the study of the -moment problem. Our main result for
a compact semi-algebraic set K is the following: A linear functional L on R,[x] is a
moment functional with representing measure supported on K if and only if

LU - f¢p*) >0 for p € Rylx], er,...,ex €10, 1}.

If K is only closed but not compact, this is no longer true. But if there exist nontrivial
bounded polynomials on /C, there is a fibre theorem that allows one to reduce the K-
moment problem to “lower dimensional” cases. The multidimensional determinacy
question is much more complicated than its one-dimensional counterpart.

It turns out that most methods that have been successfully applied to the moment
problem in dimension one either fail in higher dimensions or at least require more
involved additional technical considerations.

The study of moment problems and related topics goes back to the late nineteenth
century. The Russian mathematicians P.L. Chebychev (1974) and A.A. Markov
(1984) applied moments in their “theory of limiting values of integrals” and invented
important notions; a survey of their ideas and further developments was given
by M.G. Krein [Kr2]. The moment problem itself as a problem in its own was
formulated for the first time by the Dutch mathematician T.J. Stieltjes (1894) in
his pioneering memoir [Stj]. Stieltjes treated this problem for measures supported
on the half-line and developed a far reaching theory. The cases of the real line and of
bounded intervals were studied only later by H. Hamburger (1920) and F. Hausdorff
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(1920). Important early contributions have been made by R. Nevanlinna, M. Riesz,
T. Carleman, M.H. Stone, and others.

A surprising feature of the moment problem theory is the connections and
the close interplay with many branches of mathematics and the broad range of
applications. H.J. Landau wrote in the introduction of an article in the AMS volume
“Moments in Mathematics” [L2]: “The moment problem is a classical question in
analysis, remarkable not only for its own elegance, but also for its extraordinary
range of subjects theoretical and applied, which it has illuminated. From it flow
developments in function theory, in functional analysis, in spectral representation
of operators, in probability and statistics, in Fourier analysis and the prediction of
stochastic processes, in approximation and numerical methods, in inverse problems
and the design of algorithms for simulating physical systems.” Looking at the
developments of the multidimensional moment problem over the last two decades
I would like to add real algebraic geometry, optimization, and convex analysis to
Landau’s list.

This book is an advanced text on the moment problem on R¢ and its modern
techniques. It is divided into four main parts, two devoted to one-dimensional
moment problems and two others to multidimensional moment problems. In each
group we distinguish between full and truncated moment problems. Though our
main emphasis is on real moment problems we include short treatments of the
moment problem on the unit circle and of the complex moment problem.

Here is a brief description of the four parts.

Part 1 deals with the one-dimensional full moment problem and develops
important methods and technical tools such as orthogonal polynomials, Jacobi
operators, and Nevanlinna functions in great detail. Basic existence and uniqueness
criteria are obtained, but also a number of advanced results such as the Nevanlinna
parametrizations for indeterminate Hamburger and Stieltjes problems, finite order
solutions, Nevanlinna—Pick interpolation, Krein and Friedrichs approximants of
Stieltjes solutions, and others are included.

Part II is about one-dimensional truncated moment problems. The truncated
Hamburger and Stieltjes moment problems are treated and Gauss’ quadrature
formulas are derived. In the case of bounded intervals the classical theory of
Markoff, Krein, and Akhiezer on canonical and principal measures, maximal
masses, and the moment cone are studied. Part II also contains a self-contained
digression to the trigonometric moment problem and some highlights of this theory
(Schur algorithm, Verblunsky and Geronimus’ theorems).

In Part III the multidimensional full moment problem on closed semi-algebraic
subsets of R is investigated. Here real algebraic geometry and operator theory
on Hilbert space are the main tools. For compact semi-algebraic sets the interplay
between strict Positivstellensidtze and the moment problem leads to satisfactory
existence results for the moment problem. In the case of closed semi-algebraic sets
existence criteria and determinacy are much more subtle. The fibre theorem and
its applications and the multidimensional determinacy problem are investigated in
detail. Further, we derive basic existence and determinacy results for the complex
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moment problem. The two main Chaps. 12 and 13 are the heart of Part III and
also of the book. At the end of Part III we touch very briefly upon semidefinite
programming and applications of moment methods to polynomial optimization.

Part IV gives an introduction to the multidimensional truncated moment problem.
Existence theorems in terms of positivity and the flat extension theorem are derived.
Fundamental technical tools (Hankel matrices, evaluation polynomials, the apolar
scalar product for homogeneous polynomials) are developed and discussed in detail.
A number of important special topics (the core variety, maximal masses, deter-
minacy, Carathéodory numbers) are also studied. The multidimensional truncated
moment problem is an active topic of present research. It is expected that convex
analysis and algebraic geometry will provide new powerful methods and that the
status of this area might essentially change in the coming decades. For this reason,
we have not treated all recent developments; instead we have concentrated on basic
results and concepts and on selected special topics.

All moment problems treated in this book deal with integral representations of
linear functionals on a commutative unital algebra or on a (in most cases finite-
dimensional) vector space of continuous functions on a locally compact space. Most
of them are moment problems on certain *-semigroups. In two introductionary
chapters, general results on integral representations of positive functionals are
obtained and notions concerning moment problems for *x-semigroups are developed.
These results and notions will play an essential role throughout the whole book.

As mentioned above, the main focus of this book is on the four versions of the
scalar classical moment problem. In the course of this we develop fundamental
concepts and technical tools and we derive deep classical theorems and very recent
results as well. Also, we present a number of new results and new proofs. In this
book, we do not treat matrix moment problems, operator moment problems, infinite-
dimensional moment problems, or noncommutative moment problems.

Apart from the two introductory chapters the parts of the book and a number of
chapters can be read (almost) independently from each other. Sometimes a technical
fact from another part is used in a proof; it can be filled easily. In order to be
independent from previous chapters we have occasionally repeated some notation.

Several courses and seminars on moment problems can be built on this book by
choosing appropriate material from various parts. Each course or seminar should
probably start with the corresponding results from Sects. 1.1 and 1.2. For a one
semester basic course on the one-dimensional moment problem this could be
followed by Sects.2.1-2.2, Chap. 3, and the core material of the first sections of
Chaps.4-6. A one semester advanced course on the multidimensional moment
problem could be based on Sects. 11.1-11.3, 11.5-11.6, and selected material from
Chaps. 12 and 13, avoiding technical subtleties. Here applications to optimization
from Chap. 15 are optional. Chapters 8, 9, 10, and 16 are almost self-contained and
could be used for special seminars on these topics. Most exercises at the end of
each chapter should be solvable by active students; some of them contain additional
results or information on the corresponding topics.

As the title of the book indicates, the real moment problem is the central topic.
Our main emphasis is on a rigorous treatment of the moment problem, but also
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on important methods and technical tools. Often several proofs or approaches to
fundamental results are given. For instance, Hamburger’s theorem 3.8 is derived
in Sect. 3.2 from Haviland’s theorem, in Sect. 6.1 from the spectral theorem, and in
Sect. 9.2 from the truncated moment problem. This is also true for a number of other
results such as Stieltjes’ theorem, Carleman’s theorem, Markov’s theorem, and the
Positivstellensidtze and moment problem theorems in Chap. 12. At various places
explicit formulas in terms of the moments are provided even if they are not needed
for treating the moment problem. Large parts of the material, especially in Parts III
and IV, appear for the first time in a book and a number of results are new.

Necessary prerequisities for this book are a good working knowledge of measure
and integration theory and of polynomials, but also the basics of holomorphic
functions in one variable, functional analysis, convex sets, and elementary topology.
With this background about two thirds of the book should be readable by graduate
students. In the remaining third (more precisely, in parts of Chaps. 4-7 and Part III)
Hilbert space operator theory and real algebraic geometry play an essential role.
The short disgression into real algebraic geometry given in Sect. 12.1 covers all
that is needed; for more details we refer to the standard books [Ms1] and [PD].
Elementary facts on unbounded symmetric or self-adjoint operators and the spectral
theorem (multidimensional versions in Sect. 12.5 and 15.3) are used at various
places; necessary notions and facts are collected in Appendix A.7. In Chap. 8
Friedrichs and Krein extensions of positive symmetric operators occur; they are
briefly explained in Sect. 8.1. All operator-theoretic notions and results needed in
this book can be found (for instance) in the author’s Graduate Text [Sm9].

In large parts of the book results and techniques from other mathematical
fields are used. In most cases we state or develop such results with reference
to the literature at the places where they are needed. Further, I have added six
appendices: on measure theory, on Pick functions and Stieltjes transforms, on
positive semidefinite matrices, on locally convex topologies, on convex sets, and
on Hilbert space operators. These appendices collect notions and facts that are used
often and at different places of the text. For some results we have included proofs.

Some general notation is collected after the table of contents. Though I tried to
retain standard terminology in most cases, occasionally I have made some changes,
we hope for the better. For instance, instead of the term “moment matrix” I preferred
“Hankel matrix” and denoted it by H, (L) or H(L). Also there is some overlapping
notation. While the symbol A is used for one of the four Nevanlinna functions in
Chap. 7 (following standard notation), it denotes a matrix or a Hilbert space operator
at other places. The meaning will be always clear from the context. The underlying
algebras are usually denoted by sanserif letter such as A, B.

Continued fractions are avoided in this book (in Sect.6.7 only the notion is
briefly explained). Instead I have put my emphasis on operator-theoretic approaches,
because I am convinced that these methods are more promising and powerful, in
particular concerning the multidimensional case.

In writing this book I benefited very much from N.I. Akhiezer’s classic [Ak]
and B. Simon’s article [Sim1], but also from standard books such as [BCRI], [KN],
[KSt], [Ms1], [Sim3], [Chil] and from the surveys [La2], [AK]. Applications and
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ramifications of moment problems and related topics are discussed and developed
in the AMS volume [L2] and in the books [Ls2], [BW].

I feel unable to give precise credits for all results occuring in this book. In the
Notes at the end of each chapter I have given (to the best of my knowledge) credits
for some results, including the main theorems, and some hints to the literature and
for further reading. In the bibliography I have listed some key classical papers.

I am indebted to B. Reznick, C. Scheiderer, and J. Stochel for valuable comments
on parts of the manuscripts. I am grateful to Ph. di Dio for reading the whole text
and for his helpful suggestions. Also, I should like to thank R. Lodh and A.-K.
Birchley-Brun from Springer-Verlag for their help in publishing this book.

Leipzig, Germany Konrad Schmiidgen
May 7, 2017



General Notations

Numbers

Ny nonnegative integers

N positive integers

Z integers

R real numbers

C complex numbers

T complex numbers of modulus one

D complex numbers of modulus less than one
R+ = [0, +00)

Ciy ={z€eC:Imz> 0}

i complex unit

Spaces and Sets

R? d-dimensional real space

! d-dimensional complex space

P4(R) d-dimensional real projective space

T d-torus

§a-1 unit sphere in R¢

Matrices

M, (IK) (n, k)-matrices over K, M, (K) = M, ,(IK)
Sym,, symmetric matrices in M, (R)

AT transposed matrix of A

Measures

M4 (X) (positive) Radon measures on a locally compact Hausdorff space X
M(X) complex Radon measures on X

LY(X, )  p-integrable Borel functions on X

Oy delta measure at the point x

XM characteristic function of a set M

Radon measures are always nonnegative!
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Polynomials

X =x X for a = (o, 0q) € NG

Rd[x] = R[xl, e ,xd]

Ralx], = {p € Ralx] : deg(p) < n}

Ham homogeneous polynomials from R,[x] of degree m
dn homogenization of g

Pos(K) ={f € E:f(x) >0, x€ K}, where EC C(X;R), KC X
Pos(A,K) ={peA:px) >0, xe K}

Z(p) = {x e R?: p(x) = 0} for p € Ryfx]

d is the number of variables and n, m denote the degrees of polynomials!

Moments, Moment Sequences, and Measures

so = [x*dp a-the moment of

s = (8¢) moment sequence

5(x), sn(x) moment vector of the delta measure §,
Sp+1.S,S(A, K) moment cones

M4 (R ={ueMi(RY) : [|x¥|dpn < +oo for @ € N{} Radon measures
with finite moments
My ={ueMi(R?Y :5, = [x*dp for a € ]Ng’} representing measures of s

L, Riesz functional associated with s defined by L;(x*) = s,
H,(s) finite Hankel matrix associated with s
H(s) infinite Hankel matrix associated with s

D, (s) = detH,(s) Hankel determinant

Orthogonal Polynomials and Functions

Pn orthonormal polynomial of the first kind

P, monic orthogonal polynomial of the first kind

qn orthogonal polynomial of the second kind

Oy monic orthogonal polynomial of the second kind

p: = (Po(2), P1(2), p2(2). .. .)

4z = (90(2). 91(2). 42(2). - ..)

B Pick functions

Vs Friedrichs parameter

A(z),B(z),C(z),D(z) entire functions in the Nevanlinna parametrization

Operators

X multiplication operator by the variable x

J infinite Jacobi matrix

T=T, Jacobi operator for the Jacobi matrix J

d = {(co,c1,...,¢,,0,0,...) : ¢j € C,n € Ny} finite complex sequences
p,q)s = Ls(pq) scalar product on C[x] associated with s

Hs Hilbert space completion of (Clx], (-, +)s)

X, Xy multiplication operators by the variables x, ..., x4
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(P, q9)L = L(pq) scalar product on Cy[x] associated with L

Hi Hilbert space completion of (Cg4[x], {-,)1)

F199 GNS representation associated with L

Tr Friedrichs extension of a positive symmetric operator T’

Tx Krein extension of a positive symmetric operator T’

o(T) spectrum of T

o(T) resolvent set of T

D(T) domain of T

N(T) null space of T

Er spectral measure of T

Real Algebraic Geometry

T(f) preordering generated by f, where f is a finite subset of R 4[x]

o() quadratic module generated by f

K(f) semi-algebraic set defined by f

R[V] algebra of regular functions on a real algebraic set V

2,21 sum of squares p> of polynomials p € Ry[x], where
degp <n

A characters of a real unital algebra A

3 A2 sum of squares a® of elements a of a real algebra A

Ar={feA:x(f) =0, x €A}

Moment Functionals and Related Sets

L,L(AK)
[
L, = L(g")

cones of moment functionals
point evaluation functional at x
localization of L at g

My = {u e My (RY : L(p)= [p(x)dpu for p € Ry[x]} representing measures of L

pL(t)

H(L)

W(L), W(L)
V(L), V(L)

maximal mass of representing measures of L at ¢
Hankel matrix of L

set of atoms of representing measures of L

core variety of L

No={feA:L(fg) =0,gecA}
Vi={teR*:f() =0, fe N}

N4(L.K) = {f € Pos(A,K) : L(f) =0}
Vi(LLK)={teR: f(1) =0, f e No (LK) }

Ny (L) = N4 (L, RY)
Vi(L) = V(L,RY)

Ny(L) ={f €Ey : Lip) =0}
Vill) ={xe X :f(x) =0, f e N (L)}

Sets are denoted by braces such as {x; : i € I}, while sequences are written as

(xX0)new or (x,).



Chapter 1
Integral Representations of Linear Functionals

All variants of moment problems treated in this book deal with following problem:

Given a linear functional L on a vector space E of continuous functions on a
locally compact Hausdorff space X and a closed subset K of X, when does there
exist a (positive) Radon measure | supported on K such that

L(f) = /X F@)dux) for f € E?

Functionals of this form are called K-moment functionals or simply moment
functionals when K = X. In this chapter, we develop the underlying basic setup
and introduce a number of general notions.

In Sect. 1.1, we prove various integral representation theorems for functionals on
adapted spaces (Theorems 1.8, 1.12, and 1.14) and derive properties of the set of
representing measures (Theorems 1.19, 1.20, and 1.21). Our existence theorems for
full moment problems derived in Parts I and III are based on these results.

Section 1.2 is devoted to the case when E has finite dimension. Then, by
the Richter—Tchakaloff theorem (Theorem 1.24), each moment functional has a
finitely atomic representing measure. Strictly positive linear functionals (The-
orem 1.30), determinate moment functionals (Theorem 1.36) and the cone of
moment functionals are investigated. Further, we study the set of possible atoms
of representing measures (Theorem 1.45) and prove that it coincides with the core
variety (Theorem 1.49). The last subsection deals with extreme values of integrals
[ hdp, where the measure p has fixed moments (Theorems 1.50 and 1.52). The
results obtained in Sect. 1.2 are useful for truncated moment problems treated in
Parts II and IV, but most of them are also of interest in themselves.

Throughout this chapter, X denotes a locally compact topological Hausdorff
space, E is a linear subspace of the space C(X’;R) of real-valued continuous
functions on X, and L is a linear functional on E.

© Springer International Publishing AG 2017 13
K. Schmiidgen, The Moment Problem, Graduate Texts in Mathematics 277,
DOI 10.1007/978-3-319-64546-9_1
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1.1 Integral Representations of Functionals
on Adapted Spaces

Recall that M4 (X) denotes the set of Radon measures on X and that in our
terminology Radon measures are always nonnegative (see Appendix A.1).

1.1.1 Moment Functionals and Adapted Spaces

If C is a subset of E, the functional L is called C-positive if L(f) > 0 for f € C. Set
Ery :={f€eE:f(x) >0 for all xe X}

If 11 is a measure from M (X) such that E € L!(X, i), we define an E-positive
linear functional L* on E by

L) = /X FOdu(). f € E. (L)

The following two definitions introduce basic notions that will be used throughout
this book. The terminology “moment functionals” will be clear later when we study
moment functionals on examples of *-semigroups, see Sect.2.3.1.

Definition 1.1 A linear functional L on E is a moment functional if there exists a
measure 4 € M4 (X) suchthat L = L. Any such measure u is called a representing
measure of L. The set of all representing measures of L is

Mp={peMi(X):L=L"}
A moment functional L is called determinate if it has a unique representing

measure, or equivalently, if the set M is a singleton.

Definition 1.2 Let K be a closed subset of X'. A functional L on E is a K-moment
functional if there exists a measure i € M4 (X) supported on K such that L = L*.
The set of such measures is

Mpxg={pnpeMy(X):L=L" and suppu C K}.

A K-moment functional L is said to be K-determinate if the set M g is a singleton.

The aim of this section is to apply Choquet’s concept of adapted spaces to the
study of moment functionals.

Definition 1.3 For f, g € C(X;R) we say that g dominates f if for any ¢ > 0 there
exists a compact subset K, of X’ such that | f(x)| < e|g(x)| for all x € X\K.

Roughly speaking, g dominates f means that | f(x)/g(x)| — 0 as x — oo.
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We give a slight reformulation of the domination property and set
U={neC(X;R):0=nkx) <1 for xecX}. (1.2)

Lemma 1.4 Foranyf,g € C(X;R) the following statements are equivalent:

(i) g dominatesf.
(ii) Fore > Othere is ann. € U such that |f(x)| < e|g(x)| + | f(x)|n:(x), x € X.
(iii) Fore > Othereisanh, € C.(X;R) suchthat |f(x)| < e|g(x)|+h:(x), x € X.

Proof

(i)—(ii) Choose 1, € U such that .(x) = 1 on K.

(ii)—(iii) is clear by setting i, := | f|75.

(iii)—(i) Since h, € C.(X;R), the set K, := supp h. is compact and we have
[f()] < elg(x)] for x € X\K.. o

Definition 1.5 A linear subspace E of C(X; R) is called adapted if the following
conditions are satisfied:

(i) E=E4 —E4.
(i) Foreach x € X there exists an f € E such that f(x) > 0.
(iii)) Foreach f € E there exists a g € E such that g dominates f.

Lemma 1.6 If E is an adapted subspace of C(X; R), then for any f € C.(X;R)+
there exists a g € Ey such that g(x) > f(x) forall x € X.

Proof Let x € X. By Definition 1.5(ii) there exists a function g, € E4 such that
gx(x) > 0. Multiplying g, by some positive constant we get g,(x) > f(x). This
inequality remains valid in some neighbourhood of x. By the compactness of suppf
there are finitely many xy, ..., x, € X such that g(x) := g, (x) + -+ gy, (x) > f(x)
for x € suppf and g(x) > f(x) forall x € X. O

1.1.2 Existence of Integral Representations

In the proof of Theorem 1.8 below we use the following extension theorem.

Proposition 1.7 Let E be a linear subspace of a real vector space F and let C be a
convex cone of F such that F = E + C. Then each (C N E)-positive linear functional
L on E can be extended to a C-positive linear functional L on F.

Proof Letf € F. We define

q(f) =inf{L(g) :g € E,.g—f € C}. (1.3)

Since F = E+C, there exists a g € E such that —f 4+ g € C, so the corresponding set
in (1.3) is not empty. It is easily seen that g is a sublinear functional and L(g) = ¢(g)
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for g € E. Therefore, by the Hahn—Banach theorem, there is an extension Lof Lto
F such that L(f) < g(f) forall f € F.

Leth € C. Setting g = 0,f = —h we have g —f € C, so that g(—h) < L(0) =0
by (1.3). Hence L(—h) < g(—h) < 0, so that L(h) > 0. Thus, L is C-positive. O

Most existence results on the moment problem derived in this book have their
origin in the following theorem.

Theorem 1.8 Suppose that E is an adapted subspace of C(X;R). For any linear
functional L : E — R the following are equivalent:

(i) The functional L is E-positive, that is, L(f) > 0 forallf € E.
(ii) Foreachf € E4 there exists an h € E4 such that L(f + €h) > 0 forall e > 0.
(iii) L is a moment functional, that is, there exists a measure (i € M4 (X') such that
L="L*

Proof The implications (i)—(ii) and (iii)— (i) are clear.

(ii))—>(@) Letf € E4.Letting ¢ — 0 in the inequality L(f)+eL(h) = L(f+¢h) >
0, we get L(f) > 0.

(1)—(iii) We begin by setting

={feCX,R):|fx)] <gkx),xe X, forsome gekE}

and claim that E = E + (E) .. Obviously, E + (E)+ C E. Conversely, let f € E.
We choose a g € E such that |f| < g. Then we have f + g € (E)4, —g € E and
—f=—-g+(g+f) € E+ (E)y. Thatis, E = E + (E),.

By Proposition 1.7, L can be extended to an (E)+ -positive linear functional Lon
E. We have C.(X;R) C E by Lemma 1.6. From the Riesz representation theorem
(Theorem A.4) it follows that there is a measure s € M, (X) such that L(f) =
[fdu for f € C.(X;R). By Definition 1.5(1), E = E4 — E4. To complete the
proof it therefore suffices to show that f € £!(X, 1) and L(f) = L(f) = [ fdpu for
f€E;.

Fix f € E4. Let U be the set defined by (1.2). For n € U, fn € C.(X;R) and
hence L(f7) = [ fndu. Using this fact and the (E) 4 -positivity of L, we derive

[ =sop [ nan=swp Eirm) <Ly =10 <00 (1
so that f € L1(X, ).
By (1.4) it suffices to prove that L(f) < [ fdu. From Definition 1.5(iii), there

exists a g € E that dominates f. Then, by Lemma 1.4, for any & > 0 there exists a
function n, € U such that f < eg + fn,. Since fn, < f, we obtain

uﬁ=ﬂﬂsi@+ﬂma=u@+/ﬁmMsu@+/ﬁw
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Note that g does not depend on ¢. Passing to the limit e — +0, we get L(f) < [ fdu.
Thus, L(f)= f fdu which completes the proof of (iii). O

If X is compact, then C(X;R) = C.(X;R), so condition (iii) in Definition 1.5
is always fulfilled and can be omitted. But in this case we can obtain the desired
integral representation of L more directly, as the following proposition shows.

Proposition 1.9 Suppose that X is a compact Hausdorff space and E is a linear
subspace of C(X; R) which contains a function e such that e(x) > 0 for x € X.

Then each E4-positive linear functional L on E is a moment functional, that is,
there exists a measure . € My (X) such that L(f) = [ fdu forf € E.

Proof Set F = C(X;R) and C = C(X;R)+. Let f € F. Since X' is compact,
f is bounded and e has a positive infimum. Hence there exists a A > 0 such that
f(x) < Ale(x)on X.Since le —f € Cand —Ae € E,f = —Ae + (Ae —f) € E + C.
Thus, F = E + C. By Proposition 1.7, L extends to a C-positive linear functional L
on F. By the Riesz representation theorem, Z,, hence L, can be given by a measure
neMy (X) O

Remark 1.10 If X is compact, the assumption e(x) > 0 on X in Proposition 1.9
implies that e is an interior point of the cone E . This is a standard assumption of
the theory of ordered vector spaces which will be used in Theorem 1.26 below as
well. In applications in this book we usually take e = 1. o

In the proof of Theorem 1.8 condition (iii) of Definition 1.5 was crucial. We give
a simple example where this condition fails and L has no representing measure.

Example 1.11 Set E := C.(R;R) + R - 1 and define a linear functional on E by
L(f+A-1):=1 for feC.(R;R), A eR,

where 1 denotes the constant function equal to 1 on R. Then L is E -positive, but it
is not a moment functional. (Indeed, since L(f) = 0 for f € C.(R;R), (1.1) would
imply that the measure u is zero. But this is impossible, because L(1) = 1.) )

The next result is called Haviland’s theorem. For a closed subset K of R¢ we set
Pos(K) = {p € Ry[x] : p(x) >0 forall x € K}.

Theorem 1.12 Let K be a closed subset of R? and L a linear functional on Ry[x].
The following statements are equivalent:

(i) L(f) = 0 forallf € Pos(K).
(i) L(f + €l1) = 0 forf € Pos(K) and & > 0.
(iii) For any f € Pos(K) there is an h € Pos(K) such that L(f + €¢h) > 0 for all
e> 0.
(iv) L is a K-moment functional, that is, there exists a measure i € My (RY)
supportedon K such thatf € L' (R, u) and L(f) = [ f dp forallf € Rylx].
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Proof Set X = K. Then E = R,[x] is an adapted subspace of C(K, R). Indeed,
condition (i) in Definition 1.5 follows from the relation 4p = (p + 1)> — (p — 1)2.
Condition (ii) is trivial. If p € E, then g = (x} + --- 4+ x2)f dominates f, so
condition (iii) is also fulfilled.

Note that the implications (iv)—(i)— (ii)—(iii) in Theorem 1.12 are obvious. The
other assertions follow from Theorem 1.8. O

Now suppose that A is a finitely generated commutative real unital algebra. We
develop some notation and facts that will be used in Chaps. 12 and 13.

Definition 1.13 A character of A is an algebra homomorphism y : A — R
satisfying y(1) = 1. The set of characters of A is denoted by A.

We fix a set {f1,...,fs} of generators of A. Then there exists a unique surjective
unital algebra homomorphism 7 : Ry[x] — Asuchthat w(x;)) = f,j=1,...,d. If
J denotes the kernel of 7, then 7 is an ideal of Ry[x] and A is isomorphic to the
quotient algebra R,[x]/J, that is,

A= ]Rd[x]/J

Each character y of A is uniquely determined by the point x, := (x(f1),..., x(f2))
of RY. We identify y with x, and write f(x;) := x(f) for f € A. Under this
identification, A becomes the real algebraic set

A=Z(T)={xeR?:pkx)=0forpe J}. (1.5)

Since Z(7) is closed in R?, A is a locally compact Hausdorff space in the induced
topology of R? and elements of A can be considered as continuous functions on A.
In the case A = RRy[x] we can take p; = x1,...,ps = x4 and obtain A = R4

For a closed subset K of A, we define

Pos(K) ={feA:f(x) >0 for xeK}.

Then we have the following generalized version of Haviland’s theorem for A.

Theorem 1.14 Let A be a finitely generated commutative real unital algebra and K
a closed subset of A. For a linear functional L on A, the following are equivalent:

(i) L(f) = 0 forallf € Pos(K).
(i) L(f + €1) = O forf € Pos(K) and ¢ > 0.
(iii) For any f € Pos(K) there is an h € Pos(K) such that L(f + €h) > 0 for all
e> 0.
(iv) L is a K-moment functional, that is, there exists a measure € My (A)
supported on K such that A € L'(A, ) and L(f) = fAfd,u forallf € A

Proof (iv)—(i)—(ii)—(iii) are obviously satisfied. (iii)— (i) follows as in the proof
of Theorem 1.8. It remains to prove the main implication (i)—(iv).
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We define a linear functional L on Ry[x] by L = Lo . Let p € Ry[x] and
set f := m(p). Since 7 is an algebra homomorphism and 7 (x;) = f;, we have

p(fi,....fa) = pla(xy),...,w(xy)) = w(p(x)) =f. Hence, for x € K,
f) = x:(f) = xx(p(f1o - ) =P (f1)s - X (f) = P(x14 - - xg) = p(x).

Thus, if p(x) > 0 on K, then w(p) = f > 0 on K and hence L(p) = L(f) > 0
by assumption (i). Therefore, by Theorem 1.12 there exists a measure u € M (R9)
such that supp u € K and L(p) = Jxpdu forall p € Rylx].

Letf € A. Then f = 7(p) for some p € R[x]. Using the definition of L and the
equality p(x) = f(x) for x € K we obtain

L(f) = L(x(p)) = L(p) = /K p(0) d(x) = /K () du).

This proves (iv). |

Remark 1.15 Let A and K be as in Theorem 1.14. Let £(K) denote the K-moment
functionals on A. Then Pos(K) and £(K) are cones in A resp. in its dual satisfying

Pos(K)" = £(K) and L(K)" = Pos(K), (1.6)

where the dual cones Pos(K)”" and £(K)” are defined by (A.19). Thus, the cones
Pos(K) and L£(K) are dual to each other. Indeed, the first equality of (1.6) is
Theorem 1.14(i)<>(ii), while the second follows from the bipolar theorem [Cw,
Theorem V.1.8]. o

Example 1.16 Let A be the unital real algebra of functions on R generated by the
two functions f; = | _:Xz andf, = | . Then the identity (f; — é)z +f = i holds
in A and the set A is given by the points of the circle in R? with center (é, 0) and
radius ; Note that the character y € A with y(f1) = x(f>) = 0 cannot be obtained
by a point evaluation on R. o

1.1.3 The Set of Representing Measures

In this subsection we use some facts concerning the vague convergence of measures,
see Appendix A.1.

Definition 1.17 A directed net (L;)ie; of linear functionals on E is a net of linear
functionals L; defined on vector subspaces E;, i € I, of E such that £ = U;¢; E; and
E; CEjand L;[E; = Liforalli,jel,j> i

Clearly, for such a net (L;);e; there is a unique well-defined linear functional L
on E such that L(f) = L;(f) if f € E;, i € I, we shall write L = lim; L;.

Lemma 1.18 Let E be an adapted subspace of C(X; R) and let (u;)ic; be a net
of measures (; € M4 (X)) which converges vaguely to i € M4 (X). Suppose that
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for each i € I there is a linear subspace E; € L'(X, ;) of E such that (L),
is a directed net of linear functionals on E, where L'i(f) = [fdu, for f € E;.
Then lim; LM = LM,

Proof Let L := lim; L*'. Take h € E. Since E = U;e/E;, h € Ej, for some iy € I.
Let n € U, where U is defined by (1.2). Then, by the definition of L,

/hr)duj < /hd,uj =ILH(h)y=L(h) for jel,j>i.

Since hn € C.(X, R), lim; f hndu; = [ hdp by the vague convergence, so that

/hduz sup/hnd,u =suplim [ Andu; < /hduj =L(h), j=>ip. (1.7)
neU neU i

Thus, h € El(X; ). Therefore, since E = E; — E, it follows that E C El(X; Ww.

Letf € E4. There exists a g € E which dominates f, that is, for any &€ > 0 there
is an h, € C.(X; R) such that f < eg + h,, so that f — h, < eg. Since the index set /
is directed, there is an iy € I such that f and g are in E;,. Suppose thati € I, i > iy.
Then, L(f) = [ fdu; by the definition of L and similarly L(g) = [ gdpu;. Using
these facts and (1.7), applied first with & = f and then twice with 1 = g, we derive

‘L(f)— /fdu‘ 1)~ [fau= [ rani~ [rau

=/(f—ha)dm—/(f—ha)du+/hadui—/hadu
58(/gd,u,-+/gdu) —l—/hsdu,-—/hsdu

< e(L(g) + L(g)) + / e dpss — / hedp, i o,

Passing to the limit lim; the preceding inequality yields |L(f) — [ fdu| < 2&L(g).
Now, letting & — +0, we get L(f) = [ fdpu. Since E = E4 — E, it follows that
L(h) = [hdp forallh € E. ]

Theorem 1.19 Suppose that L is a moment functional on an adapted subspace E of
C(X; R). The set M| of representing measures is convex and vaguely compact.

Proof 1tis clear that M is convex. Let f € C.(X,R). By Lemma 1.6, there exists
ag € Esuch |f(x)| < g(x) for x € X. Then

[rau

Hence, by Theorem A.6, M is relatively vaguely compact in M4 (X). It therefore
suffices to show that My, is closed in M4 (X’) with respect to the vague topology.

sup
neEML

E/gd,u:L(g) < 00.
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For let (14;)ie; be a net from M which converges vaguely to u € M4 (X). From
Lemma 1.18, applied with E; = E for all i, it follows that L* = lim; L*. Since
Wi € My, we have L = L. Hence L* = L, thatis, u € M. O

Theorem 1.20 Suppose that X is a locally compact Hausdorff space such that
Co(X; R), equipped with the supremum norm, is separable. Let E be an adapted
subspace of C(X;R) and let (n)new be a sequence of measures [, € My (X).
Suppose for n € N there is a linear subspace E, € L'(X, ;) of E such that
(L") nen is a directed sequence of functionals on E according to Definition 1.17,
where L' (f) = [ fdn.f € Ep.

Then there exists a subsequence (Jin, )reN that converges vaguely to a measure
W € M (X) and we have limy_oo L'« = L*. If the functional L* is determinate,
then the sequence ({L,)nen itself converges vaguely to L.

Proof We first show that the set M := {u, : n € IN} is relatively compact in the
vague topology. Let f € C.(X, R). By Lemma 1.6, | f(x)| < g(x) for some g € E.
By Definition 1.17, there is a k € IN such that g € Ey and [ gdu, = [ gduy for

n > k. Hence
/ fduy

so M is relatively vaguely compact by Theorem A.6. Further, since Co(X'; R) is
separable, so is its subset C.(X’; R) and the vague topology on M (X) is metrizable
by Proposition A.7. Therefore, (14,),en has a subsequence (i, )ren that converges
vaguely to some measure u € M4 (X). Then L#* = lim_, oo L« by Lemma 1.18.
Suppose that L* is determinate. Let (i, )rew be another subsequence which
converges vaguely, say to ji. From Definition 1.17 it follows that limy_, oo LF« is
independent of the subsequence. Therefore, by Lemma 1.18, L = limy_, o0 L% =
L* and hence i = u, because L is determinate. Thus, since each convergent
subsequence has the same limit, the sequence (u,,),cn itself converges vaguely. O

sup
nelN

< sup /gdp,n = max /gdp,j < 00,
nelN J=Lek

The next result characterizes the extreme points of the convex set M.

Theorem 1.21 Let E be a linear subspace of C(X;R). Suppose that E contains a
function e such that e(x) > 1,x € X. Let L be a moment functional on E. Then a
measure (L € My is an extreme point of My if and only if E is dense in L' (X; jv).

Proof First we assume that g € M, is not an extreme point of M. Then there are
measures [, b2 € My, i # a2, such that u = é(,le + o). Since puy < 2u,
the Radon—Nikodym theorem (Theorem A.3) implies that du; = gdu for some
g € L®(X; u). By i # o, we have 1 — g # 0. Using that pu;, u € M/ we obtain

/f(l—g)dﬂ=/fd,u—/fgduszdu—/fdul=O, feE.
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Thus, 1—g # 0 defines a nontrivial continuous linear functional on L!(X; 1) which
annihilates E. Hence E is not dense in L' (X’; ).

Conversely, assume that E is not dense in L' (X, w). Since e € E C L' (X, ), the
measure /. is finite, so L% (X, u) is the dual of L' (X, ut). Hence there is a function
g € L*®(X, ), llglleoc = 1, which annihilates E. Define p+ by du+ = (1 £ g)dpu.
Since ||gllc = 1, 4+ and p— are positive measures. From the relation [ fgdu = 0
forf € Eitfollows that 4 and p— arein V. Since u = é(,u+ +u—)and puy # p—
(by g # 0), u is not an extreme point of M. O

Remark 1.22

1. The proof and the assertion of Proposition 1.21 remain valid for Borel functions
rather than continuous functions.

2. If 4 € My and E is dense in L>(X; ) in Theorem 1.21, E is also dense in
L'(X, 1), so u is an extreme point of M. The converse is not true, that is, there
are extreme points  of M for which E is not dense in L?(X', 11). o

The following simple fact will often be used to localize the support of represent-
ing measures. We will apply it mainly to semi-algebraic sets and polynomials.

Proposition 1.23 Let f € C(X;R) and u € M (X). Suppose that f(x) > 0 for
x€ Xand [ f(x)dp = 0. Then

supppt € Z(f) :={x € X : f(x) = 0}.

Proof Letxy € X. Suppose that xo ¢ Z(f). Then f(xo) > 0. Since f is continuous,
there are an open neighbourhood U of xy and an & > 0 such that f(x) > & on U.
Then

0= /X FO)dp > /U £ dp > sp(U) = 0,

so that u(U) = 0. Therefore, since U is an open set containing xy, it follows from
the definition of the support that xo ¢ supp u. O

1.2 Integral Representations of Functionals on
Finite-Dimensional Spaces

In this section we suppose that E is a finite-dimensional linear subspace of
C(X;R). We denote by I, the point evaluation at x € X, that is, [,(f) = f(x)
forf € E.

For some results we will use the following condition:

There exists a function ¢ € E such that e(x) > 1 forx € X. (1.8)
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1.2.1 Atomic Measures

Since E is finite-dimensional, it is natural to look for integral representations of
functionals by finitely atomic measures. To simplify the formulation of the results
we consider the zero measure as a 0-atomic measure.

Our first main result is the following Richter—Tchakaloff theorem.

Theorem 1.24 Suppose that (), 1) is a measure space, V is a finite-dimensional
linear subspace of E]IR(y, W), and L* denotes the linear functional on V defined
by L“(f) = [fdu, f € V. Then there is a k-atomic measure v = Z;(:l m;8,, €
M4 ()), where k < dimV, such that L* = LV, that is,

k
[ = [0 =3 msep. rev.
=1

Proof Let C be the convex cone in the dual space V* of all nonnegative linear
combinations of point evaluations /,, where x € )/, and let C be the closure of C in
V*. We prove by induction on m := dim V that L* € C.

Firstlet m = 1 and V = Rif. Set ¢ := [fdu. If ¢ = 0, then [(Af)dpn =
0L, (Af), A € R, for any x; € Y. Suppose now that ¢ > 0. Then f(x;) > 0 for
some x; € V. Hence m; := ¢f(x;)™" > 0 and [(Af)du = ml, (Af) for A € R.
The case ¢ < 0 is treated similarly.

Assume that the assertion holds for vector spaces of dimension m—1. Let V be
a vector space of dimension m. By standard approximation of [ fdu by integrals of
simple functions it follows that L* € C. We now distinguish between two cases.

Case 1: L* is an interior point of C.

Since C and C have the same interior points (by Proposition A.33(ii)), we have
L* e C.

Case 2: L* is a boundary point of C.

Then there exists a supporting hyperplane Fy for the cone C at L* (by Proposi-
tion A.34(ii)), that is, F is a linear functional on V* such that Fy # 0, Fo(L*) = 0
and Fy(L) > O for all L € C. Because V is finite-dimensional, there is a function
fo € V such that Fo(L) = L(fy), L € V*. For x € Y, we have [, € C and hence
Fo(l,) = L(fo) = fo(x) = 0. Clearly, Fy # 0 implies that fj # 0. We choose an
(m—1)-dimensional linear subspace Vj of V such that V.= V, & R:fy. Let us set
Z:={xe):fox) = 0}.Since 0 = Fo(L*) = L"*(fy) = [ fodp and fo(x) > 0
on ), it follows that fy(x) = 0 u-a.e. on Y, thatis, u(Y\Z) = 0. Now we define a
measure L on Z by ii(M) = w(M N Z). Then

Lﬂ(g)z/.gdu=/gdu=/ gdii = LF(g) for g € V.
y Z Z
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We apply the induction hypothesis to the functional L* on Vy € L'(Z, ji). Since

L* = L* on Vo, there exist A; > Oand x; € Z,j = 1, ..., n, such that for f € V),
L(f) =D Al (f)- (1.9)
=1

Since fy = 0 on Z, hence fy(x;) = 0, and L*(fo) = 0, (1.9) holds for f = f; as well
and so for all f € V. Thus, L* € C. This completes the induction proof.

The set C is a cone in the m-dimensional real vector space V*. Since L* € C,
Carathéodory’s theorem (Theorem A.35(ii)) implies that there is a representation
(1.9) with n < m. This means that L** is the integral of the measure v = } 7, A;5y;.
Clearly, v is k-atomic, where k < n < m. (We only have k < n, since some numbers
A;jin (1.9) could be zero and the points x; are not necessarily different.) a

The next corollary will be crucial for the study of truncated moment problems.

Corollary 1.25 Each moment functional on a finite-dimensional linear subspace E
of C(X;R) has a k-atomic representing measure v, where k < dim E. Further, if
is a representing measure of L and ) is a Borel subset of X such that u(X\)Y) = 0,
then all atoms of v can be chosen from ).

Proof Apply Theorem 1.24 to the measure space (), u[)Y) and V = E. O

Let £ denote the cone of all moment functionals on E. The first assertion of the
following theorem is the counterpart of Proposition 1.9 for atomic measures.

Theorem 1.26 Suppose that X is compact and condition (1.8) is satisfied.

(1) For each E-positive linear functional Ly on E there exists a k-atomic measure
p € My (X), k < dimE, such that Lo(f) = [ f du forf € E.
(ii) The cone L is closed in the norm topology of the dual space E* of E.

Proof Set m := dimE. As in the preceding proof, let C denote the cone in the dual
space E* of all nonnegative linear combinations of point evaluations /, at x € X. By
Carathéodory’s theorem (Theorem A.35(i)), each L € C is a combination of at most
m point evaluations /, that is, L is of the form

L= Xl,. where ;>0, x€X. (1.10)
J=1

We prove that C is closed in E*. Let (L™),c be a sequence from C converging
to L € E*. Let A;") and x;") be the corresponding numbers resp. points in (1.10).
Now we use the function e occurring in condition (1.8) and obtain

L) =Y Ae”) =4, j=1...m
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Hence, since the converging sequence (L™ (e)),c is bounded, so are the sequences
()L](.")),,G]N, j=1,...,m. Because X is compact, there are subsequences (/\;""))ke]N

and (x;""))ke]N which converge in R and X, respectively. Passing to the limit in the

representation (1.10) for L") yields L € C. Thus, C is closed in E*.

Next we show that Ly € C. Assume the contrary. Since C is closed, by the
separation of convex sets (Theorem A.26 (ii)) there exists a linear functional Fjy on
E* such that Fo(Ly) < 0 and Fy(L) > 0 for L € C. Because E is finite-dimensional,
there is an fy € E such that Fo(L) = L(fy), L € E*. Forx € X, I, € C and hence
Fo(ly) = L(fo) = fo(x) = 0, so that fy € E4+. But Fo(Ly) = Lo(fy) < 0 which
contradicts the assumption that Ly is E4-positive. This proves that Ly € C.

Hence L is of the form (1.10) and so the integral of the measure u = Z;"zl Ajy;-
Since some A; may be zero, w is k-atomic with k < m. This proves (i).

Each functional of L is obviously E4-positive and hence in C by (i). Thus
L C C. Since trivially C € £, we have £L = C. Hence L is closed in E*. This
proves (ii). O

Let £ denote the closure of the cone £ of moment functionals in E*. The next
proposition reformulates some results in terms of dual cones (see (A.19)).

Proposition 1.27 L C(E;)" =L and L" = E4 = (Ex)™.
If K is compact and condition (1.8) is satisfied, then L = (E4+)".

Proof First we prove that (E4+)" € L. Assume to the contrary that there exists
a functional Ly € (E4+)” such that Ly ¢ L. Then, by the separation of convex
sets (Theorem A.26(i)) applied to the closed (!) cone £ in E*, there is a linear
functional F on E* such that F(Ly) < 0 and F(L) > 0 for L € L". Since E is
finite-dimensional, there exists an element f € E such that F(L) = L(f), L € E*.
Forx € X, I, € L, so that F(l,) = I.(f) = f(x) > 0. Hence f € E. Therefore,
since Ly € (E+)", we get F(Ly) = Lo(f) > 0, a contradiction. Thus we have shown
that (E4+)" C L.

Since £ € (E4+)" C L as just proved and (E4)" is obviously closed, (E4+)" =
L.

Because E is closed in E, it follows from the bipolar theorem (Proposition A.32)
that Ex = (E4+)"". Hence Ex = (E+)")" = (L) = L.

Clearly, if L € £ and p € E4, then L(p) > 0. Therefore, £ C (E4+)".

Now suppose that K is compact and (1.8) holds. Let L € (E+)”. Because L is
E4-positive, we have L € L by Proposition 1.9 (or by Theorem 1.26(i)). That is,
(E4)"C L. Since L C (E4+)" as noted in the preceding paragraph, £ = (E4+)". O

1.2.2 Strictly Positive Linear Functionals

In this subsection we derive a number of results on strictly E -positive functionals
that do not hold for E -positive functionals in general.
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Definition 1.28 A linear functional L on E is called strictly E1-positive if
L(f) >0 forall feEy, f#0. (1.11)

The following simple lemma gives some equivalent conditions.
Lemma 1.29 For a linear functional L on E the following are equivalent:

(i) L is strictly E-positive.
(ii) Let || - || be a norm on E. There exists a number ¢ > 0 such that

L(f) z cllfll for f € Ex. (1.12)

(iii) L is an inner point of the cone (E4+)" in E*.

Proof (i)—(ii) Let ¢ be the infimum of L(f) ontheset Uy = {f € E; : ||f|| = 1}.
For x € X, the linear functional /, is continuous on the finite-dimensional normed
space (E, || - ||), so there exists a number C, > 0 such that

LN =1 = Gl fIl for fekE. (1.13)

This implies that E4 is closed. Therefore, Uy is bounded and closed, hence
compact, in the normed space (E, || - ||). Since L is also continuous on (E, || - ||),
the infimum is attained at fy € U4. From fy € Uy we have f # 0 and f € E4, so
that L(fy) = ¢ > 0 by (i). Hence L(f) > ¢ forf € U. By scaling this yields (1.12).

(ii)—(iii) Let || - ||* denote the the dual norm of || - || on E*. Suppose that L' € E*
and |[L — L'||* < c. Letf € E4 Then, using (1.12) we obtain

clfl =L'(f) =L(H =L = IL=L* £l < cllf]

so that L'(f) > 0. Thus, L; € (E4)”. This shows that L is an inner point of (E4+)".
(iii)—(@) Letf € E4+,f # 0. Then there exists an x € X such that f(x) > 0. Since
L is an inner point of (E4+)", there exists an ¢ > 0 such that (L—e¢l,) € (E4+)". Hence

L(f) =z &f (x) > 0. o

In general, E4-positive functionals are not moment functionals (see Exam-
ple 1.32), but strictly E-positive functionals are, as shown by the next theorem.

Theorem 1.30 Let L be a strictly E-positive linear functional on E.

(i) L is a moment functional.
(ii) For each x € X, there is a finitely atomic measure v € M, such that

v({x}) > 0.

(iii) For eachx € X, the infimum

kp(x) ;= inf{L(f) : f € E4,f(x) = 1} (1.14)

Is a minimum.
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Proof

(i) The strictly E4-positive functional L is an inner point of (E+)" = L by
Lemma 1.29 and Proposition 1.27. Since the convex set £ and its closure £
have the same inner points by Proposition A.33, L is also an inner point of L.
In particular, L belongs to £, that is, L is a moment functional which proves (i).

Let | - || be anorm on E and x € X'. By Lemma 1.29 and its proof, there
exist positive numbers ¢ and C, such that (1.12) and (1.13) hold.

(i) Choose ¢ > O such that eC, < c.Letf € E4,f # 0. By (1.12) and (1.13),

(L—el)(f) z cllfll — &f () = (c =) f]| > 0.

Therefore, L — ¢l is also strictly E-positive and hence a moment functional
by (i). Corollary 1.25 implies that L — &l, has a finitely atomic representing
measure . Then v := (u + €8,) € M is finitely atomic and v({x}) > ¢ > 0.
(iii) By (1.14), there is a sequence (f,),ew of functions f, € Ey,f,(x) = 1,
such that lim, L(f;) = «r(x). Since || f,]| < ¢ 'L(f,) by (1.12), (fi)ren is
a bounded sequence in the finite-dimensional normed space (E, || - ||). Hence
it has a convergent subsequence (f;, ). Set f = limy f;,,. From (1.13) it follows
thatf € E4 and f(x) = 1. Clearly, L(f) = limy L(f;;;) = kr(x), so the infimum
in (1.14) is attained at f. |

Corollary 1.31 Let L be a moment functional on E. Suppose that there exist a

closed subset U of X and a measure p € My such that suppp < U and the

following holds: If f(x) > 0 on U and L(f) = O for some f € E, thenf = 0 onU.
Then each x € U is an atom of some finitely atomic representing measure of L.

Proof Being a closed subset of X, U/ is a locally compact Hausdorff space.
Since supp 4 < U, there is a well-defined (!) moment functional L on the linear
subspace E 1= E[U of C(U:R) given by L(f[U) = L(f).f € E. Clearly, L is
(E) 4 -positive on E. The condition on 2/ implies that L is even strictly (E)  -positive.
Hence the assertion follows from Theorem 1.30(i), applied to LandECC U, R).
O

Example 1.32 Set X = Rand E = Lin{1,x,x*,...,x*"™!}, where n € INy. Let L
be a linear functional on E. Then E4 = Ry - 1. Therefore, if L(1) > 0, then L is
strictly E4-positive, so that L € £ by Theorem 1.30(i). If L(1) = 0 and L # 0, then
Lis E4-positive, but L ¢ L.

In the case E = Lin{x,x,...,x*"t!} we have E; = {0}, so each linear
functional on E is strictly E-positive and hence E* = L. o

1.2.3 Sets of Atoms and Determinate Moment Functionals

In this subsection, L denotes a moment functional on £ and we suppose that:

For each x € X there exists a function f, € E such that f,(x) > 0. (1.15)
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Clearly, condition (1.8) implies (1.15).
Definition 1.33 W(L) :={x € X : u({x}) > 0 forsome u € M, }.

That is, W(L) is the set of points of X" that occur as an atom of some representing
measure of L. This is an important set for the moment functionals L.

Lemma 1.34

(1) IfL=0and p € My, then p = 0.
(ii) The set W(L) is not empty if and only if L # 0.

Proof

(i) Since L = 0, we have L(f,) = 0, where f, € E is the function from
assumption (1.15). Hence, by Proposition 1.23, supp 4 € Z(f;) forallx € X.
But Nyex Z(f;) is empty by (1.15), hence is supp u. Thus, . = 0.

(ii) By Corollary 1.25, L has a finitely atomic representing measure w. If L # 0,
then u # 0, so W(L) is not empty. If L = 0, then & = 0 by (i), so W(L) is
empty. O

Lemma 1.35

(1) Suppose that M is a Borel subset of X containing W(L). Then u(X\M) = 0
for each measure . € M.
(i) If W(L) is finite, there exists a measure i € My such that supp u = W(L).
(iii) If W(L) is infinite, then for any n € N there exists a measure u € My such
that |supp u| > n.

Proof The proofs of all three assertions make essentially use of Theorem 1.24.

(i) Assume p(X\M) > 0 to the contrary. We define functionals L; and L, by
L = [ s@dn and L) = [ gwdu. ek
M X\M

We apply Theorem 1.24 to the functional L, on the measure space X'\M with
measure induced from p. Therefore, L, has a finitely atomic representing
measure j, with atoms in X\M. The measure 1 on M which is induced from
[ is a representing measure of L. Since u € M, we have L = L; + L, and
hence it := (u1 + n2) € My. From p(X\M) > 0 and Lemma 1.34(i) it
follows that L, # 0. Hence u, # 0, so there exists an atom xo € X\M of
2. Then, f({xo}) > n2({xo}) > 0, thatis, xo, € W(L) € M. This contradicts
X0 € X\M

(ii)) Let W(L) = {xi,...,x,}. By the definition of W(L), for each x; there is a
measure i; € My such that u;({x;}) > 0. Then u := rll(,ul 4o ) € Mg
and p({x;}) > 'pi({xi}) > 0,0 = 1,....n. Thus, W(L) C supp . Since
supp 4 € W(L) by (i) applied with M = W(L), we have supp u = W(L).

(iii) is proved by a similar reasoning as (ii). O

By Theorem 1.49 below, W(L) is a closed subset, hence a Borel subset, of X.
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Recall from Definition 1.1 that a moment functional L is called determinate if it
has a unique representing measure, or equivalently, if the set M is a singleton. The
following theorem characterizes determinacy in terms of the size of the set W(L).

Let {f1,...,fn} be a vector space basis of E. We abbreviate

s = (i), .fu)" €R". (1.16)
Note that s is the moment vector of the delta measure §, at x € X.
Theorem 1.36 For each moment functional L on E the following are equivalent:

(i) L is not determinate.
(ii) The set {s(x) : x € W(L)} is linearly dependent in R™.
(iii) |W(L)| > dim(E[W(L)).
(iv) L has a representing measure | such that |supp | > dim(E[W(L)).

Proof (1)—(iii) Assume to the contrary that |[W(L)| < dim(E[W(L)) and let p,
and u, be representing measures of L. Then, since dim E is finite, so is W(L), say
W(L) = {xi,...,x,} with n € IN. In particular, W(L) is a Borel set. Hence, from
Lemma 1.35(i) applied to M = W(L), we deduce that supp u; € W(L) fori =1, 2,
so there are numbers ¢; > O forj = 1,...,n,i = 1,2, such that

L(f) = /f(x) dui = _f(x)cy for f € E.

J=1

From the assumption |[W(L)| < dim(E[W(L)) it follows that there are functions
Jj € E such that fj(xy) = 8. Then L(fj) = ¢;; fori = 1,2, so that ¢j; = cy; for all
j=1,...,n. Hence u; = W, so L is determinate. This contradicts (i).

(iii))—(ii) Since the cardinality of the set {s(x) : x € W(L)} exceeds the
dimension of E[W(L) by (iii), the set must be linearly dependent.

(i1))—(i) Since the set {s(x) : x € W(L)} is linearly dependent, there are pairwise
distinct points x, ..., x; € W(L) and real numbers cy, ..., ¢k, not all zero, such that
Zle ¢is(x;) = 0. Then, since {f,...,fn} is a basis of E, we have

k

Y cif(x) =0 for feE. (1.17)

i=1

We choose for x; € W(L) a representing measure u; of s such that x; € suppu;.
Clearly, u := ]1( Zle Wi is a representing measure of s such that p({x;}) > 0 for all
i.Lete = min {u({x;}) : i = 1,...,k}. For each number ¢ € (—¢, ¢),

k
pe=ptc Y ciby
i=1

is a positive (!) measure which represents L by (1.17). By the choice of x;, ¢;, the
signed measure ), ¢;6,, is not the zero measure. Therefore, . # p for ¢ # ¢
This shows that L is not determinate.
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(iii)<«>(iv) If W(L) is finite, by Lemma 1.35(ii) we can choose a © € M/ such
that supp u = W(L). If W(L) is infinite, Lemma 1.35(iii) implies that there exists a
W € My such that |[supp p| > dim(E[W(L)). Thus, in both cases, (iii)<>(iv). O

An immediate consequence of Theorem 1.36 is the following.

Corollary 1.37 Let X, E, and L be as in Theorem 1.36. If |W(L)| > dimE or if
there is a measure (L € My such that |supp | > dim E, then L is not determinate. In
particular, L is not determinate if W(L) is an infinite set or if L has a representing
measure of infinite support.

Corollary 1.38 Suppose that L is a strictly E-positive moment functional on E.
Then L is determinate if and only if |X| < dim E.

Proof From Theorem 1.30(ii), X = W(L). Therefore, dimE = dim (E[W(L)).
Hence the assertion follows from Theorem 1.36(iii) <>(i). |

1.2.4 Supporting Hyperplanes of the Cone of Moment
Functionals

In this subsection, L is a moment functional on E.
Now we introduce two other important sets for the moment functional L.

Definition 1.39

Ni(L):={f €kt L(f) =0},
Vi) ={xe X :f(x) =0 for f e Ny(L) }.

The next proposition contains some properties of these sets.
Proposition 1.40

(i) For each measure . € My we have supp u < Vy(L).
(i) W(L) S Va(D).
(iii) If L is strictly E4-positive, then Ny (L) = {0} and V(L) = W(L) = X.

Proof

(i) Since E € C(X; R), Proposition 1.23 implies that supp u € V4 (L).
(ii)) Let x € W(L). Then, by definition, w({x}) > 0 for some u € M;,. Thus
x € supp 1 and hence x € V(L) by (i).
(iii) By Definition 1.28, N4+ (L) = {0}. Hence V(L) = X. From Theorem 1.30(ii)
we obtain W(L) = X. O

Example 1.41 (An example for which W(L) # V(L)) Let X be the subspace of
R? consisting of three points (—1,0), (0, 0), (1,0) and two lines {(¢, 1): € R} and
{(t,—1):t € R} and let E = R[x;, x2]o[X. We easily verify that the restriction map
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f = f[X on Rxi, x;], is injective; for simplicity we write f instead of f[X" for
f [S ]R[XI,XZ]z.
We consider the moment functional L defined by

L(f) =f(—1,0) +f(1,0).f € E. (1.18)

We show that N (L) = {x;(bxy + ¢):|c| < b, b, c € R}. It is obvious that these
polynomials are in N4 (L). Conversely, let f € N4 (L). Thenf(—1,0) = f(1,0) =0,
so thatf = x,(ax;+bxo+c)+d(1—x}), witha, b, ¢, d € R. Further,d = f(0,0) > 0.
From f (¢, £1) > 0 for all € R we conclude that d = 0 and |c| < b.

The zero set V4 (L) of N4+ (L) is the intersection of X with the x-axis, that is,
Vi(L) = {(-1,0),(0,0),(1,0)}. Let u be an arbitrary representing measure of L.
Then, since p is supporting on V. (L), there are numbers «, 8,y > 0 such that
n= (13(_1,0) —}-,35(0,0) + ]/5(1,0). By (1.18), we have L(x;) =0 = fxld,u =—o+Yy
and L(x}) = 2 = [x}di = o + y, which implies that @ = y = 1. Therefore, since
L(1) =2 = [1du = a + f + y, it follows that = 0. Hence, «({(0,0)}) = 0, so
that (0,0) ¢ W(L). Thus, W(L) # V4+(L). The functional L on E is determinate. o

If L =0, then N+ (L) = E and V4 (L) = @. If L # 0 is a moment functional,
then V4 (L) # 0, since it contains the support of all representing measures.

Proposition 1.42

(i) Letp € Ny (L),p # 0. Then @,(L') = L'(p),L’ € E*, defines a supporting
Sfunctional ¢, of the cone L at L. Each supporting functional of L at L is of
this form.

(ii) L is a boundary point of the cone L if and only if N4 (L) # {0}.

(iii) L is an inner point of the cone L if and only if N+ (L) = {0}.

Proof

(i) Letp € N1 (L),p # 0. Since p € E, the functional ¢, is L-positive. Further,
¢p(L) = L(p) = 0. Since p # 0, there exists an x € X such that p(x) # 0.
Then ¢,(ly) = I(p) = p(x) # 0, so that ¢, # 0. This shows that ¢, is a
supporting functional of £ at L.

Conversely, let ¢ be a supporting functional of £ at L. Since E is finite-
dimensional, we have (E*)* = E,so ¢ = ¢, forsomep € E.Forx e X,l, € L
and hence ¢(/,) = ,(p) = p(x) > 0. Thatis,p € E4.From ¢(L) = L(p) =0
we obtain p € N4 (L). Clearly, p # 0, because ¢ # 0.

(i) By Proposition A.34(ii), L is a boundary point of £ if and only if there is a
supporting functional of £ at L. Hence (i) implies the assertion of (ii).

(iii) follows from (ii), since L is inner if and only if it is not a boundary point. 0O

A nonempty exposed face (see Definition A.36) of a cone C in a finite-
dimensional real vector space is a subcone F = {f € C : ¢(f) = 0} for some
functional ¢ € C*.

By Proposition 1.27, £~ = E,, that is, each functional ¢ € L£" is of the form
@p(L’) = L'(p),L' € E*, for some p € E. Hence the nonempty exposed faces of
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the cone £ in E* are exactly the sets
F,={L' e L:¢,(L')=L(p) =0}, where peEy,. (1.19)

Let L € L. Since £ € (E4+)", N+ (L) is an exposed face of the cone E. If X is
compact and condition (1.8) holds, then (E4)" = L by Proposition 1.27 and hence
each exposed face of E is of this form. Thus, in this case the subcones N4 (L) are
precisely the nonempty exposed faces of the cone E .

Proposition 1.43 Let L € L and x € K. Suppose that X is compact and condition
(1.8) is fulfilled. Then the supremum

co(x):=supf{ceR:(L—cLy) e L} (1.20)

is attained and we have c;(x) < e(x)"'L(e). Further, L — c;(x)l, is a boundary
point of L and there exists ap € E4,p # 0, such that L(p) = c,(x)p(x).

Proof If (L — cl,) € L, then (L — cl,)(e) > 0, so that ¢ < e(x)~'L(e). Therefore,
c(x) < e(x)7'L(e).

Since K is compact and (1.8) holds, the cone L is closed in E* by Theorem 1.26.
There is a sequence (c,),en such that (L — ¢,l,) € L for all n and lim,, ¢, = ¢, (x).
Then (L — c,ly) — (L — cp(x)Ly). Since L is closed, (L — c.(x)l,) € L, that is, the
supremum (1.20) is attained.

The definition of ¢ (x) implies that L — ¢, (x)l, is a boundary point of L.
Therefore, by Proposition 1.42(ii), there exists a p € Ny (L — c.(x)l;),p # 0. Then

L(p) = cL(x)p(x). o

Proposition 1.43 is a tool to reduce problems on moment functionals to boundary
functionals. If L is an inner point of L, it is clear that ¢, (x) > O for all x € X.

Proposition 1.44 For each moment functional L there exists a p € N4+ (L) such that
Vi) = Z(p) :={xe X :p(x) = 0}.

Proof Firstlet L be an inner point of £. Then, N4 (L) = {0} by Proposition 1.42(iii),
hence V4 (L) = &’; so we can set p = 0.

Now let L be a boundary point of £. Then, Ny (L) # {0}. Let p1,...,pr be a
maximal linearly independent subset of N4 (L). We prove that p := p; + -+ + px
has the desired properties. Obviously, p € N4 (L) and V(L) € Z(p) by definition.
Suppose that x € Z(p). Letqg € N+ (L). By the choice of py, . . ., p, the function g is
a linear combinationg = ), A;p; with A; € R. Fromp(x) = pi(x) +---+pi(x) =0
and p;j(x) > 0 (by g; € N4(L)) it follows that we have p;(x) = O for all i and
therefore g(x) = 0. Since ¢ € N4 (L) was arbitrary, x € V(L). O

For inner points of £ we have W(L) = X (by Lemma 1.29 and Theorem 1.30(ii))
and hence W(L) = V4 (L). In general, W(L) # V4 (L) as shown by Example 1.41.
The next theorem characterizes those boundary points for which W(L) = V4. (L).
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Theorem 1.45 Let L be a boundary point of L. Then W(L) = V(L) if and only if
L lies in the relative interior of an exposed face of the cone L.

Proof First assume that W(L) = V4 (L). By Proposition 1.44, there exists a p €
N4 (L) such that Z(p) = V4 (L). Since ¢, € L” and L(p) = 0, the set F), defined
by (1.19) is an exposed face of £ containing L. We will prove that L is an inner point

of F),.
If x € Z(p), then [,(p) = p(x) = 0, so that [, € F,. We choose a maximal
number of points xq,...,x, € Z(p) such that the point evaluations I, ..., L, on

E are linearly independent. Since Z(p) = V4+(L) = W(L), we have x; € W(L).
Therefore, for each i there exists a representing measure p; of L such that x; is an
atom of p;. Then p := /1< Zf=1 Wi is also a representing measure of L and each x; is
an atom of u.

Suppose that L’ € Fj,. Let ' = } ; ¢;8,, be a finitely atomic representing measure
of L. Since L' (p) = 0, we have supp ' € Z(p), so thaty; € Z(p) for all j. Hence,

by the choice of the points x;, L' = Zj ¢jly, is in the span of I, ..., L. That is,

there are reals Aq, ..., A; such that L' = ZLI Aily,. Since u has positive masses at
all points x;, there exists an ¢ > 0 such that i + ¢ - ' is a positive (!) measure for
¢ € (—¢,¢). Its moment functional is (L + ¢L’) € L. Therefore, (L + cL') € F,,
since L, L’ € F,. This shows that L is an inner point of F,,.

Conversely, suppose that L is an inner point of an exposed face F of £. Then F
is of the form (1.19) for some p € N4 (L). Let x € V4 (L). Then, since p € Ny(L),
p(x) = 0 and hence [, € F. Since L in an inner point of F, there is a ¢ > 0 such
that L' := L —c-1I, € F.If i is a representing measure of L', then u = u’ + ¢ - 6,
is a representing measure of L and u({x}) > ¢ > 0, so that x € W(L). Since
W(L) € V4(L) always holds by Proposition 1.40(ii), we get W(L) = V4 (L). O

Most results of this section are stated in terms of moment functionals. Sometimes
it is convenient to work instead with moment sequences and the moment cone.

Fix a vector space basis {fi,....fn} of E. Let S denote the cone of moment
sequences s = (s; i~ that is, of sequences of the form s; = [ f;(x) du for some
Radon measure i on X'. The linear map s + L is a homeomorphism of S € R”
onto £ C E*. Using this simple fact notions and results on £ can be reformulated
in terms of the cone S and vice versa. We encourage the reader to carry this out. As
a sample, we describe the supporting hyperplanes and exposed faces of the cone S.

The vector s(x) = (fi(x),....fu(x))T € R™ from (1.16) is just the moment
vector of the delta measure dy, x € X. Let (-, -) be the standard scalar product on R™.

Forv = (vy,..., v € R™ we abbreviate

fo=vifi++ vnfae
Then E = {f, : v € R™}. Since f,(x) = (v,s(x)) forx € X, we have

Eir ={f,:veR" (v,s(x)) >0 for x € X}.
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It is easily verified that Li(f,) = (v,s) for v,s € R™. This implies that for each
linear functional 4 on E there is a unique vector u € R"™ such that

h(fy) ;= h(fy) = (v,u), veR™ (1.21)
Set N4+ (s) := N4 (Ly). For u € R™ we define
h(t) .= (u, 1), te R", and H,:={xeR":(u,x) =0}
Lemma 1.46 Letu € R" ands € S. Then f,, € N4 (s) if and only if h,(s) = 0 and

h,(t) > O0fort e S.

Proof Lett € S. Since ¢ has a finitely atomic representing measure, we can write
t =Y ,cis(x;), where x; € X and ¢; > 0 for all i. Using (1.21) we compute

Lif) = (u.) = ha(0) = Y ci(us()) = ) cifulx).

Using the definition of N (s) the assertions follow at once from this equality. O

Lets € S. By Lemma 1.46, the functional i, u € R”, is a supporting hyperplane
of § at s if and only if f, € N4 (s) and u # 0. Each supporting hyperplane of S at s
is of the form. Thus, s is a boundary point of S if and only if N4 (s) # {0}.

Further, H, N S is an exposed face of S if and only if f, € N4 (s). All nonempty
exposed faces of S are of this form.

1.2.5 The Set of Atoms and the Core Variety

Throughout this section, L is a moment functional on E such that L # 0.
We define inductively linear subspaces Ni(L), k € IN, of E and subsets V;(L),
jE ]N(), Obey V()(L) = X,
Ne(L) :={peE:L(p) =0, p(x) >0 for x € Viy(L) }, (1.22)
Vi(L) :=={xe X :p(x) =0 forp € N;(L)}. (1.23)

Definition 1.47 The core variety V(L) of the moment functional L on E is
o0
V(L) = (| V(D). (1.24)
j=0

Since L # 0, it follows from Proposition 1.48(ii) that V(L) # @ for all k € N.
Note that N (L) = N4 (L) and V(L) = V4 (L), where N4 (L) and V(L) have been
introduced in Definition 1.39.
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Some properties of these sets are contained in the next proposition. Assertion
(1.25) is the crucial step in the proof of Theorem 1.49 below.

Proposition 1.48

(i) Ni-i(L) € Ny(L) and Vi(L) < Vii(D) forj € IN.
(i) If w is representing measure of L, then suppu € V(L).
(iii) There exists a k € Ny such that

X=Vo(L) 2Vi(L) 2... 2 V(L) = Vig,(L) = V(L), jeN. (1.25)

Proof

(i) follows easily by induction; we omit the details.

Letj € Ny. We denote by EV) := E[V;(L) € C(V;(L); R) the vector space
of functions f; := f[V;(L), where f € E, and by £ the corresponding cone
of moment functionals on EV/). Clearly, E) = E and L = L. Note that in
general dim EV) is smaller than dim E.

(ii) We prove by induction that suppu < Vi(L) for j € INg. For j = 0 this is
obvious. Assume that this holds for some j. Then

L9(f) = /V " f(x)du, f€E, (1.26)

defines a moment functional on E¥). Then suppu € V4 (LY) = Viyi(L)
by Proposition 1.40(i) which completes the induction proof. Thus supp u
N VL) = V(L).

(iii) Fix u € My. Let LV € LY be given by (1.26). Then, Nj41(L) = N4 (LY)
and Viq1(L) = V4 (LY). From Proposition 1.44, applied to LY, we conclude
that there exists a pj4+1 € E such that pj4[V;(L) € N4+ (LY) = Ni1 (L) and

Vi) = Vini(L) = Z(pin [Vi(L) = {x € Vi(L) : pjs1 (x) = 0}.
(1.27)

Suppose that L is an inner point of £. Then, by Proposition 1.42(iii),
Ni(L) = Ni(L) = {0}, so that V;(L) = X. Hence it follows from the
corresponding definitions that N;(L) = {0} and V;(L) = X forallj € NN,
so the assertion holds with k = 0.

Now let L be a boundary point of £. Then N;(L) # {0} and hence V(L) #
X. Assume that r € IN and

Vo(l) 2 ... 2 V(D). (1.28)

We show that the functions py, ..., p, are linearly independent. Assume the
contrary. Then Z;=1 Ajpj = 0, where A; € R, not all zero. Let n be the
largest index such that A, # 0. Then p,(x) = qu XA p;. (The sum is
to set zero if n = 1.) Since V;(L) C V;(L) if j < i and p; vanishes on V;(L) by
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(1.27), it follows that p, = 0 on V,_;(L). Hence V,(L) € V,,—1(L) by (1.27), a
contradiction to (1.28).

In the preceding two paragraphs we have shown that there is a k € Ny,
k < dim E, such that V(L) = Vi (L). Then Ny4+(L) = Ny4»(L) and hence
Vit1(L) = Viga(L). By induction, V(L) = V(L) forj € IN, so that V(L) =
Vi(L). O

The following result says that the core variety is just the set of possible atoms. It
implies that W(L) is a Borel subset of X'

Theorem 1.49 Suppose that L is a moment functional on E and L # 0. Then
W(L) = V(L). In particular, W(L) is a closed subset of X.

Proof From Proposition 1.48(ii) it follows that W(L) C V(L).

By Proposition 1.25, there exists a k € INg such that (1.25) holds. We
show that the set &/ := V(L) fulfills the assumptions of Corollary 1.31. By
Proposition 1.48(ii),we have suppu C V(L). Further, if f € E satisfies f(x) > 0
on Y = Vi(L) and L(f) = O, then f € Ni4+1(L) and hence f(x) = 0 on
Vi+1(L) = V(L) = U. Now Corollary 1.31 applies and gives the converse inclusion
U =V(L) < W(L). Thus, W(L) = V(L).

Since V(L) = V(L) is closed by its definition, so is W(L). O

1.2.6 Extremal Values of Integrals with Moment Constraints

In this subsection, we investigate the supremum and infimum of the integral [ hdu
of some measurable function /# under the constraint that the measure p has given
“moments” [fidu =s;,j=1,...,n.

Let M(E) denote the set of Radon measures p on X’ for which all functions of
E are p-integrable. We fix a vector space basis { f1, .. . ,f,} of the finite-dimensional
subspace E of C(X’; R) and define the moment cone

S = s:(sl,...,s,,):sj:/fj(x)d,u,j:1,...,n, where € M(E) ¢ .

For s € S let M, denote the set of representing measures of s, that is,

MSZ{MEM(E):si:/ﬁ(x)du,j:1,...,n}.

Let h be a fixed real-valued Borel function on X such that the integral f hdu is
finite for all u € M. For instance, if the function % is bounded on A" and condition
(1.8) holds, then each measure 1 € M,, 1 € S, is finite and hence [ h(x)dp is finite.
For an interior point s of S, we are interested in the upper bound s, (%; s) and
the lower bound Z;n¢(h; s) of the integral f h(x) dp under the constraints © € M;:
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Lup (s 5) = sup { f h()dp : € Mg}, (1.29)
Ling(h; ) = inf { / h(x)dp : p € M,}. (1.30)

If h is the indicator function x4 of a Borel set A, Is,p(x4;s) is the supremum of
masses (L(A) for measures u € M. This is an important quantity in moment theory.

Let Sexy denote the moment cone obtained by adding the function 4 to the
sequence {fj,...,fy}- Thatis,

Sexi =t tuy) €R"™ it e S, 1y = /h(x)d,u for u e M,

If h € E, then [ hdpu = Ly(h) for pu € Sy, so that Iy (h:s) = Lne(h;s) = Ly(h), so
we are done in this case. Further, we set

Es(h) ={f €E:f(x) > h(x) for x € X}, (1.31)
E<(h)={f €E:f(x) <h(x) for x € X}. (1.32)

The following two results relate the problems (1.29) and (1.30) to two other
problems (1.33) and (1.34) and give existence criteria for these problems.

Theorem 1.50 Let s be an interior point of S such that Iy, (h; s) and Ling(h; s) are
finite. Further, assume that [ hd is finite for all @ € M, andt € S. Then

Lup(h:s) = inf {Ls(f) : f € Ex(h)}, (1.33)
Lini(h:5) = sup {Ly(f) : f € E<(h)}, (1.34)

and there exist functions f+ € Ex (h) and f— € E<(h) such that the infimum in (1.33)
is attained at f and the supremum in (1.34) is attained at f—.
Further, if the supremum in (1.29) is attained at py € M and f+ € Ex(h)
satisfies Iyp(h; 8) = Ly(fy), then iy is supported on {x € X : h(x) = fy (x)}.
Likewise, if the infimum in (1.30) is attained at some ju— € M and f— € E<(h)
is such that Lint(h; s) = Ly(f-), then ju— is supported on {x € X : h(x) = f_(x)}.

Proof As stated before the theorem, the assertion holds if # € E. Thus we can
assume that 1 ¢ E.

Since Iup(h; 5) € R is the supremum (1.29), (s, Isup(h; 5)) is in the closure of Sey
and (s, Lyup (5 5) + &) ¢ Sex for all € > 0. Thus (s, Iy,p(h; 5)) is a boundary point of
the convex cone Sex of R"T!, so there exists a supporting hyperplane through this
point at Sey. That is, there are a € R” and a,,+1 € R such that (a, a,+1) # 0 and

a-t+ apyity+1 =0 forall (¢,t,41) € Sexts (1.35)
a-s+ aptilsup(h;s) = 0. (1.36)
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For any x € X, the delta measure &, is in M(E). Letting ¢ be the moment sequence
of §, in (1.35) we obtain

arfix) + -+ anfu(x) + apr1h(x) >0 for x € X. (1.37)

Next we prove that a,+; < 0. Since h ¢ E, it is easily seen that Sy
is not contained in a hyperplane. Hence there is a (f,7,41) € Sext such that
a-t+ aptity,+1 > 0. Since s is an inner point of S, we have ' 1= s+ e(s — 1) € S
for small & > 0. Put 7, | := J hdp for some o € M,. Then (7.1, € Sext.
Therefore, setting | := (1 + &) 7', + e(1 + &) 'tuy1,

(S, t;/1/+1) = (1 + 8)_1(t/v tl/1+l) + 8(1 + 8)_l(tv tn+1)

n

a-t+ aptityyr > 0and a1t + apif,; > 0imply thata - s + a1, > 0.
Combining the latter with (1.36) we obtain a1, 11 > @n+1lsup(h; 5). Therefore,
since (s,7,,,) € Sext and hence Iyy(h:s) > .| by the definition of I, (h: s), it
follows that a,+; < 0.

Set fy (x) := —aya,} ,fi — -+ — ana, | f,. Dividing (1.37) by —a,4| > 0 we get
f+(x) —h(x) > 0forx € X, so that f1 € E>(h). From (1.36) and (1.37) we derive
Ly(f+) = Iwp(h;s). Thus we have shown that the infimum in (1.33) is attained at f3
and equal to Iy (/; 5).

The assertion concerning [iy¢(/;s) follows either by a similar reasoning or
directly from the result on Iy, (h; 5), applied with & replaced by —h and f; by —f;.

Finally, let us suppose that the supremum (1.29) is attained for some py € M;
and let Iy, (h; s) = Ly(fy), where f € Ex(h). Then

is a convex combination of points from Se, so that (s, 7/ 1) € Sext- The inequalities

[ £y = L) = tantiis) = [ 0 ds

so that [(fi (x) —h(x))duq = 0. Since fy —h > 0 on X, it follows that f; —h = 0
M+-a.e.. This means that p 4 is supported on the set {x € X : h(x) = fi(x)}. The
proof for p_ is similar. O

Remark 1.51 Theorem 1.50 and its proof remain valid if E consists of measurable
functions for some o-algebra instead of continuous functions. )

Since h(x) > f(x) on X for f € E<(h), we have

inf h—fldn = inf /hd—/d):/hd—su Ly(f).
fEES(h)/I fldu feEE(h)( W fdu W fEEfp(h) (f)

Thus, finding the supremum in (1.34) is equivalent to the problem of finding the
best approximation of & in L'(X, i) by functions from E<(h). In other words,
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the supremum in (1.34) is attained at f € E<(h) if and only if f is the best
approximation of 4 in L' (X, i) by functions of E from below.

Recall that a real-valued function % on X is called upper semicontinuous if for
eacha € R the set {x € X' : f(x) < a} is open in X. Obviously, the characteristic
function 7 = y4 of some subset A is upper semicontinous if and only if A is closed.

The next theorem is the main result of this section. It contains sufficient
conditions ensuring that the supremum in (1.29) is attained.

Theorem 1.52 Suppose that X is a compact topological space and E is a finite-
dimensional subspace of C(X;R) satisfying condition (1.8). Let s be an interior
point of S and h an upper semicontinuous bounded real-valued function on X.
Then there exist a k-atomic measure jLy = Zj‘(:l m;d,, € My, k < dimE + 1,
and a function 4 € E>(h) such that the supremum (1.29) and the infimum (1.33)
are attained at f4 and [, respectively, and both numbers coincide. That is, we
have f1(x) > h(x) on X, h(xj) = f+(xj) forj =1, ...,k and for eachv € M,

k

[ 1eoav = [seadn = Y mi) sor sk,

Jj=1

k
sup [ oty = [ hde = Y mhcs) = [ freav = ot f .

HEM, =1

Proof From the definition of the supremum (1.29) it follows that there is a sequence
(Un)nen of measures u, € M; such that lim, f hdp, = Isp(h;s). By condition
(1.8), we have i, (X) < [ edp, = Ly(e) forn € IN. Therefore, Theorem A.6 applies
and implies that the set {i,, : n € IN} is relatively vaguely compact. Then there exist
a Radon measure pty € M4 (X) and a subnet (u,,);e; Which converges vaguely to
p+. Since X is compact, E € C.(X,R) and hence [ fdpuy = lim; [ fdu,, = L(f)
for f € E. Thus, uy+ € M.

Further, the function 1 is in C.(X,R) again by the compactness of X. Hence
lim g, (X) = lim [ 1dp,, = [ 1dp = p(X), so condition (i) in Proposition A.8
is fulfilled. From p,,(X) < Lg(e) and u(X') < Ly(e) we get ju,, L € Mi (X). Since h
is upper semicontinuous, it follows from the implication (i)—(iii) of Proposition A.8
that [ hdpy > limsup; [ hdp, = Isp(h:s). Obviously, Iyy(h:s) > [hdu, by
definition. Thus, [ hdp4 = Isp(h:s), so the supremum (1.29) is attained at fu.

Applying Theorem 1.24 to the functional L(f) = [fdu on E & R - h
we conclude that p4 can be chosen k-atomic, say (4 = Z;;lmjé’xj, with
k<dimE + 1.

All remaining assertions are contained in Theorem 1.50. Because w4 is sup-
ported on the set {x € X : h(x) = fy(x)}, we have h(x;) = fi(x;) for all
j=1,...k O

In particular, Theorem 1.52 holds if 4 is the characteristic function of a closed
subset of X'. If we assume that the function /4 is lower semicontinuous (for instance,
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the characteristic function of an open set), then the counterpart of Theorem 1.52
remains valid almost verbatim for the infimum in (1.30) and the supremum in (1.34).

1.3 Exercises

. Decide whether or not the following subspace E of C(R;IR) is an adapted

space:

a. E is the span of functions (x> + n)~!, n € IN.
b. E is the span of functions e**, o > 0.
c. E=C.(R;R).

. Are the polynomials R[x], of degree at most n an adapted space of C(R; R) or

of C([-1,1;R)?

. Let E be the vector space of bounded continuous real functions on IR. Each

f € E has a unique continuous extension f to the Stone—Cech compactification
B(R) of R (see e.g. [Cw, Chapter V, §6]). Let xo be a point of S(R)\R and
define L(f) := f (x0), f € E. Show that L is an E-positive linear functional on
E which is not a moment functional.

. Let u,, n € IN, and p be positive Radon measures on a locally compact

Hausdorff space X" such that the sequence (u,).ew converges vaguely to u
and > 02| (a(X) < oo. Show that lim, [ fdu, = [ fdu forf € Co(X;R).

. Leta,b € R, where a < b. Determine the character set A for the x-algebras

A=CR;R)+R-y,andA=C(R;R) + R ypup-
Hint: Look for a topological space X" such that A is isomorphic to C(&X, R).

In the following exercises, E is a finite-dimensional subspace of C(X;R), S is the
moment cone, and §; is the set of s € S which have a k-atomic representing measure
with k <.

6.
7.
8.

9.

10.
11.

Give an example such that S; is not closed.

Prove that R" = S — S, where m = dim E.

Let C be the smallest number such that each s € S has a k-representing measure
with k& < C. Show that §;_; # Sjforj=1,...,C.

Assume that condition (1.15) holds.

(1) Prove that the cone S is pointed, that is, S N (—=S) = {0}.
(i) Prove that if S; is closed, so is Sy for all k£ € IN.

Assume that X" is compact and (1.8) holds. Prove Ly is closed for all k € IN.
Suppose that L is a strictly E-positive moment functional on E and |X'| >
dim E. Prove that L is not determinate by using the Hahn—Banach theorem.
Hints: Take 7 € C.(X;R), h ¢ E. Show that S, < Ij,, where

Sy :=sup {L(f);f € E and f(x) < h(x), x € X}, (1.38)
I :=inf {L(f) :f € E and h(x) <f(x), x € X'}. (1.39)



1.4 Notes 41

Choose y € R, S, < y < I. Show that the functional L, on F := E+ R -h
defined by L, (f + Ah) = L(f) + Ay.f € E, is strictly Fy-positive. Apply
Theorem 1.30.

1.4 Notes

Choquet’s theory of adapted spaces was elaborated in [Chq]. Haviland’s The-
orem 1.12 goes back to [Ha]. Since the one-dimensional case was noted by
M. Riesz [Rz2], Theorem 1.12 is often called Riesz—Haviland theorem in the
literature. Theorem 1.21 (for polynomials) is due to M.A. Naimark [Na]; the general
version is from [Do].

The important Theorem 1.24 was first proved in full generality by H. Richter [Ri]
in 1957, see also W.W. Rogosinsky [Rg]. V. Tchakaloff [Tch] treated the simpler
compact case about the same time. Richter’s paper has been ignored in the literature
and a number of versions of his result have been reproved even recently.

Theorem 1.26 is due to [FN2]. Assertion (i) of Theorems 1.30 is based on an
idea from [FN1]. Theorems 1.30, 1.36, 1.45, and 1.49 were proved in [DSm1]. The
core variety (for polynomials) was introduced in [F2]. More results on the moment
cone can be found in [DSm1], [DSm2]; proofs of Exercises 1.7-1.10 are given in
[DSm2].

The results of Sect. 1.2.6 were obtained in [Ri], [Rg], [1i], [Kp1]; see [Kp2] for a
survey. They will not be used later in this book.



Chapter 2
Moment Problems on Abelian %-Semigroups

In this chapter we collect a number of general concepts and simple facts on moment
problems on commutative *-semigroups that will be used throughout the text, often
without mention. Section 2.1 is about positive functionals on *-algebras and positive
semidefinite functions on *x-semigroups. In Sect. 2.2 we specialize to commutative
x-algebras and *-semigroups and introduce moment functionals, moment functions,
K-determinate moment functions, and generalized Hankel matrices. Some standard
examples of commutative *-semigroups are given in Sect. 2.3.
Throughout this chapter, K is either the real field R or the complex field C.

2.1 =*-Algebras and %-Semigroups

In this section we discuss the one-to-one correspondence between positive semidef-
inite functions on *-semigroups and positive functionals on semigroup *-algebras.
Let us begin with some basic definitions.

Definition 2.1 A x-algebra A over KK is an algebra over K equipped with a
mapping * : A — A, called involution, such that fora,b € Aand o, 8 € K,

(xa + Bb)* =aa™ + Bb*, (ab)* =b*a*, (@*)* =a.

The Hermitian part A, of a x-algebra Ais A, :={a € A:a = a*}.

Our standard examples of real or complex *-algebras in this book are the
polynomial algebras R[xi, ..., x4] and C[xy, ..., x4], respectively, with involutions
determined by (x))* = x;,j =1,....d.

© Springer International Publishing AG 2017 43
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Definition 2.2 Let A be a IK-linear subspace of a some *-algebra over IK. We define

A? = Lin{b*a :a,b € A}, (2.1
k

ZAZ = { Z(ai)*ai ca; € A ke NV, (2.2)
i=1

A linear functional L : A> — K is called positive if Lis (}_ A%)-positive, that is, if
L(a*a) >0 for a€A. (2.3)

Lemma 2.3 Let A be a linear subspace of a *-algebra B over K and L : A> — K
a positive linear functional. Then the Cauchy—Schwarz inequality holds:

|L(b*a)|* < L(a*a)L(b*b) for a,b € A. (2.4)
Further, if B is unital and the unit element of B is contained in A, then
L(a*) = L(a) for a € A. (2.5)

Proof We carry out the proof in the case IK = C; the case KX = R is even simpler.
For o, € K and a, b € A we have

L((a + Bb)*(aa + Bb))
= aaL(a*a) + aBL(a*b) + aBL(b*a) + BBL(D*b) > 0. (2.6)

Hence aBL(a*b) + aBL(b*a) is real. Letting ¢ = 1 and aff = i, we derive
L(a*b) = L(b*a). If B has a unit element 1 and 1 € A, we set b = 1 and get (2.5).

The expression in (2.6) is a positive semidefinite quadratic form. Hence its
discriminant has to be nonnegative. Since L(a*b) = L(b*a) as just shown, this
yields

L(a*a)L(b*b) — L(b*a)L(a*b) = L(a*a)L(b*b) — |[L(b*a)|* > 0. O

If the linear subspace A in Definition 2.2 is itself a x-algebra, then (2.3) is just
the definition of a positive functional on the *-algebra A.

In this book we deal mainly with commutative real algebras. Each such algebra
is a x-algebra over R if we take the identity map as involution. In this case, Y A”
is the set of finite sums of squares a® of elements a € A and the Cauchy—Schwarz
inequality (2.4) has the following form:

L(ab)? < L(a®>)L(b*) for a,b € A. .7)
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By a semigroup (S, o) we mean a nonempty set S with an associative composition
o (that is, a mapping SxS§ > (s1,2) > 51057 € Ssuch thatsjo(syos3) = (s7052)0s3
for all s1, 52, 53 € S) and a neutral element e € S (thatis,eos = soe = sfors € S).

Definition 2.4 A x-semigroup (S,o,*) is a semigroup (S,0) endowed with a
mapping * : S — S, called an involution, such that

(so)* =r"os* and (s*)*=s, s,1€8.

If no confusion can arise we write simply S instead of (S, o, *).
Any abelian semigroup becomes a *-semigroup if we take the identity map as
involution. Each group S is a *-semigroup with involution s* := s~!, 5 € §.

Definition 2.5 A function ¢ : S — K on a *-semigroup S is positive semidefinite
if for arbitrary elements sy, ...,s, € S, numbers &,...,§, € Kandn € IN,

> (s os)Eig = 0.
ij=0
The set of positive semidefinite functions ¢ : S — IK on S is denoted by Pk (S).

Suppose that S is *-semigroup. We define the semigroup *-algebra K[S]. A
vector space basis of IK[S] is given by the elements of S and product and involution
of KK[S] are determined by the corresponding operations of S. That is, K[S] is the
vector space of all sums ) s, where oy € KK and only finitely many numbers
o, are nonzero, with pointwise addition and scalar multiplication. The vector space
IK[S] becomes a unital *-algebra over I with product and involution defined by

(ers s ( Ztes Bit) == 3 1es sBi(s 0 1),
(Zses O{SS)* = s A ST

Since the elements of S form a basis of K][S], there is a one-to-one correspon-
dence between functions ¢ : S—IK and linear functionals L,, : IK[S]—>IK given by

Ly(s) :=p(s), se€S.
Definition 2.6 The unital x-algebra IK[S] over K is the semigroup *-algebra of S
and the functional L, is called the Riesz functional associated with the function ¢.
Proposition 2.7 For a function ¢ : S — K the following are equivalent:

(i) o is a positive semidefinite function.
(ii) Ly, is a positive linear functional on the *-algebra K[S].
(iii) H(@) = (ay := @(s* o 1))ses is a positive semidefinite Hermitian matrix.
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Proof For arbitrary a = ) ¢ s € K[S], we have

* _ * _
Ly(a*a) = Zmesq)(s o)y = Zwes gy 050l
Comparing Definitions 2.5 and 2.2 the first equality implies the equivalence of (i)
and (ii), while the second equality yields the equivalence of (i) and (iii). O

Corollary 2.8 If ¢ : S — K is a positive semidefinite function on S, then

©(s*) = ¢(s) and @(s*os) >0 for s €S, (2.8)
lp(s* 0 1)|> < p(s* 0 5)p(t* ot) for s,t €S. (2.9)

In particular, if p(e) = 0, then ¢(t) = 0 forallt € S.

Proof By Proposition 2.7, L, is a positive linear functional on the unital *-algebra
K[S], that is, L, (s*s) = ¢@(s* o s) > 0. Therefore, (2.8) and (2.9) follow at once
from (2.5) and (2.4), respectively. If ¢(e) = 0, then it follows that ¢ = 0 on S by
setting s = e in (2.9). O

Definition 2.9 The positive semidefinite matrix

H(p) = (p(s* 0 1))sses

with (s, £)-entry ay, := @(s* o 1) is called the generalized Hankel matrix associated
with the positive semidefinite function ¢ : § — K.

2.2 Commutative %-Algebras and Abelian *-Semigroups

Throughout this section, we assume that A is a commutative unital x-algebra over
K and that S is an abelian *-semigroup. As is common, we write + for the
composition o of § and denote the neutral element of S by 0.

Definition 2.10 A character on A is linear functional y : A — KK satisfying

x() =1, x(ab) = y(@)x (), x@*)=x(a), abeA (2.10)

If A is a real algebra with identity involution, this coincides with Definition 1.13.

The set of characters of A is denoted by A. We equip A with the topology of
pointwise convergence and assume that A is then a locally compact topological
Hausdorff space. The latter is always fulfilled if the algebra A is finitely generated.

The following definition restates Definitions 1.1 and 1.2 in the present setting.
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Definition 2.11 Let K be a closed subset of A. A linear functional L : A — K is
called a K-moment functional if there exists a Radon measure /& on A such that

supp it € K, @11

the function y — y(a) is u-integrable on A and satisfies

L(a):[)((a)dp,()() forall ae€A. (2.12)
A

A K-moment functional L is said to be K-determinate if there is only one Radon
measure (L on A for which (2.11) and (2.12) holds.

In the case K = A we call K-moment functionals simply moment functionals and
K-determinate K-moment functionals determinate.

Lemma 2.12 Each K-moment functional is a positive linear functional on A.

Proof Leta € A. For y € A we have y(a*a) = y(a*)y(a) = |x(a)|* by (2.10) and
therefore

me=Ammmmm=Amw%mmzo 0

Remark 2.13 A positive linear functional L on A satisfying L(1) = 1 is called a
state. Let S(A) denote the set of states of A. Each character of A is an extreme
point of the convex set S(A). (The reasoning of the proof of Lemma 18.3(ii) below
gives a proof of this well-known fact.) In general not all extreme point of S(A) are
characters. (Indeed, by Proposition 13.5, there exists a state L on R[x;, x;] which
is not a moment functional. From the decomposition theory of states on *-algebras
[Sm4, Section 12.4] it follows that L is an integral of extreme points of S(A). Since
L is not a moment functional, not all extreme points of S(A) can be characters; see
also the discussion in [Sm4, Remark 12.4.6].) o

Next we turn to characters on the abelian *-semigroup S.

Definition 2.14 A character of S is a function y : S — K satisfying

x©0) =1, x(s+0=yx6)x@®, x*)=yx@). stes. (2.13)

The set S* of characters of an abelian semigroup S is also an abelian -
semigroup, called the dual semigroup of S, with pointwise multiplication as
composition, complex conjugation as involution and the constant character as
neutral element.

Let us assume that S* equipped with the topology of pointwise convergence is a
locally compact Hausdorff space. This holds if the x-semigroup is finitely generated.
The following is the counterpart of Definition 2.11 for x-semigroups.
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Definition 2.15 Let K be a closed subset of S*. We say that a function ¢ : § — K
is a K-moment function if there exists a Radon measure 4 on S$* such that

suppu C K, (2.14)

the function y + y(s) is u-integrable on S* and

o(s) :/ x(s)du(y) forall seS. (2.15)
S*

A K-moment function ¢ is called K-determinate if the measure p satisfying (2.14)
and (2.15) is uniquely determined.

If K = §* we call a K-moment function simply a moment function and a K-
determinate moment function determinate.

Comparing the preceding definitions and facts we see that we have a one-to-one
correspondence between notions on a *-semigroup S and its semigroup *-algebra
KI[S]. By (2.13) and (2.10), a function y : S — K is a character on the *-semigroup
S if and only if its Riesz functional on IK[S] is a character on the *-algebra IK[S].
Comparing Definitions 2.11 and 2.15, it follows that ¢ is a K-moment function
on S if and only if the Riesz functional L, is a K-moment functional on K[S].
Further, by these definitions, ¢ is K-determinate if and only if L, is. That is, the
moment problems for the semigroup *-algebra IK[S] and for the x-semigroup S are
equivalent. We shall use these fact throughout the book without mention.

From Proposition 2.7 (i)<>(ii), and Lemma 2.12 we obtain the following.

Corollary 2.16 Each moment function ¢ : S — K is positive semidefinite.

By Corollary 2.16 and Lemma 2.12, each moment function ¢ : § — KK is positive
semidefinite and the Riesz functional L, on IK[S] is positive. We shall show later
(Proposition 13.5) that the converse is not true for *-semigroup S = ]Ng whend > 2.
Even more, the converse is only true in rare cases! Finding sufficient conditions on
a positive linear functional L on IR[]Ng] ensuring that L is a moment functional will
be one of our main tasks in this book.

Next let us suppose that A is a commutative real algebra. We want to define
its complexification Ag. The direct sum A¢ := A @ iA of vector spaces A and
iA becomes a commutative complex x-algebra with multiplication, involution and
scalar multiplication defined by

(a +ib)(c + id) = ac — bd+i(bc + ad), (a +ib)* := a—ib,
(¢ +iB)(a +ib) := aa — Bb + i(ab + Ba),

where a,b,c,d € A and o, € R. This complex =x-algebra A¢ is called the
complexification of A. The real algebra A is then the Hermitian part (Ac), of Ac.
Recall that )~ (Ac)* denotes all finite sums Y, x*x; and ) A” is the set of finite

sums Y, a?, where x; € Ac and @; € A.

17
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Lemma 2.17 ) (A¢)> = Y A%

Proof Let x € Ac¢. Then x = a+ib with a,b € A. Using that the algebra A is
commutative (!) we obtain

x*x = (a+ib)*(a+ib) = a®> + b* +i(ab—ba) = a* + b* € ZAZ. |

Each R-linear functional L on A has a unique extension L¢ to a C-linear functional
on Ac. An immediate consequence of Lemma 2.17 is the following corollary.

Corollary 2.18 L is positive on the real x-algebra A (with the identity map as
involution) if and only if L¢ is positive on the complex x-algebra Ac.

At the end of this section we briefly discuss the choice of the field K. A large part
of this book deals with the K-moment problem for the *-semigroup § = ]Ng with
identity involution. By (2.13), all characters on ]Ng are real-valued, (]Ng)* =~ R and
we have IR[]Ng] >~ R[xi,...,xq4], see Example 2.3.1 below. That is, we can work
with the real field and real algebras. In Chaps. 12 and 13 we will apply powerful
methods from real algebraic geometry to the real algebra A = R]xy, ..., x4].

But operator-theoretic treatments require complex Hilbert spaces. In this case it
is more convenient to use the complex semigroup *-algebra C[INg] = Clx, . .., x4).
Since C[xi, ..., x,4] is just the complexification of R[xy, ..., x4], it is easy from the
preceding discussion and Corollary 2.18 to pass from one algebra to the other.

In Chaps. 11 and 15 we will study the moment problem on the unit circle and
the complex moment problem, respectively. In these cases it is unavoidable to work
with the complex field, since otherwise we would not have enough characters.

2.3 Examples

In this section we discuss four important examples that will be crucial for this book.

2.3.1 Example 1: ]N‘é, n*=n

The additive semigroup ]Ng with identity involution is a x-semigroup and the map
(n1,....ng) >} --- Xl

is a x-isomorphism of the semigroup x-algebra ]K[]Ng] on the =x-algebra
K]xi, ..., x4] of polynomials with involution determined by x;‘ =x,j=1,....,d
By identifying (ni, . ..,ng) and x|" - - - X" we obtain

K[ING] = K[x, ..., x4
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Clearly, for any ¢t € R there is a character y, given by the point evaluation
xi(p) = p@).p € Klxi, ..., x4]. Conversely, if y is a character, we set ; := y(x;)
forj =1,....d. Then y(x)) = x((x)*) = x(x;),sot = (#1,...,1s) € R? and

X(px1, ... x0) = p(x(x1), ..., x(xa)) = plt1, ... . ta) = x:(p).

Hence y = y;. Thus we have shown that the character space of § = ]Ng is
(ND* = {y,: t e R = R?, where x,(p) = p(2). (2.16)

A function on the semigroup ]Ng is just a multisequence s = (sa)aE]Ng. Its Riesz

functional L; is given by Li(x*) = s, & € ]Ng. By the definition of the involution,
positive semidefinite functions on ]Ng are real-valued. By Definition 2.5, a real
sequence s = (Sq), end is a positive semidefinite function on ]Ng if and only if

Z Sa+p €6 =0

d
a,BEINy

for all finite real multisequences (§4),cd-

From Definition 2.15 and Eq. (2.16) 1t follows that s is a moment function on
IN?, briefly a moment sequence, if and only if there is a Radon measure j on RY =
(IN&)* such that x* € L1(RY, 1) and

Sa =/ x*du  for o eINd, (2.17)
]Rd

or equivalently, p(x) € L'(R?, ) and Ly(p) = [pap(x)dp forp € Rixy, ..., xq].
Equation (2.17) means that s, is the a-th moment of the measure p. Thus, s is a
moment sequence if and only if there is a Radon measure p such that each s, is
the o-th moment s, (0 of p, or equivalently, L, is a moment functional according
to Definition 2.11. This explains and justifies the names “moment sequence” and
“moment functional”.

By Definition 2.9, the corresponding generalized Hankel matrix H(s) has the
(o, B)-entry sq4p. In the case d = 1 the matrix H(s) is a “usual” one-sided infinite
Hankel matrix which is constant on cross-diagonals:

So 1 52 Lo Sy
S1 5 53 e Sp41 ..
S2 S S N
His=|"2* "2 ™ nt2 . (2.18)
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Remark 2.19

1. It should be emphasized that notions such as positive semidefinite sequence,
moment sequence, and Hankel matrix depend essentially on the underlying -
semigroup.

2. In the literature the Hankel matrix is often called the moment matrix, because its
entries are moments if s is a moment sequence. We will not use this terminology.
The reason is that we will work with Hankel matrices as technical tools even if
we do not know whether or not s is a moment sequence. In algebraic geometry
the Hankel matrix appears under the name catalecticant matrix. )

2.3.2 Example 2: N}, (n,m)* = (m,n)

The additive semigroup ]N%d with involution
*
(ny,...,ng,my,...,mg)" = (my,...,mg,ny,...,ng)

is a x-semigroup and the map

(nlv'-' s Ng,my, ... 7md) = lell "'szzrlnl "'ZZM
is a *-isomorphism of C[IN2] onto the *-algebra C[zi,...,24,21," " ,24] of
complex polynomials with involution given by (z))* :=z;,j = 1,...,d. That s,

C[]N(z)d] = Clz1, 21, -+ - 24, Zd)-

Arguing as in the preceding example it follows that the character space is given by
the evaluations at points of €4, that is,

S* ={y.:ze C = where y.(p) =p1.....24:20:---2d)-

Positive semidefinite functions on this *-semigroup S are complex multise-
quences s = (sa,ﬂ)a,ﬂe]Ng for which

Y Sutarprp Eapboy =0
a,a’,ﬂ,ﬂ’e]Ng

for all finite complex multisequences (§u.5)y,geme-
The ((«, B), (&', B’))-entry of the corresponding generalized Hankel matrix H (s)
is Sq+ar g+p. The first equality of (2.8) yields Sytorp+p = Sg+p/a+ar fOT
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a,B,a’, B’ € Nd. In the case d = 1 the matrix H(s) has the form

S00 So1 S02 ---Som - - -
So1 S11 812 - S - - -

H(S) _ S02 S12 822 .. 82 . e . (219)

Son Stn S2n « -« S -+ - -

2.3.3 Example3: 7%, n* = —n

The additive group Z“ equipped with the involution (ny, ..., ng)* = (—ny, ..., —ng)
is a x-semigroup. There is a *-isomorphism

(n1,....ng) > 2" -2

of the group *-algebra C[Z¢] onto the *-algebra of trigonometric polynomials in d
variables, or equivalently, of complex polynomialsinz; € T,...,z; € T. Thus,

A1~ . _ _ _ _
ClZ°l = Clzi, 215 - 2asza s =021 = 1, ..., 2q24 = 2aza = 1].

It is easily verified that the character space (Z¢)* consists of point evaluations at
points of the d-torus T¢ = {(z1,...,z4) € C? : |z1| = -+ = |z4| = 1}, that is,

(Z9Y* = {y.:z€ T =T, where y.(p) = p(2).

The (n,m)-entry of the generalized Hankel matrix H(s) iS sm—n and we have
Sm—n = Sp—m forn,m € Z“. In the case d = 1 the matrix H(s) is given by

.80 81 S22 S3o...
... 81 So S1 S22 ...

H(s) = b , (2.20)
... 8 851 S S ...

.83 82 81 So ...

where s stands at the (0,0)-entry. A matrix of this form is called a Toeplitz matrix.
This matrix is constant on each descending diagonal from left to right.
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2.3.4 Exampled:7Z,n* =n

The additive group Z with identity involution is a *-semigroup. The map n — x" is
a *-isomorphism of the group x-algebra R[Z] on the x-algebra R[x, x~!] of Laurent
polynomials with involution given by x* = x. The character space Z* is

Z* = {) -1 € R\{0}} = R\{0}, where y,(p)=p(r,i").

The (n, m)-entry of the generalized Hankel matrix H(s) is S+, SO that

. 8528-18 ...

o818 51

H(s) = 2.21)

.80 ST S22 ...
.81 S22 oS3,

Here again s is located at the (0,0)-entry of the matrix. That is, H(s) is a “usual”
two-sided infinite Hankel matrix which is constant on cross-diagonals.

2.4 [Exercises

1. Let S be an abelian *-semigroup. Show that § x S is an abelian *-semigroup with
product (s1, 52) o (5], 55) = (515}, 5255) and involution (51, 52)* = (s2, 51), where
51, 5], 528, € S. Which examples of Sect. 2.3 fit into this scheme?

2. Let s = (sy)sen, be a complex positive semidefinite sequence for the -
semigroup INy with involution n* = n. Prove the following:

a. s, € R and s,, > 0 forn € INy.

b. (sm+n)2 < SouS2, for m, n € No.

c. (sn)zk < (S())zk_lsnzk for n € Ny, k € IN. In particular, so = O implies that
s, = 0 forall n € IN.

3. (Schur’s theorem) Show that if A = (aij)?J=1 and B = (bij)?J=1 are positive
semidefinite matrices over R, then so is the matrix C := (llijbij)?Fl-

4. Show that if s = (sy)nenN, and t = (#,)nen, are positive semidefinite sequences
for the *-semigroup Ny, then so is the pointwise product sequence (spt,)neN, -

5. Let ¢ and ¥ be positive semidefinite functions on the additive group R. Show
that ¢, ¢ 4+ ¥, and @y are also positive semidefinite functions on R.

6. Show that ¢(f) = cos ¢ is a positive semidefinite function on R.
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7. Let u € M (R) be a finite measure. Prove that

o) = /];{e_”xdu(x), teR,

is a continuous positive semidefinite function on RR.
(Bochner’s theorem (see e.g. [RS2]) states that each continuous positive semidef-
inite function ¢ on R is of this form with p uniquely determined by ¢.)

2.5 Notes

Basics on positive functionals and general *-algebras can be found (for instance)
in [Sm4]. The notion of a x-semigroup appeared first in the Appendix written by
B. Sz.-Nagy of the functional analysis textbook [RzSz]. The standard monograph
about harmonic analysis on semigroups is [BCRI].
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The One-Dimensional Moment Problem



Chapter 3
One-Dimensional Moment Problems
on Intervals: Existence

In this chapter we begin the study of one-dimensional (full) moment problems:

Given a real sequence s = (sp)nen, and closed subset K of R, the K-moment
problems asks: When does there exist a Radon measure |1 on R supported on K such
that s, = [ x"dj(x) foralln € Ny?

Our main aims are the solvability theorems for K = R (Hamburger’s Theo-
rem 3.8), K = [0, +00) (Stieltjes’ Theorem 3.12), and K = [a, b] (Hausdorff’s
Theorems 3.13 and 3.14). They are derived in Sect.3.2 from Haviland’s theo-
rem 1.12. To apply this result representations of positive polynomials in terms of
sums of squares are needed. In Sect.3.1 we develop such descriptions that are
sufficient for the applications in Sects. 3.2 and for the truncated moment problems
treated in Sects. 9.4 and 10.1.

In Sect.3.3 we establish a one-to-one correspondence between the Stieltjes
moment problem and the symmetric Hamburger moment problem. In Sect. 3.4 we
derive unique representations of nonnegative polynomials on intervals (Proposi-
tions 3.20-3.22). These results are stronger than those obtained in Sect. 3.1 and they
are of interest in themselves.

3.1 Positive Polynomials on Intervals

Suppose that p(x) € R][x] is a fixed nonconstant polynomial. Since p has real
coefficients, it follows that if A is a non-real zero of p with multiplicity /, so is
A. Clearly, (x — )!(x — A)! = ((x — u)> + v?)!, where u = Re A and v = ImA.
Therefore, by the fundamental theorem of algebra, each nonzero real polynomial p
factors as

pe) =alx—an)" - (x—a)" (x =AY @ — Y= A=A (B
=alx—a)" - (x—oa)""((x —u)? + vf)/l o (= w)? + v,f)/k, 3.2)
© Springer International Publishing AG 2017 57
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where

Nyeo s Beyjiseejk €N, a, 00,0 .., 0, € R,

A =up+ivy, ..., Ag=up +ivg, ug,....ux €R, v1 >0,...,v, >0,
wi# oy if i A j and A # A A £ A if i # .

Thus, Eq. (3.2) expresses p as a product of a constant a, of powers of pairwise
different linear polynomials x — o; with real zeros «;, and of powers of pairwise
different quadratic polynomials (x — u;)* + vj2 with no real zeros. Note that linear
factors or quadratic factors may be absent in (3.2). Up to the numeration of factors
the representation (3.2) (and likewise the representation (3.1)) of p is unique.

Ifa, b, c,d are elements of a commutative ring, there is the two square identity

(@ + b*)(? + d?) = (ac — bd)?> + (ad + bc)>. (3.3)

This implies that each product of sums of two squares is again a sum of two squares.

Recall that Pos(M) is the set of p € R[x] that are nonnegative on M C R and
3" R[x]? is the set of finite sums of squares p?, where p € R[x]. We denote by R[x],
and Pos(M), the corresponding subsets of polynomials p such that deg(p) < n and
by Zi the set of finite sums of squares p?, where deg(p) < n.

The following three propositions contain all results on positive polynomials
needed for solving the moment problem on intervals. The formulas containing
polynomial degrees will be used later for the truncated moment problems.

Proposition 3.1

(i) Pos(R) = Y R[> = {2+ g>: f.g € R[] }.
(i) Pos(R)2s =Y, = {f> + &% :f.g € Rxl. }.

Proof
(i) Let p € Pos(R), p # 0. Since p(x) > 0 on R, it follows that ¢ > 0 and
the numbers ki, ...,k in (3.2) are even. Hence p is a product of squares and

of sums of two squares. Therefore, by (3.3), p is of the form f2 + g2, where
f, g € R[x]. The other inclusions are obvious.
(i) follows at once from (i), because deg(f> + g?) = 2 max(deg(f),deg(g)). O

Proposition 3.2
Pos([0, +00)) = {f +xg: f.g € TR’} (3.4)
Pos([0, +00))y = {f+xg: fe X2, ge X2}, neN, (3.5)

Pos([0, +00))au+1 = {f +xg: f.g € Ti}, neN,. (3.6)
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Proof Clearly, (3.4) implies (3.5) and (3.7), since
deg(Y_ 7 + xg7) = max;(2deg(f). 1 + 2 deg(s)-

Let us abbreviate Q := Y R[x]> +x Y R[x]. It is obvious that Q C Pos([0, +00)).
Thus, it suffices to prove that Pos([0, +00)) € Q.
Next we note that the set Q is closed under multiplication. Indeed, for arbitrary

fi.f 81,8 € O R[x]>, we have

(fi +x80)(f + x82) = (fifr + ¥°8182) + x(fig2 + g1) € 0.

Let p € Pos([0, +00)),p # 0, and consider the representation (3.2). Since Q is
closed under multiplication, it suffices to show that all factors from (3.2) are in Q.
Products of quadratic factors and even powers of linear factors are obviously in Q.
It remains to handle the constant a and the linear factor x — «; for each real zero «;
of odd multiplicity. Since p(x) > 0 on [0, +00), we have a > 0 by letting x — +00
and o; < 0, because p(x) changes its sign in the neighbourhood of a zero with odd
multiplicity. Hencea € Q and x—a; = (—a;+x) € Y. RxP+x Y R[x> = Q. O

Proposition 3.3 Suppose that a,b € R, a < b. Then:

Pos([a.b]) = {f + (x—a)g: f.g € T Rl]*}, (3.7
Pos([a.b])on = {f + b—x)(x—a)g: f€ Z}. g€ X, }. (3.8)
Pos([a. b))ont1 = { (b—X)f + (x—a)g: f.g € ;). (3.9)

Proof The equality (3.7) is an immediate consequence of (3.8) and (3.9).

All polynomials on the right-hand sides of (3.8) and (3.9) belong to the
corresponding left-hand sides. We prove the converse inclusions of (3.8) and (3.9)
by induction on n. Both (3.8) and (3.9) are trivial for n = 0. Assume that (3.8) and
(3.9) hold for n. Let p € Pos([a, b])2,+2 or p € Pos([a, b])2u+3-

Suppose that p has a quadratic factor g without real zeros in (3.2). Multiplying by
—1 if necessary we can assume that ¢ > 0 on R. Then p = gp, with py € Pos([a, b])
and deg(po) < deg(p) — 2. Applying the induction hypothesis to py it follows that
p is in the corresponding set on the right-hand side of (3.8) or (3.9).

Now we treat the case when p has a real zero, say «. Upon a linear transformation
we can assume without loss of generality thata = 0 and b = 1. Then (b—x)(x—a) =
x(1—ux). Firstleto € (0, 1). Considering p(x) in a neighbourhood of &, we conclude
that « has even multiplicity. Hence we can factorize p = (x — &)?po and argue as in
the preceding paragraph. Thus we can assume that & ¢ (0, 1).

Case 1: p € Pos([0, 1])24+2.

First suppose that & < 0. Then x — « > 0 on [0, 1], so we can write p = (x — a)po
with pg € Pos([0, 1])2,+1. By the induction hypothesis we have

po€ (1 —x)f +xg with f,g e X2 (3.10)
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Therefore, from the identity
p=@—a)po=x(1—x)f +°g—alx(1 —x)(f + g) + (1 —x)*f + x’g]

we conclude that p € 234-1 +x(1 —x) Zi

Now suppose that « > 1. Then p = (¢ — x)po with py € Pos([a, b])2,+1. The
assertion p € Zﬁ 4 +x(1 —x) Zi follows from the induction hypotheses (3.10)
combined with the identity

p=(x—x)po = (1 =x)po+ (¢ — po
= (1 =0 +x(1 =0g + (@ = D1 =0 (f + &) + (1 =) + *’¢].
Case 2: p € Pos([a, b])21+3.

First let @ < 0. Then we write p = (x — a)po with py € Pos([a, b])2,+2. Hence, by
the induction hypothesis,

po=f+x(1—x)g with fe X2 | ge Z2
Then the identity
p=@=—a)po=xf + (1 —0)x’g —a/2[x 2f + (1 = x)’¢) + (1 =0 (2f + x°¢)]

implies that p € (1 —x) Yo, +x >0,
Now let « > 1. Then it follows from

p=(e—x)po=(1—x)po+ (¢ —1Dpo
= (1 —0f +x(1 —=0)’g+ (@ —1)/2[x2f + (1 —0)°g) + (1 = 0)(2f +x°g)]

that P S (1 —x) Zi-ﬁ-l +x Zi_ﬁrl .
This completes the induction proof of (3.8) and (3.9). ]

Another proof of formulas (3.8) and (3.9) is sketched in Exercise 3.2. Descrip-
tions of Pos(K) for some other sets K are given in Exercise 3.7. In Sect. 3.4 we give
stronger forms of representations of positive polynomials.

The next proposition is a classical result due to S. Bernstein. It enters into the
solution of Hausdorff’s moment problem given by Proposition 3.14 below.

Proposition 3.4 Suppose that p € R[x] and p(x) > 0 for all x € [—1, 1]. Then there
are numbers m € N and ay; > 0 for k,l = 1,...,m such that

m

pP@ =Y au(l —0)* (1 +x). (3.11)

k=0
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The proof of Proposition 3.4 is based on two classical lemmas which are of interest
in themselves. The following lemma is due to E. Goursat.

Lemma 3.5 Suppose that p € Rlx], p # 0, and m = deg(p). The Goursat
transform of p is the polynomial p € Rlx] defined by

1—
px) = (1 +x)mp(1 +i) (3.12)

Then we have:

(1) deg(p) < m and we have deg(p) = m if and only if p(—1) # 0.
(ii)) p € Pos([—1,1]) if and only if p € Pos(]0, +00)).
(iii) p(x) > 0 on[—1,1] if and only if p(x) > 0 on [0, +00) and deg (p) = m.

Proof
(i) Letp(x) = Y j_,axx*. It is obvious that

) = a1+ 0" (1 —x)*

k=0

is a polynomial and deg (p) < m. Its coefficient of x™ is Y ;_, ax(—1)f =
p(—1) Thus deg(p) = m if and only if p(—1) # 0.

(ii)) Forx # —1 we sett = 11:; Thent # —1 and x = 1‘3 Further, x € (—1,1]
if and only if ¢+ € [0, 400). Therefore, we have p(x) > 0 on (—1,1], or
equivalently p(x) > 0 on [—1, 1], if and only if p(#) > 0 on [0, +00).

(iii) Clearly, p(x) > 0 for x € (—1, 1] if and only if p(f) > 0 on [0, 400). If this
holds, then p(—1) > 0, so that p(—1) > O if and only if deg (p) = mby (i). O

Remark 3.6 Let us note the following interesting facts:

The inverse of the mapping x — ¢ = %:}‘C is given by the same formulat — x = 1‘3
If p and its Goursat transform p have degree m, then the Goursat transform of p is
just 2™"p. o

The next lemma is the one-dimensional version of a classical result of G. Polya;
a multivariate version is given by Proposition 12.51 below.

Lemma 3.7 Suppose that p € R[x] and p(x) > 0 for x € [0, 4+00). Then there
exists an N € IN such that (1 + x)"p(x) has only positive coefficients, that is,

m

(1+x)Np(x):Zbkxk with by >0, k=0,...,m.
k=0

Proof Let us introduce the notation (zﬂ =2z2(z—1)...(z— (j— 1)1). Then
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KY k(K ko j-1y_ K
(m)um_m(m_m)'“(m_ m )_(k—j)!m/" (3.13)

Let p(x) = > _j_,a;/, where a, # 0, and define
P(x,y) := Zajxjy"_j and P,(x,y) := Zaj(x)j;(y)?_j. (3.14)

J=0 Jj=0

Since p(x) > 0 on [0, +00) and deg(p) = n, the homogenous polynomial P is
positive on A = {(x,y) : x > 0,y > 0,x + y = 1}, so P has a positive minimum,
say ¢, on the compact set A. For N € IN we have

@+ yVP(x.y) = ZZ“( ) N+ =iy, (3.15)

j=0 i=0

Fix k € INg such that k < m. Set m := N + n and [ := m — k. The coefficient b; of
xy'in (3.15) is

N!
Z“’( )Z’(k — DIV = (k= ))!

= a; . .
K par Tk=)mi (I—(n—j)mn—i

. . .
N!'m" kY "/ N!'m" k l
= Zaj = ap Fum :
k' = M)y \mJ) k' m m

Here the equality before last holds by (3.13) and the last equality is the definition of
Py /. Since P;(x,y) — P(x,y) uniformly on A as t — +0 and P(x,y) > ¢ > O on
A, it follows that b; > 0 for all k¥ if N, hence m = N + n, is sufficiently large. O

Proof of Proposition 3.4 Let n = deg(p). Since p(x) > 0 on [-1,1],
Lemma 3.5(iii) implies that the Goursat transform p has degree n and p(x) > 0 on
[0, +00). Thus, by Lemma 3.7, there are numbers N € INanday > 0,...,ay+, >0
such that
N+n
A+ V() = at. (3.16)
j=0

Setm:=N+nandt = %:}2 forx # —1. Then x = 1+t "and (1 +10)~' = Hz'x, )
that p(r) = (1 + £)"p(x). Inserting these facts and using Eq. (3.16) we derive
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N+n
P = +0750 = (1 +0""p0 =Y af (1 +07"
j=0
= 1- / 1+ " - —m j m—j
Zgaj(l+i)( 2x) :;2 a;j(1 —xy (1 +x)"7. O

3.2 The Moment Problem on Intervals

In this section, we solve the moment problem for closed intervals J by combining
Haviland’s theorem with the descriptions of Pos(J/) given in the preceding section.

Let P(INp) denote the set of real sequences s = (s,),en, Which are positive
semidefinite, that is, for all &y, £, ...,&, € R andn € IN we have
> seribi €= 0. (3.17)
ki=0

Let s = (su)nen, be a real sequence. Recall that L, is the Riesz functional on
R[x] defined by Ly(x") = s,, n € INo. Let Es denote the shifted sequence given by

(Es)p = Sp+1,  n € No.

Clearly, Lg,(p(x)) = Ls(xp(x)) for p € R]x].
Further, we define the Hankel matrix H,(s) and the Hankel determinant D, (s) by

S0 S1 S2 Sn
s1 82 83 Sn+1
Hy(s) =52 53 s4 ...suq2 |, Dn(s) = detH,(s). (3.18)

Sn Sn+1 Sn+2 -+ S2n

The following result is Hamburger’s theorem.

Theorem 3.8 (Solution of the Hamburger Moment Problem) For a real
sequence s = (8,)neN, the following are equivalent:

(i) s is a Hamburger moment sequence, that is, there is a measure i € M1 (R)
such that x" € L' (R, v) and

sn:/x”d,u(x) for neNN. (3.19)
R

(i) s € P(INy), that is, the sequence s is positive semidefinite.
(iii) All Hankel matrices H,(s), n € Ny, are positive semidefinite.
(iv) Ly is a positive linear functional on R[x|, that is, Ly(p*) > 0 for p € R[x].
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Proof From Proposition 2.7 we know that (i) implies (ii) and that (ii) and (iv)
are equivalent. The Hankel matrix H,(s) is just the symmetric matrix associ-
ated with the quadratic form in (3.17); hence (ii) and (iii) are equivalent. The
main implication (iv)—(i) follows from Haviland’s Theorem 1.12 combined with
Proposition 3.1. O

The next proposition deals with representing measures of finite support.

Proposition 3.9 For a positive semidefinite sequence s the following are equiva-
lent:

(i) There is a number n € Ny such that
Dy(s) > 0,...,D,—1(s) >0 and Di(s) =0 for k> n. (3.20)

(ii) s is a moment sequence with a representing measure [L supported on n points.
Proof By Theorem 3.8 the sequence s has a representing measure (. For ¢ =
(co,ct,...,c)" € RFT! we define pe(x) := Zf:o cjxi. Then, by (3.19) we derive

k

cTHy(s)c = Z Sjpicic) = /

jd=0

2
du(x) = / pe(x)|* du(x). (3.21)

k
E 5
CixX

j=1

The proof is based on the following two facts.

I. First suppose that supp u consists of n points. Then, for k > n we can choose
c € R¥! ¢ # 0, such that the polynomial p.(x) vanishes on supp i. Then
(3.21) is zero, so Hy(s) is not positive definite and hence Dy (s) = 0.

II. Suppose that Di(s) = 0. Then Hi(s) is not positive definite, so there exists a
¢ # 0 such that the expression in (3.21) is zero. Therefore, by Proposition 1.23,
supp 4 € Z(p.). Since deg(p) < k, supp i contains at most k points.

(1)— (i) Since D, (s) = 0 by (i), supp ¢ has at most n points by II. If supp u had
fewer than n points, then we would have D,,_;(s) = 0 by I, which contradicts (i).

(ii)—(1) Then Dy (s) = 0 for k > n by L. If Dy(s) were zero for some k < n — 1,
then supp i would have at most n — 1 points by II. This contradicts (ii). O

Remark 3.10 1t was recently proved in [BS3] that the assumption “s is positive
semidefinite” in Proposition 3.9 can be omitted. That is, if s is an arbitrary real
sequence satisfying condition (i), then s is a Hamburger moment sequence (and has
an n-atomic representing measure by Proposition 3.9). )

Many considerations in subsequent chapters require the stronger assumption that
the moment sequence s = (8,)neN, S 18 positive definite, that is,

n

Z skpcker > 0 forall ¢ = (cocr,....c,)T € R™ ¢ #£0,n e N.
k,1=0

The following proposition characterizes this property.
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Proposition 3.11 For a Hamburger moment sequence s = (S,)nen, the following
statements are equivalent:

(i) Each representating measure [ of s has infinite support.
(i) s is positive definite.
(iii) H,(s) is positive definite for all n € INy.
@iv) D,(s) > 0 foralln € INy.

Proof The equivalence (ii)<>(iii) and the implication (iii)—(iv) are clear from
elementary linear algebra. Proposition 3.9 yields (i)<>(iv).

It suffices to prove (i)—(iii). Assume that (3.21) vanishes for some c. Then the
infinite set suppu is contained in the zero set of the polynomial p.. Hence p. = 0,
so that ¢ = 0. Thus, H;(s) is positive definite for each k € INy. This proves (iii). O

The second main result is Stieltjes’ theorem.

Theorem 3.12 (Solution of the Stieltjes Moment Problem) For any real
sequence s the following statements are equivalent:

(i) s is a Stieltjies moment sequence, that is, there is a measure (1 € M ([0, +00))
such that x" € L£1([0, +00), ) and

o0
sn:/ x*du(x) for ne Ny. (3.22)
0

(i) s € P(INy) and Es € P(INy).
(iii) All Hankel matrices H,(s) and H,(Es), n € INy, are positive semidefinite.
(iv) Lg(p*) = 0and Ly(xqg*) > 0 for all p, g € Rx].

Proof The proof is almost the same as the proof of Theorem 3.8; instead of
Proposition 3.1 we apply formula (3.5) in Proposition 3.3. O

Combining Haviland’s theorem with (3.7) the same reasoning used in the proofs
of Theorems 3.8 and 3.12 yields the following result.

Theorem 3.13 (Solution of the Moment Problem for a Compact Interval) Let
a,b € R, a < b. For a real sequence s the following are equivalent:

(1) sis an [a, b]-moment sequence.
(i) s € P(Ng) and ((a + b)Es — E(Es) — abs) € P(INp).
(iii) Ly(p?) > 0and Ly((b —x)(x — a)g*) > 0 forall p,q € R[x].
Bernstein’s theorem (Proposition 3.4) allows us to derive two solvablity criteria
of moment problems which are not based on squares of polynomials.

Theorem 3.14 Let s = (sp)nen, be a real sequence and let L be its Riesz functional
on R[x]. Then s is a [—1, 1]-moment sequence if and only if

Li((1=x)"(1 + 0" >0 for all k,ne Ny. (3.23)
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Proof The only if part is obvious, since all polynomials (1 — x)"(1 + x)* are
nonnegative on [—1, 1]. To prove the only if part we assume that condition (3.23)
holds. Then, by Proposition 3.4, L;(p) > 0 for all strictly positive polynomials on
[—1, 1]. Therefore, by Haviland’s theorem 1.12 (ii)—(iv), Ly is a [—1, 1]-moment
functional. Hence s is a [—1, 1]-moment sequence. O

Theorem 3.14 leads to the following criterion for the Hausdorff moment problem.

Theorem 3.15 A real sequence s is a [0, 1]-moment sequence if and only if

n

(I—=E)'s); = Z(—l)’<n> Sk+j =0 for k,neNo. (3.24)
: J ’

j=0

Proof By applying the bijection x +— ;(x + 1) of the intervals [—1, 1] onto [0, 1]
we conclude from Theorem 3.14 that s is a [0, 1]-moment sequence if and only if
Ly((1— x)”x") > 0 for k,n € INy. But the latter is equivalent to (3.24), since

(@~ E)sh =Y (~1y (”) (Els) = Z(—l)f(’?) Skt
=0 J =0 J
— Yy (;?)Ls(x"ﬂ) = Lo((1 —x)"5), 0
Jj=0

Condition (3.24) is an important property in the context of x-semigroups. Let §
be an abelian unital semigroup with identity map as involution. For y € S and a
function ¢ on S we define the shift E, and a mapping A, by

(Eyp)(z) :=¢@(z+y), z€S, and A, :=E,—1I.
A function ¢ : S — R is called completely monotone if ¢(z) > 0 and
(D)"(Ay, ... A4, 0)@) = ([~ Ey)...(I~E,)p)x) =0 for z€ S

and y;,...,y, € S. Completely monotone functions are moment functions, see e.g.
[BCRI, Chapter 4, Theorem 6.4]. It can be shown that condition (3.24) implies that
the function ¢(n) = s,,n € Ny, on the semigroup S = INy is completely monotone,
so Theorem 3.15 becomes a special case of this general result.

We close this section by treating the moment problem for the *-semigroup Z
with involution n* = n. The corresponding moment problem is called the two-sided
Hamburger moment problem or strong Hamburger moment problem.

Clearly, the map n + x" yields an isomorphism of the semigroup algebra R[Z]
and the algebra R[x,x!] of real Laurent polynomials. It is easily checked that the
characters of R[x, x~!] are precisely the evaluations at points of R* := R\{0}.
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Theorem 3.16 (Solution of the Two-Sided Hamburger Moment Problem) For
a real sequence s = (sy)nez the following statements are equivalent:

(i) s is a moment sequence for the x-semigroup 7, that is, there exists a positive
Radon measure |1 on R such that the function x" on R is j-integrable and

Sp :/ xX'du  for all neZ. (3.25)

(ii) s € P(Z), that is, s is positive semidefinite on Z.
(iii) Ly is a positive functional, that is, Ly(f*) > 0 for allf € R[x,x™'].

Proof (ii)<>(iii) and (i)—(ii) follow from Proposition 2.7 and Corollary 2.16,
respectively. We prove the main implication (iii)—(i).

Let p € R[x,x"']4, that is, p(x) > 0 for all x € R*. Because p is a Laurent
polynomial, x*p € R[x] for some k € IN. Since x*p(x) > 0 on R* and hence on
R, by Proposition 3.1 there are polynomials f, g € R[x] such that x*p = f2 + g2.
Then p = (x7%f)? + (x*g)? € Y. R[x,x"']*. Hence L,(p) > 0 by (iii). Therefore,
by Theorem 1.14,(i)—(iv), L, is a moment functional on R][x, x~ '] = R[Z], so s is
a moment sequence on Z. This proves (i). O

3.3 The Symmetric Hamburger Moment Problem
and Stieltjes Moment Problem

A Radon measure p on R is called symmetric if (M) = pu(—M) for all Borel sets
M. Let M7 (R) denote the symmetric measures of My (R). Set Ry := [0, +00).

We define mappings 7 : R—R4 and k : Ry —R by 7(x) = x? and k(x) = /x.
For € M7"(R) and v € My (Ry) let py = () € My(R4) and k(v) €
M (R) denote the corresponding images of u and v under 7 and «, respectively.
That is, 4 (M) = uw(t~'(M)) and k (v)(M) = v(x~'(M)). Further, we set

yI = (K(U) + (—K)(v))/Z. (3.26)
Then we have
/ FO)dis () = / FG@) (). (3.27)
0 R
) 1 [*®
[ s =] [ (el + s ym) du) (3.28)
R 0

for Borel functions f on R and g on R if the integrals on one side exist.
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Lemma 3.17 The map p v jiy is a bijection of MJ"(R) onto My (Ry) with
inverse given by v — v,

Proof The proof is given by simple verifications. As samples we show that v is
symmetric for v € M (R+) and that (u4+)™" = u for u € M (R).
Let M C R be a Borel set. Inserting the corresponding definitions we derive
207" (M) = v (k™ (M) + v((=k) " (M)
=v({teRy: P eM) +v(te Ry : —* € M})
=v({te Ry : - e M) +v(te Ry : £ € —M}) = 20" (=M).

Let 4t and p~ denote the restrictions of u to (0, +00) and (—oo, 0), respec-
tively. Clearly, u = u({0})8o + u™ + ™. We easily verify that

KkT(p) = p{ONSo + 2™, (—0)T(1) = ({0} + 21~

so that

2(u)™ = k() + (—0)T() = 20 ({0NSo + 2u* +2u~ =2p. O

Proposition 3.18 Suppose that s = (s,)nen, is a Stieltjes moment sequence. Set
5 = (Sn)new,, where 5y, = s, and Sop41 = 0 for n € Ny. The map v +— V"
is a bijection of the solutions of the Stieltjes moment problem for s on the set of
symmetric solutions of the Hamburger moment problem for § and the inverse of this
map is given by [t — 4.

Proof If  solves the Hamburger moment problem for §, then by (3.27),

o0
/ V() = / () = = sn € No,
0 R

that is, i+ solves the Stieltjes moment problem for s.
Conversely, let v be a solution of the Stieltjes moment problem for s. By (3.28),

””x—l - X)" 4+ (—V/x)" X
/Rx"dvy()_zfo (V)" + (=v/0)") dv (x).

This number vanishes if # is odd. If n is even, say n = 2k, then it is equal to
Suj2 = Sk = Sp. Thus v™™ is a symmetric solution of the moment problem for 5.
The remaining assertions are already contained in Lemma 3.17. O

A Hamburger (resp. Stieltjes) moment sequence is called determinate if it has
only one representing measure in M4 (RR) (resp. in M4 ([0, +00)).

Proposition 3.19 A Stieltjes moment sequence s is determinate if and only if the
Hamburger moment sequence § is determinate.
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Proof By Proposition 3.18, there is a one-to-one correspondence between solutions
of the Stieltjes moment problem for s and symmetric solutions of the Hamburger
moment problem for 5. To complete the proof it therefore suffices to show that if
the symmetric sequence § is indeterminate, its moment problem has at least two
symmetric (!) solutions. This will be achieved by Corollary 6.26 in Sect. 6. O

3.4 Positive Polynomials on Intervals (Revisited)

The representation of elements of Pos(R) as sums of two squares given in
Propositions 3.1 is far from being unique. For instance, we have

x% —i—x% = (ax; + bxy)> + (bx; —axy)> for a,beR, a* +b> = 1.

In this section, we develop unique representations of nonnegative polynomials on
intervals. The Markov—Lukacs theorem (Corollary 3.24) enters into the proof of
Theorem 10.29 below. Except for this, these results are not used in the rest of the
book.

Throughout this section, suppose that p(x) is a nonconstant polynomial in R [x].

We consider the representation (3.2) and set p,(x) := a(x — o)™ -+ (x — a,)".
Then po(x) := p(x)p(x)~" is a polynomial with leading term 1 which has no real
zero. The factorization

p(x) = prz(x)pnrz(x) (329)

decomposes p into a polynomial p,(x) which captures all real zeros of p and a
polynomial p,,(x) which has no real zero.

Now let p € Pos(R). Then the leading coefficient a of p is positive and the
multiplicity of each real zero o of p is even, say n; = 2k; with k; € IN. Thus,

Pe@) =a] [(x—a)™, (3.30)

Jj=1

so that p,, € Pos(RR) and hence p,, € Pos(R).
If p, = a or p,, = 1, then the formulas in Propositions 3.20-3.22 should be
interpreted in the obvious manner by omitting the corresponding factors.

Proposition 3.20 The polynomial p is in Pos(R) if and only if there are integers
ki,....k, e Nandrealsa > 0,c > 0, a1 < --- <0, X1 < X2 < ++- < Xp—1 Such
that

r n n—1
px)=a l—[(x —a))*k |: l—[(x — x2j_1)2 +c n(x — xzj)2:|. (3.31)

j=1 J=1 j=1
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(One of the two polynomial factors of p in (3.31) might be absent.) The numbers
a,c, oy, ..., 0 ki, ... kX1, ..., Xon—1 are uniquely determined by these require-
ments.

Proof The if part is easily checked. We carry out the proof of the only if part.
As noted above, the assumption p € Pos(R) implies that p,, has the form (3.30).
The polynomial p,,, has no real zero, leading coefficient 1 and even degree, say
2n. In the case n = 0 the second main factor in (3.31) is absent. Assume now that
n € IN. By (3.1), the polynomial p,, has precisely n zeros, say zi,...,z,, with
positive imaginary parts. Setting

f)=(x—z1)--(x—2z,) and g(x) = (x—2z1) -+ (x — zp),

we have prr(x) = f()g(x). Then u(x) 1=} (f(x)+¢() and v(x) := L, (f(x)~ ()
are in R[x] and satisfy

u(x)> + v(x)* = f(0)g(x) = pa(). (3.32)
Now we consider the rational functions
@j(x) = (x—zj)(x—zj)_l,j =1,...,n, and ¢(x) = 1 (x)...@,(x).

Clearly, ¢; is an injective map of the real line to the unit circle. Since Imz; > 0,
arg ;(x) strictly increases on (0, 27r) as x increases on R. Therefore,

arg (x) = arg @1 (x) + - -+ + arg @, (x)

strictly increases on (0, 27rn) as x increases on R. Hence there exist real numbers
X1 < Xy < +++ < Xp,—1 such that (x;) = (=1)*fork=1,...,2n— 1. Since

) ux)+ive)  ux)?—vx)? = 2iux)v(x)
px) = = =

g u)—iv) u(x)? + v(x)?
and u(x),v(x) € R forx € R, xy,x3,...,x,—1 are zeros of the real part u(x) and
X2,...,X2, are zeros of the imaginary part v(x). Since deg(#) = n and deg(v) =

n— 1, these numbers exhaust the zero sets of u and v, respectively. The leading term
of uis 1. Put ¢ := b?, where b is the leading term of v. Then, by (3.32),

n n—1
Pre(®) = (@) + v(0)* = [ [ —x-0)> + e[ Jr = x)*. (3.33)
j=1 j=1

Since p = prpnr, (3.31) follows by combining (3.30) and (3.33).
To prove the uniqueness assertion we assume that a’, ¢/, o, kJ, xj’., ¥, m’ is another
set of numbers satisfying the above conditions. From (3.31) it is clear that p has the



3.4 Positive Polynomials on Intervals (Revisited) 71

leading term a = a’ and the real zeros «; = o with multiplicities 2k; = 2k). Hence
n = deg(p) — r = deg(p) — ¥ = n’. Thus, it follows from (3.31) and (3.33) that

n n—1
Poa(0) = [ o= 2y ) + ¢ TT—2)” (3:34)

J=1 j=1

Comparing (3.33) and (3.34) we obtain

n n n—1 n—1
q(x) = l—[(x — x2j_1)2 - n(x — )c’zj_l)2 =( n(x - )c’zj)2 —c n(x — xzj)z.

Jj=1 j=1 j=1 j=1

The proof is complete once we have shown that g(x) = 0. Assume the contrary.
Without loss of generality, let x’1 < x;. We denote by /; the number of roots of
g which are equal to x; and by r; the number of roots of g in the open interval
(xi, xi+1). Then the number of zeros of ¢ in the interval [x;, x2,+1] is

m:=Ili+-+ b1 +r+-+ 1y (3.35)

If g(xy) # 0O, then g(xp) > 0, and if g(xz41) # 0, then g(xz+1) < 0 by the
definition of ¢. Hence, if [; = ;1| = 0, there is a zero in (x;, xj+1), so that r; > 1.
Further, if /; > 0, then x; is a zero of multiplicity at least 2 and so /; > 2. The
preceding implies that r; + (}; + li+1)/2 > 1 foreachi = 1,...,2n — 2 and hence
m>1,/2+2n—2by (3.35).If[; # 0,thenm > 2n—2.1f[; = 0, then x| < x; and
hence g has a zero in (x], x1), since g(x}) > 0 and g(x;) > 0. In both cases ¢ has at
least 2n — 1 zeros. Since deg(g) = 2n — 2, this is the desired contradiction. O

Next we consider the half-axis. Let p£2‘+°°) (x) denote the product of the constant

a and all factors (x — «;)" in (3.2), where o; € [0, +00). Then the polynomial
PO ) == p)pl ) (x)~! has leading term 1, no zero in [0, +00), and we

have
p(x) = pL ) (x)p o0 (x). (3.36)

Let p € Pos([0, +00)). Then we have a > 0 and the multiplicity n; of each zero
a; € (0, +00) of pis even, n; = 2k; with k; € IN. Thus

r

PO @) = ax [ —a™, (3.37)

=1

where ko € INg. In particular, p> " (x) and p% 1 (x) are in Pos([0, +00)).

Proposition 3.21 Let m := deg(prE?Z’Jroo)). Then p € Pos([0, +00)) if and only if

there are integers ko, k1, ..., k, € IN, r € Ny, and real numbers a > 0, c > 0,
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O<op<-<a,, O0<xi<x<-<2Xp-i, (338)

such that

r n n—1
p(x) = ax* H(x — o) |: H(x - x2j_l)2 + cx H(x - xzj)2i| for m = 2n,
I=1

j=1 j=1

H(x —)czj)2 + cl_[(x —xzj_1)2i| for m =2n+ 1.

J=1 J=1

p(x) = ax* H(x —ay)*k |:x
=1

These numbers are uniquely determined by p and the above requirements.

Proof It is enough to prove the only if part. For simplicity we drop the upper index
[0, +00). By the formula (3.43) and the factorization (3.42) it suffices to prove that
Pnrz has the form given in square brackets.

Put P(x) := pp(x?). Since pn, has no zero on [0, 00), P has no real zeros and
deg( P) = 2m. By Proposition 3.20, P can be represented as

m m—1
P@) =[]r—t)* + e[ Jx—n)* (3.39)
Jj=1 Jj=1
where ) <t <--- < th,—1 and ¢ > 0. Because P is even, we also have
m m—1
Pe) =[G+ 00"+ c [ [+ 1), (3.40)
j=1

j=1

where —fy,+1 < -+ < —t, < —t;. Comparing (3.39) and (3.40) it follows from the
uniqueness assertion of Proposition 3.20 that

H = —tm—ls vy =1 = —tyst1, ty = 0. (3.41)

Hence, setting x; := t,%H_j forj = 1,...,m — 1, the inequalities in (3.38) hold.
Inserting (3.41) into (3.39) we obtain

n n—1
Pre(®) = P() = [ [ = x3-1)” + e [ [ = x3)°,
j=1 j=1

for m = 2n and

Pue(®) = P(x) = [ [ = x2)” + [ [ = x3-1)%,

j=1 J=1
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for m = 2n + 1. Replacing x” by x, we obtain the formulas in square brackets. The
uniqueness assertion is easily reduced to that of Proposition 3.20. O

Finally, we turn to the interval [—1, 1]. We denote by pL_ 1’1](x) the product of
|al, all factors (x — o))" with o; € (—=1,1), (x + 1)" if o; = —1, and (1 — x)" if
«; = 1 in the representation (3.2) of p. As above, prggl’l](x) = p(x) p,[z_l’l](x)_1 is
a polynomial which has no zero in [—1, 1] and

p() = pL N pl ). (3.42)

Let p € Pos([—1, 1]). Then the multiplicity n; of all zeros o; € (—1,1) of p is
even, that is, n; = 2k; with k; € IN. Thus we have

pEM @) = lal(1+ 01 =0+ [ —a®™, (3.43)
=1
where ko, k,+1 € INy. Further, pr[z_l’l](x) and p,EEl’l](x) are in Pos([—1, 1]).
Proposition 3.22 Set m = deg(p,E;l’l]). The polynomial p is in Pos([—1, 1]) if and
only if there there are numbers ko, k,+1 € Ny, k1, ..., k, e N,a> 0,b > 0,c > 0,

—“l<a<-<a <1, —l<x<x<- <xpm <lI, (3.44)

such that (3.42) and (3.43) hold and

n n—1
P @ =] [ —xy-)? + el =) [ [ — )%, m = 2n,

J=1 j=1

pr[lle'”(x) =b(l +x) 1_[(x—x2‘,~)2 +c(1—x) H(x —xzj_l)z, m=2n+1.

j=1 j=1

The corresponding numbers are uniquely determined by p and these conditions.
Proof Again the if part is easily verfied. To prove the formulas for pr[,le’” we

abbreviate p = pLTZI’l]. We set t = llf;‘ and define

r—1
P@) =p()~"(1+1)" : 3.45
o=pa+0p(; ) (3.45)
(In fact, P is just the Goursat transform of the polynomial p(1)~!p(—x).) Then we
have x = ;4__11 and hence

po0 =pa-+07r0 =po (1) P (3.46)
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Note that ¢ € [0, +00) if and only if x € [—1, 1). Therefore, by (3.45), p(x) > 0 on
[—1, 1] implies that P(f) > 0 on [0, +-00). The factor p(1)~! in (3.45) ensures that
the polynomial P has the leading term 1. The preceding implies that P = P,E?z’+°°) .
Clearly, deg( P) = m. Thus, by Proposition 3.21, P has the form

n n—1
P(t) = [ [(t—ty-1)* + yt [ [t — 1)* for m = 2n, (3.47)
j=1 j=1
P(t) =t l_[(t — 1)’ +y l—[(t — 1) for m =2n+1, (3.48)
j=1 j=1

wherey > 0and 0 <1 <t <--- < fo,4. Setting x; := ;’:, (3.44) holds and

1+x 1+x1_ 2(x — xy) =1 1

t—1 = — = , —
T —x l—x, (A=x)(1-x)

Inserting this into (3.47) and (3.48) by using the equality # = |™* and (3.46) we
get

m n n—1
p9 =p (1) 0 =T [ — o2+ et =01+ 0 [ Tex ="

J=1 J=1

form = 2n and

m n n—1
p(x) = p(l)(l ;x) P(0) = b(1 +x) [ [ = x2)” + (1 =0 [ Jr = x3-1)°,
j=1

j=1

form = 2n + 1, where b, ¢ € [0, +00). This proves the formulas forp,[;zl’l].
The uniqueness can be shown either by repeating the corresponding reasoning
from the proof of Proposition 3.20 or by tracing it back to the uniqueness statement

in Proposition 3.21. We do not carry out the details. O
Remark 3.23 Since pigl’l] has leading term 1, | — ¢| = 1 in Proposition 3.22. o

From the preceding Propositions 3.21 and 3.22 we easily derive nice and useful
descriptions of positive polynomials of degree at most m = 2n resp. m = 2n + 1.
The following result is usually called the Markov—Lukacs theorem.

Corollary 3.24 Fora,b € R, a < b, and n € INy, we have

Pos([a, b])2, = {Pn(x)z + (b—x)(a—x)qn_l(x)z : P € R[xn, gn—1€R[X]5—1},
(3.49)

Pos([a, b)) ans1 = {(b — x)pn(x)* + (@ — x)gn(x)? : pu. gn € Rl }. (3.50)
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Proof The right-hand sides are obviously contained in the left-hand sides.

We prove the converse inclusion. By a linear transformation we can assume that
a=—1,b =1.Letp € Pos([—1, 1]),, for m = 2n resp. m = 2n + 1. Collecting
the factors of p = pg_“] pl[]?l’” in the formulas of Propositions 3.22 it follows that

p belongs to the corresponding sets on the right. O
In a similar manner Proposition 3.21 yields at once the following corollary.

Corollary 3.25 For any n € Ny, we have

POS([O, +OO))2,, - {Pn(x)2 + XQn—l(x)z :Dn S ]R[X]n, qn—1 S R[x]n—l}v (351)
Pos([0, +00))2n+1 = {xpu(x)* + gu(x)* : Py, gy € R[x, }- (3.52)

Remark 3.26 All three Propositions 3.20-3.22 give unique representations of non-
negative polynomials on the corresponding intervals. Propositions 3.21 and 3.22 are
stronger than Corollaries 3.25 and 3.24, while Corollaries 3.25 and 3.24 are stronger
than Propositions 3.2 and 3.3, respectively. However, as already mentioned earlier,
Propositions 3.1-3.3 are sufficient for solving the moment problems on intervals. o

3.5 Exercises

1. Let A be a commutative ring. Find the counterpart of the two square identity
(3.3) forn = 4 and n = 8: Given elements ay, ..., a,,b;,...,b, € A, there are
elements cy, ..., c, € A which are bilinear functions of the a; and b; such that

@+ +dHB A+ D)=+

Remark: As shown by A. Hurwitz, n = 1,2, 4, 8 are the only natural numbers
for which there is such an n square identity, see [Hu] for precise formulation.

2. Use the Goursat transform (3.12) to derive the formulas (3.8) and (3.9) for the
interval [—1, 1] from the corresponding formulas (3.5) and (3.7) for [0, 4+00).

3. Show that Pos([—1,1])) = {f + (1 + x)g + (1 —x)h : f,g.h € > R[x]*} and
use this description to formulate a solvability criterion for the [—1, 1]-moment
problem.

4. Letf € R[x],a,b € R,a < b,and set T; = {p +fq : p,q € Y_ R[x]*}. Suppose
that [a, b] = {x € R : f(x) > 0}. Let k and [ be the multiplicities of the zeros a
and b of f, respectively.

a. Find a polynomial ¢ € Pos([—1, 1]) such that ¢ ¢ Ty for f(x) = (1 — x%)*.
b. Show that Pos([a, b]) = Ty ifandonly if k = [ = 1.

Details for b. can be found in the proof of [PR, Corollary 11].
5. Let p(x) = x> + ¢, where 0 < ¢ < 1. Show that p cannot be written in the form
) = Y5 o au(l —0)*(1 + x)! with ay > 0 fork, I = 0, 1,2.
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Ne)

10.

11.

12.
13.

14.

15.
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. Leta,b,c € R,a < b < ¢,and set K = [a, b] U {c}. Describe Pos(K) and find
solvability conditions for the K-moment problem.
. Leta,b,c,d € R,a < b < c < d. Show that

a. Pos((—00,a] U [b, +00)) = {f + (x—a)(x—b)g: f.g € > R[x]*},
b. Pos([a,b] U [c,d]) = {f + (x—a)(b—x)(x—c)(x—d)g : f,g € ZR[x]z}.

. Use Exercise 7 to give solvability criteria for the K-moment problem, where

a. K = (—o00,a] U [b, +0),
b. K = [a,b] U [c,d].

. Suppose that —o0 < a; < by < ap < -+ < a, < b, < +o00. Define K| :=
Ui lak, bi] and K5 := R\ Uj_, (ax, bx). Describe Pos(K;) and give necessary
and sufficient conditions for K;-moment sequences, where j = 1,2.

Show that the sequence s = (0, 1,0,0, .. .) satisfies Di(s) = 0 for all k € INy,
but s is not a moment sequence.

Give an alternative proof of Proposition 3.4 by showing following steps:

a. It suffices to prove the result for linear and for quadratic polynomials.
b. The assertion holds for linear and for quadratic polynomials.

(This proof was given by F. Hausdorff [Hs], p. 98-99, see e.g [PSz], p. 276-
277.)

Suppose that s is a moment sequence. Prove that Z,%”:() W =0forn e N.

Let K be a closed subset of R. Prove that the following statements are
equivalent:

(i) Ifs = (s,) and t = (t,) are K-moment sequences, then so is st := (s,t,).
(i) Ifx,y € K, then xy € K.

Hint: For (ii)=>(i), use Haviland’s theorem and Ly, ;(f(2)) = Lyx(Liy(f(xy))).

“Guess” representing measures for the following sequences (s,)52
+1
a. s, = ‘j:H + ¢b", where b € R and a,c > 0,
b. s, = n!,
_ 1
C = (irnmt2)

(Solution of the two-sided Stieltjes moment problem)
Show that for a real sequence s = (s,),ez the following are equivalent:

(1) s is a two-sided Stieltjes moment sequence, that is, there exists a Radon
measure © on (0, +00) such that x" is p-integrable and s, = f0+°°x” du
for n € Z.
(ii) s € P(Z) and Es € P(Z).
(iii) Ly and L, are positive functionals on R[x,x™'], that is, Li(f?) > 0 and
Ly(xf?) > 0 forall f € Rfx,x7!].
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3.6 Notes

The results on positive polynomials have a long and tricky history, see [PR] for
some discussion. Polya’s theorem appeared in [P]; we reproduced his proof. The
Markov—Lukacs theorem is due to A.A. Markov [Mv1] for m = 2n and F. Lukacs
[Lu]. Proposition 3.22 is due to S. Karlin and L.S. Shapley [KSh, p. 35], while
Proposition 3.21 can be found in [KSt, p. 169]. The proof of Proposition 3.20
follows [MI]; our proof of Proposition 3.22 seems to be new. Other proofs of the
Markov-Lukacs theorem are given in [Sz],[KSt] (see also [Ka]) and [KN]; Szeg6
[Sz, p. 4] derived it from the Fejér—Riesz theorem. Bernstein’s theorem was proved
in [Bn].

The existence criteria for moment problems on intervals were obtained in the
classical papers by T.J. Stieltjes [Stj], H. Hamburger [Hm] and F. Hausdorff [Hs].
The results on symmetric Hamburger moment problems are from [Chi2].



Chapter 4
One-Dimensional Moment Problems:
Determinacy

The main aim of this chapter is to develop some very useful results concerning
the uniqueness of solutions of one-dimensional Hamburger and Stieltjes moment
problems. These are Carleman’s conditions (4.2) and (4.3) in Theorem 4.3, which
are sufficient for determinacy, and Krein’s conditions (4.19) and (4.23) in Theo-
rems 4.14 and 4.17, which provide necessary criteria.

4.1 Measures Supported on Bounded Intervals

The following proposition contains a number of characterizations of measures
supported on an interval [—c, c], ¢ > 0, in terms of their moment sequences.

Proposition 4.1 Suppose that s = (sp)nen, is a Hamburger moment sequence.
Let |1 be representing measure of s and let ¢ € R,c > 0. The following are
equivalent:

(1) w is supported on [—c, cJ.
(ii) There exists a number d > 0 such that |s,| < dc" for n € IN.

(iii) There exists a number d > 0 such that s», < dc*" for € INy.
1

(iv) §:=liminf, .o s <c.

Further, if so = w(R) < 1, then the following statements are equivalent:
(v) w is supported on [—1, 1].

(vi) liminf,— o0 52, < 1.

(vii) liminf,— oo 82, < +00.

Proof The implications (i)—(ii)—(iii)—(iv) are obviously true with d = .
Therefore, for the equivalence of (i)—(iv) it suffices to prove that (iv) implies (i).
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For @ > 0, let x, denote the characteristic function of the set R\ (—«, ) and put
My = [ xodp. Then

Mo =/az”)(aduffxznxaduffxz”du:sz,l
R R R

and hence (Ma)zlna < szzlj’l for n € IN. Therefore, if M, > 0, by passing to the limits
we obtain « < §. Thus, M, = w(R\(—«,®)) = 0 when & > S. Since § < ¢ by
(iv), this implies that supp u € [-S, S] C [—c, c], which proves (i).

We verify the equivalence of (v)—(vii). Since u(R) < 1, (v) implies s, < 1 and
hence (vi). The implication (vi)—(vii) is trivial, so it remains to prove (vii)— (V).

Assume to the contrary that (v) does not hold. Then we can find an interval
[a,b] € R\[-1,1] such that u([a,b]) > 0. Set A = aifa > 1 and A = —b if
b < —1.Then sy, > A¥u([a,b]) forn € IN. Since A > 1 and u([a,b]) > 0, we

deduce that lim,, 5o, = +o00. This contradicts (vii). O

Corollary 4.2 If a Hamburger moment sequence s has a representing measure with
compact support, then s is determinate.

Proof Let uy, i, € M. By Proposition 4.1 (iv)—(i), 1; and u, are supported on
[—S, S]. Then, for all f € R][x],

S S
/ £ dpr = / F00 dp. @)
- -s

Since the polynomials R[x] are dense in C([—S, S]; R) by the Weierstrass theorem,
(4.1) holds for all continuous functions f. This in turn implies that ;t; = u,. O

4.2 Carleman’s Condition

Recall that a Hamburger moment sequence is determinate if it has a unique
representing measure, while a Stieltjes moment sequence is called determinate if
it has only one representing measure supported on [0, +00).

The Carleman theorem contains a powerful sufficient condition for determinacy.

Theorem 4.3 Suppose that s = (8,)nen, is a positive semidefinite sequence.

(1) If s satisfies the Carleman condition

o0
1
Y s = oo, (4.2)

n=1

then s is a determinate Hamburger moment sequence.
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(ii) Ifin addition Es = (Spt1)neN, IS positive semidefinite and

1
Sp M = 400, 4.3)

WK

n=1

then s is a determinate Stieltjes moment sequenc..

The main technical ingredient of the proof of Theorem 4.3 given in this section is
a result on quasi-analytic functions (Corollary 4.5). Another proof of Theorem 4.3
based on Jacobi operators can be found at the end of Sect. 6.4.

Let us begin with some notions on quasi-analytic functions. Suppose (1,),en,
is a positive sequence and J € R is an open interval. Let C{m,} denote the set of
functions f € C*°(J) for which there exists a constant K; > 0 such that

sup | (1) < K} m, for n €N, (4.4)

te

We say C{m,} is a quasi-analytic class if the following holds: if f € C{m,} and
there is a point 7y € J such that f*(zy) = 0 for all n € IN, then f(r) = O on J. In
this case the functions of C{m,} are called quasi-analytic.

Quasi-analyticity is characterized by the following Denjoy—Carleman theorem.

Theorem 4.4 C{m,} is a quasi-analytic class if and only if

o
Y (infiz, m/) " = o0, (4.5)

n=1
Proof [Hr, Theorem 1.3.8]. For log convex sequences (m,),en, a proof is contained
in [Ru2, Theorem 19.11]. O
For our proof of Theorem 4.3 the following corollary is sufficient.

Corollary 4.5 Suppose that (m,)nen, is a positive sequence such that

o0
> om = o0, (4.6)
n=1

Suppose that f € C*°(J) and there is a constant Ky > 0 such that (4.4) is satisfied.
If there exists a ty € J such that f' (ty) = 0 for all n € Ny, then f(t) = 0 on J.

Proof Since obviously m,/" > infis, m,'*, (4.6) implies (4.5). Hence C{m,} is a
quasi-analytic class by Theorem 4.4. This proves the assertion. O

The simplest examples of quasi-analytic functions are analytic functions.

Example 4.6 ((m, = n!),en,) Since n! < n", the sequence (n!),e, satisfies (4.5)
and (4.6). Hence C{n!} is a quasi-analytic class. It is well-known (see e.g. [Ru2,
Theorem 19.9]) that each function f € C{n!} has a holomorphic extension to a strip
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{z:RezeJ,|Imz| <8}, 8 > 0. Therefore, if f € C{n!} and f*(15) = 0 for some
to € J and all n € Ny, then we have f(f) = 0 on J. That is, for the special class
C{n!} the assertion of Corollary 4.5 holds by the uniqueness theorem for analytic
functions without refering to the Denjoy—Carleman theorem. o

Remark 4.7

1. Let (my,),en, be a positive sequence such that my = 1 and
m? < my—ymu41 for n € IN. 4.7)

Condition (4.7) implies that (In m,).enN, is a convex sequence. Indeed, it can be

1/n < /n

shown that then m,, = infy>, m,lc/ k Therefore, by

Theorem 4.4, in this case C{m,} is quasi-analytic if and only if %%, m, /" =
00, that is, if (4.6) is satisfied.

2. Let s = (sn)nen, be a Hamburger moment sequence such that sp = 1. Then the
Holder inequality implies that (4.7) holds for m, = s,,. Therefore, since my = 1,

it follows from the preceding remark that (In s2,),en, is @ convex sequence. o

m,lc/k for n < k, so that m,11

The following simple lemma is used in the proofs of Theorems 4.3 and 4.14.
Let M4 (R) denote the Radon measures u on R satisfying [ |x|" du < oo for all
n € INy. Recall that M is the set of representing measures of a moment sequence s.

Lemma 4.8 Suppose that © € M4 (R) and & € L*(R, ). Then the function

60 i= [ et 48)
R
is in C*°(R) and satisfies

g = /(ix)"e"xé(x)dp,(x) for ne Ny, t € R. (4.9)
R

Proof We proceed by induction on n. For n = 0 the assertion holds by definition.
Suppose that (4.9) is valid for n and all € R. Fix ¢ € R and put

on(x) = AN E™ = 1), Yn(x) := @n(x)(ix)"é¥E(x) for heR, h#0.
Then ¥;,(x) — (ix)""'e™£(x) on R as h — 0. By the complex version of the mean

value theorem, |@4(x)| = [@n(x) — @n(0)] = |x| sup{lg(M] : ] = [x.y € R}
Therefore, since |} (y)| = |€™| = 1, we get

[¥n ()] = @) ()" e™E )] < "] [€lleomyy  ae.on R.

Therefore, since © € M4 (R) and hence x"*! € L' (R, i), Lebesgue’s dominated
convergence theorem applies and yields



42

h—0 h
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() h) — g™ i
tim & TR IOy /ﬂ; U (Ddp() = A (0™ e () (),

which gives (4.9) forn + 1. O

An immediate consequence of Lemma 4.8 is the following

Corollary 4.9 Let w € M (R). Then the Fourier transform f,(t) =
Jre ™ du(x) of wisin C*°(R) and

) = / (—ix)"e™du(x) for n€ Ny, r € R. (4.10)
R

In particular,

sp(p) = /};{x”d,u = (—)"f.(0) for n € IN. 4.11)

Proof of Theorem 4.3 By Hamburger’s theorem 3.8 and Stieltjes’ theorem 3.12 it
suffices to prove the the assertions about the determinacy.

@

(ii)

Suppose that wi, o € My and set f = f,, — fu,. Then f € C*®(R) by
Corollary 4.9. Define m, = sup,ci |f®(#)| for n € Ny. By (4.10),

Moy < sulg(lf,ﬁf"’(t)l + 12 0) < /}R dp (x) + / Xdpn (x) = 25,
te

for n € IN. Hence condition (4.6) is fulfilled, since

[e%e) [e%e) [e%e) 1 [e%e)
Z —1/n Z —1/2n —1/2n ,—1/2n —1/2n _

m, z my, z 2 Son z 2 Son = o0.
n=1 n=1 n=1 n=1

Applying again (4.10) we obtain for n € INy,
70 = 120 120 = @'~ [@Pdpa = 5, = s, =

Thus the assumptions of Corollary 4.5 are satisfied. Therefore, f(f) = 0, hence
Sui (1) = fu,(¢), on R. Since the Fourier transform uniquely determines a finite
measure, we get ;1] = [y. This shows that s is determinate.

Let v; and v, be two solutions of the Stieltjes moment problem for s.
Define symmetric measures j; = v;ym, j = 1,2, on R by (3.26). Then, by
Proposition 3.18, 1; € My (R) has the moment sequence § = (54)nenNys
where §,, = s, and §2,4+1 = 0 for n € INy. In particular, u; and p, are

representing measures of §. Since §,, = s, it follows from assumption (4.3)
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that § satisfies (4.2). Hence, by (i), the moment problem for § is determinate.
Therefore, p; = @, and hence v; = v;. O

Corollary 4.10 Suppose that s = (sn)neN, is a positive semidefinite sequence.

(1) Ifthere is a constant M > 0 such that
son < M"(2n)! for n e N, (4.12)

then Carleman’s condition (4.2) holds and s is a determinate moment sequence.
(ii) IfEs = (Su+1)neN, is also positive semidefinite and there is an M > 0 such that

sn < M"(2n)! for ne N, (4.13)

then s is a determinate Stieltjes moment sequence.
Proof

(i) Forn € IN we have (2n)! < (2n)". It follows that [(21)!]'/?" < 21 and hence
o < [(2n)1] 712", so that

1 —1/2n
M—W2 <MV [en) TV <5 ne N
n

Therefore, Carleman’s condition (4.2) is satisfied, so that Theorem 4.3(i)
applies. (As noted in Example 4.6, in this case the Denjoy—Carleman theorem
is not needed.)

(ii) follows from Theorem 4.3(ii) by the same reasoning. ]

Corollary 4.11
(i) Let n € M4+ (R). If there exists an € > 0 such that

/ M dpu(x) < oo, (4.14)
R

then p € M4 (R), condition (4.12) holds, and the Hamburger moment problem
for | determinate.
(ii) Suppose that € M4 ([0, +00)). If there exists an € > 0 such that

/ VM ap(x) < oo, (4.15)
R

then i € M4 ([0, +00)), condition (4.13) is satisfied, and the Stieltjes moment
problem for | is determinate.
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Proof

(1) Letn € INp and x € R. Clearly, we have et > (8x)2" (211)!. Hence

et < g7 (2p)! (4.16)

and therefore
/xz”du(x) :/xzne_slxleg‘xld,u(x) < e 2"(2n)! / e Mdp(x). (4.17)
R R R

Thus, by the assumption (4.14), we have [ x'du(x) < oo forn € Ny and
hence [ |x*|du(x) < oo for all k € INy, so that 4 € M (R). Further, (4.17)
implies that s, < M"(2n)! for n € INy and some constant M > 0. Thus (4.12)
is satisfied and the assertion follows from Corollary 4.10(i).

(ii) follows in a similar manner with x € [0, +00) and using Corollary 4.10(ii). O

In probability theory the sufficient determinacy conditions (4.14) and (4.15) are
called Cramer’s condition and Hardy’s condition, respectively.

The examples treated below indicate that Carleman’s condition (4.2) is an
extremely powerful sufficient condition for determinacy. Nevertheless, this condi-
tion is not necessary, as shown by Example 4.18 and also by Remark 7.19.

Remark 4.12 L.B. Klebanov and S.T. Mkrtchyan [KIM] proved the following:

1
Let s = (Sy)nem,. So = 1, be a Hamburger moment sequence. Set C,, := an=1 Sp 2"
If w and v are representing measures of s, then

L(i,v) < c(s2) C,Y*log(1 + C,) for me N, (4.18)

where c(s2) > 0 is a constant depending only on sy and L(j, v) denotes the Levy
distance of | and v (see e.g. [Bl]).

If Carleman’s condition (4.2) holds, then lim,,—c0 C,, = —+00, hence (4.18)
implies L(u,v) = 0, so that u = v. This is another proof of Carleman’s
Theorem 4.3(i). o

Remark 4.13 C. Berg and J.P.R. Christensen [BC1] proved that Carleman’s con-
dition (4.2) implies the denseness of C[x] in LP(RR, u) for p € [1,4+00), where
M is the unique representing measure of s. We sketch a proof of this result in
Exercise 4.7. o

4.3 Krein’s Condition

The following theorem of Krein shows that, for measures given by a density, the
so-called Krein condition (4.19) is a sufficient condition for indeterminacy.

Theorem 4.14 Let f be a nonnegative Borel function on R. Suppose that the
measure [u defined by du = f(x)dx is in M (R), that is, p has finite moments
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sp = [x"du(x) foralln € No. If

/}R llni (2 dx > —o0, (4.19)

then the moment sequence s = (Sp)neN, IS indeterminate. Moreover, the polynomials
C[x] are not dense in L*(R, ).

Proof The proof makes essential use of some fundamental results on boundary
values of analytic functions in the upper half plane. (All facts needed for this proof
can be found e.g. in [Gr]). Recall that the Hardy space H'(IR) consists of all analytic
functions / in the upper half-plane satisfying

sup / |h(x + iy)|dx < oo.
y>0 R

Each h(z) € H'(R) has a nontangential limit function 4(x) € £'(RR) [Gr, Theorem
3.1]. From assumption (4.19) it follows that there is an & € H' (R) such that |h(x)| =
f(x) a.e.on R [Gr, Theorem 4.4]. (In fact, (4.19) implies that the Poisson integral

1
W@ =+ = [ mpa

of the function Inf(x) exists. The corresponding function is i(z) = @@ where
v is harmonic conjugate to u.) Since & € H'(R), it follows from a theorem of Paley—
Wiener [Gr, Lemma 3.7 or p. 84] that

/ e“h(x)dx =0 for t>0. (4.20)
R

Set £(x) = h(x)f(x)"if f(x) # 0 and £(x) = 0 if f(x) = 0. Then |£(x)| < 1 on
R and du = fdx, so Lemma 4.8 applies to the function

g = / e h(x)dx = / e E(x)du(x).
R R
Recall that g(f) = 0 for ¢ > 0 by (4.20). Therefore, by formula (4.9) in Lemma 4.8,
(=i)"g"™(0) = / XEX)du(x) = / X"h(x)dx =0 for n e INo. 4.21)
R R
Let i1 (x) := Re h(x) and hy(x) := Im h(x). From (4.21) we obtain

/ X'hy (x)dx = / X'"hy(x)dx =0 for n e IN,. (4.22)
R R
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Since f # 0 by (4.19) and |h(x)| = f(x) a.e. on R, &y or h, is nonzero, say h;, and
we have f(x) — hj(x) > 0 on R. Hence the positive Radon measure v on R given
by dv := (f(x) — h;j(x))dx has the same moments as j by (4.22). But v is different
from p, because h; # 0.

Since & is nonzero, so is &. By (4.21), £ € L*(R, p) is orthogonal to C[x] in
L*(R, ). Hence C[x] is not dense in L*(RR, ). O

Let us briefly discuss the Krein condition (4.19). First we note that (4.19) implies
that f(x) > 0 a.e. (Indeed, if f(x) = 0, hence Inf(x) = —oo, on a set with nonzero
Lebesgue measure, then the integral in (4.19) is —o0.)

We set In"x := max(Inx,0) and In"x := —min(Inx,0) for x > 0. Then
In"x > 0and Inx = Intx — In"x. Since f(x) > 0 and hence In™ f(x) < f(x), we
have

In* /() F@) B
OS/];{ 1+ x2 dxf/];{1+x2dx§/Rf(x)dX—so<+oo_

Therefore, (4.19) is equivalent to

In-
/ o ) dx < +o00.
R 1+X2

Remark 4.15 1In the literature, the integral

1 / Inf(x)
dx

T ]R1+X2

is often called the entropy integral or logarithmic integral, see [Ks]. o

Remark 4.16 An interesting converse of the preceding theorem was proved by J.-
P. Gabardo [Gb]. Suppose that s is an indeterminate moment sequence. Then there
exists a solution of the moment problem for s given by a density f(x) such that
(4.19) holds and the entropy integral is maximal among all densities of absolutely
continuous solutions of the moment problem. o

The next theorem is about Krein’s condition for the Stieltjes moment problem.

Theorem 4.17 Let f, i, and s be as in Theorem 4.14. If the measure 1 € My (R)
is supported on [0, +00) and

Inf(x*) | [ Inf(x) dx
/}R |+ dx=/0 (141 Ja > —00, (4.23)

then the Stieltjes moment problem for s is indeterminate.
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Proof Note that du = f(y)dy and u € M (R+). We define a symmetric measure
Ve Mjfm(IR) by dv = |x|f(x?)dx and we compute for & € C.(R),

/ h(y) du(y) =2 / hEf () dix = / B2l () d = / he2) dv ().
0 0 R R

Comparing this equality with (3.27) we conclude that v = p™™, that is, ™" has
the density |x|f(x?). By assumption (4.23), we have

In 2 In * In d
/ lef(;c ) dx:/ IXI2 dx+/ Sy dy
R 14+x R 14+ x 0 (1 + y) \/ y
Therefore, by Theorem 4.14, the Hamburger moment sequence of ;*" is indetermi-
nate, so the Stieltjes moment sequence s is indeterminate by Proposition 3.19. O

We apply the preceding criteria to treat a number of examples.

Example 4.18 (The Hamburger moment problem for du = ¢ ™dx, a > 0)
Clearly, p € M4+(R). If 0 < a < 1, Krein’s condition (4.19) is satisfied,

since
Ine " — x|
5 dx = ) dx > —o0.
R 1 =+ x R 1 +x

Therefore, the Hamburger moment problem for p is indeterminate.
If ¢ > 1, then

1
5, = (/ +/ )x"e—IX“dx <2+ / Ye Mdy=2+2n <2'nl.  (4.24)
—1 [x|>1 R

Hence, by Corollary 4.10(1), the Hamburger moment problem for p is determinate.
(¢]

Example 4.19 (The Stieltjes moment problem for dp = ¥[o.00) ()e " dx, a > 0)
If 0 < a < 1/2, then (4.23) holds, so the Stieltjes moment problem is
indeterminate. If ¢ > 1/2, then 2o > 1 and hence by (4.24),

o0 o0 o0 2
5, = / Xdp(x) = / ()" dp(x®) = / e M dx < 4" 2n)!
0 0 0

Thus, by Corollary 4.10(ii), the Stieltjes moment problem is determinate. Since u
has no atom at 0, it follows from Corollary 8.9 proved in Chap. 8 that the Hamburger
moment problem for s is also determinate if o > 1/2.

By some computations it can be shown that the moments of u are

sp =T ((n+1)/a) for ne Ny.
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The Gamma function has an asymptotics I"(x) ~ +/2me™x*1/2 as |x| — oo, see
e.g. [RW, p. 279]. From this it follows that we have an asymptotics sy ~ cn'/? for

1
some ¢ > 0. Hence Y o2 s, < oo for 0 <a < 1.

Therefore, by the preceding, if 1/2 < o < 1, then the Hamburger moment
sequence s is determinate, but Carleman’s condition (4.2) is not satisfied! Another
example of this kind can be found in Remark 7.19 in Sect. 7. o

Example 4.20 dv = ée“xldx and du(x) = ;)([0,4_00) (x) e~Vxdx.
The moments of the measures v and p are easily computed. They are

1 1 [
Sy = / Kle Mdy = 2n)!, 1, = / ¥le Vidx = 2n+1)!, ne N,
2 R 2 0

so the sequences s and ¢ satisfy conditions (4.12) and (4.13), respectively. Therefore,
by Corollary 4.10 (i) and (ii), the Hamburger moment problem for v is determinate
and the Stieltjes moment problem for p is determinate. Note that in both cases the
corresponding Krein conditions (4.19) and (4.23) are violated. o

Example 4.21 dp(x) = X(0,40) (x)x”‘e_"zdx, where o > —1.
In this case we calculate

S = / Xxe ™ dx=T((n+a+1)/2), neNN. (4.25)
0

Then Corollary 4.11 applies and implies that s is determinate. o

Example 4.22 (Lognormal distribution) The first examples of indeterminate mea-
sures were given by T. Stieltjes in his memoir [Stj]. He showed that the log-normal
distribution dp = f(x)dx with density

£ = jh X0-400) (3 exp(—(In x)2/2)

is indeterminate. We carry out his famous classical example in detail.
Let n € Z. Substituting y = In x and t = y — n, we compute

1 © 2 1 2
sp= | X"dux) = / Xl DY2 gy = / e ™2 dy
/R V2r Jo V2r Jr
1 / o2 2 2 1 / 2 2
_ (y—n)=/2 n*/2 _ n7/2 t~/2 _ n/2
= e e dy=-¢ elcdt=e¢e""%,
V2 Jr V2r Jr

so that s = (¢"”/ 2),en,- This proves u that finite moments, that is, & € M4 (R).
For arbitrary ¢ € [—1, 1] we define a positive (!) measure p. by

dic(x) = [1 4+ c¢sin 27 In x)] du(x).
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Clearly, u. € M4+ (R), since u € M (R). Forn € Z, a similar computation yields

f X'sin 27 In x) du(x) =
R

1
«/271

1 / ny (o —y2/2
&Y (sin 27y) e/ %d
V27 IR ( ) Y
=) /2 22 Loep [ 2
eV e /“sin 2wy dy = e e sin 27 (¢t + n) dt = 0,
R V2r R

where we used that the function sin 27 (¢ + n) is odd. From the definition of . and
the preceding equality it follows at once that jt, has the same moments as p. (This
was even shown for all moments s, with n € Z.) Hence yu is indeterminate. o

Example 4.23 (Lognormal distributions (continued)) Let « € R and r > 0 be
arbitrary. Then the function

(]M,Q)Z

— 1 —1,7 e
flx) = s X(0.00) (X)X e

defines a probability measure © on R by du = f(x)dx. This measure p is

. . . 22
indeterminate and it has the moments s, = ¢"™@*" 2 forn e No. o

4.4 Exercises

1. Show that each Stieltjes moment sequence s = (s,,) satisfying

o0
E Zn —

is determinate as a Hamburger moment sequence.
2. Suppose that (a,).en, is a sequence of positive numbers such that

2Inay, < Inay,4+; + Ina,—; for nelN.

a. Show that /a, ""Y/ag < "tY/a,+1./ay for n € WNy.
b. Suppose that ag = 1. Show that ({/a,).en, is monotone increasing.

3. Show that for a moment sequence s = (s,,) the following are equivalent:

(i) s satisfies Carleman’s condition (4.2).

1/(4
(ll) Zn 1 4n1;24n)+;
— n
(i) D021 S4ud0 = 0.
@iv) Zn 1 z_kln/_‘(_zzljnﬂl) = oo for some (and then for all) k € IN,/ € INy.

4. Prove that the moment sequence (4.25) in Example 4.21 is determinate.
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5. Prove that the measure in Example 4.23 is indeterminate.

6. Let u € M4 (R). Suppose that fR x21eee du < 400 forsome e > Oandn € INy.
Show that 4 € M4 (R) and the moment sequence of i is determinate.

7. (Carleman’s condition implies denseness of Clx] in (R, u),p € [1,400)
[BC2])
Let u € M4(R). Suppose the moment sequence of p satisfies Carleman’s
condition (4.2). Prove that Cl[x] is dense in L”(R, u) forany 1 < p < 4o00.

Sketch of proof It suffices to prove the denseness for p = 2k,k € IN. We
mimic the proof of Lemma 4.8. Let £ € IP(R, u)’ =~ LI(R, u), ; + (11 =1,
be such that [ &(x)f(x)d = 0 for all f € C[x]. Define g(z) by (4.8). As in the
proof of Lemma 4.8, we show that g € C*°(R) and that Eq. (4.9) holds. Since
JE@f(x)dpn = 0 forf € C[x], g™ (0) = 0 for n € Ny by (4.9). Applying the

Holder inequality to (4.9) we obtain g (f)| < sz_kln/ (24) 1€lLer, ). By Exercise

43, (42) implies Y%, 55,/ = 4o0. Thus, Corollary 4.5 applies with
my, = s%fk), to = 0, and yields g(r) = 0. Hence £ = 0, so C[x] is dense in
LP(R, p).

8. (Moment generating function)
Let 4 € M4 (R) and ¢ > 0. Suppose that the function x — ™ is u-integrable
for |f| < c. Then g(r) := [ e*dju(x) is called the moment generating function
of 1.

a. Show that 4 € My (R), that is, p has finite moments s, = [x"du for
ne IN().

b. Show that s, = g™ (0) forn € INy.

c. Show that g(r) = Y2 s, for t € (—c,¢).

n=0 n!

4.5 Notes

Carleman’s condition and Theorem 4.3(i) are due to T. Carleman [Cl].

Theorem 4.14 is stated in [Ak, Exercise 14 on p. 87] where it is attributed to
M.G. Krein. It follows from Krein’s results in [Kr1]. Our proof based on boundary
values of analytic functions is from [Lin1] and [Sim1]. Another proof using Jensen’s
inequality is given in [Be, Theorem 4.1]. A generalization of Krein’s condition
and a discrete analogue were obtained by H.L. Pedersen [Pd2]. The denseness of
polynomials in L7 (R, ) and Carleman’s condition are studied in [BC1], [BC2],
[Ks], [KMP], [Bk1]. [BR], [If]. An index of determinacy for determinate measures
is defined in [BD]. Further elaborations of the determinacy problem can be found in
[Lin2], [Stv], [SKV].

An interesting characterization of determinacy was discovered by C. Berg, Y.
Chen, and M.E.H. Ismail [BCI], see also [BS1] for more refined results: Let A,
denote the smallest eigenvalue of the Hankel matrix H,(s) of a moment sequence s.
Then s is determinate if and only if lim,—.o A, = 0.



Chapter 5
Orthogonal Polynomials and Jacobi Operators

In the preceding chapters we derived basic existence and uniqueness results for
moment problems. In this chapter we develop two powerful tools for a “finer”
study of one-dimensional moment problems: orthogonal polynomials and Jacobi
operators.

Throughout this chapter we assume that s = (s,)nen, is a fixed positive
definite moment sequence. The positive definiteness is crucial for the construction
of orthogonal polynomials and subsequent considerations. By Proposition 3.11 a
moment sequence s is positive definite if and only if all Hankel determinants

So 51 52 oSy
S1 8§22 53 e Sp41
D, =Dy(s) sy s3 4 ...Sp42], 1€ N, 6.

Sn Sn+1 Sn+2 - -« S2n

are positive. We shall retain the notation (5.1) in what follows.

In Sect.5.1 we define and study orthogonal polynomials associated with s.
There are two distinguished sequences of orthogonal polynomials, the sequence
(pn)nen, of orthonormal polynomials with positive leading coefficients (5.3) and
the sequence (P,)nen, of monic orthogonal polynomials (5.6). In Sect.5.2 we
characterize these sequences in terms of three term reccurence relations and derive
Favard’s theorem (Theorem 5.10). The three term reccurence relation for (p,)nen,
implies that the multiplication operator X is unitarily equivalent to a Jacobi operator
(Theorem 5.14). The interplay of moment problems and Jacobi operators is studied
in Sect. 5.3.

Orthogonal polynomials of the second kind are investigated in Sect.5.4. In
Sect.5.5 the Wronskian is defined and some useful identities on the orthogonal
polynomials are derived. Section 5.6 contains basic results about zeros of orthogonal
polynomials, while Sect. 5.7 deals with symmetric moment problems.
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The study of orthogonal polynomials is an important subject that is of interest in
itself. We therefore develop some of the beautiful classical results and formulas in
this chapter, even if not all of them are used for the moment problem.

5.1 Definitions of Orthogonal Polynomials
and Explicit Formulas

Since the sequence s is positive definite, the equation

(p.q)s == Ly(pq), p.q€ Clx], (5.2)

defines a scalar product (-, -); on the vector space C[x]. (Indeed, it is obvious that
(,+)s is a positive semidefinite sesquilinear form. If ( p, p)s = >, ; sk+icxc; = 0 for
some p(x) = Y, x* € C[x], then ¢, = 0 for all k and hence p = 0, since s is
positive definite. This proves that (-, -); is a scalar product.)
Note that ( p, g); is real for p, g € R][x], because the sequence s = (s,) is real.
The following orthonormal basis of the unitary space (Cl[x], (-,-);) will play a
crucial role in what follows.

Proposition 5.1 There exists an orthonormal basis (p,)nen, of the unitary space
(CIx], (-, -)s) such that each polynomial p,, has degree n and a positive leading coef-
ficient. The basis (pn)nen, is uniquely determined by these properties. Moreover,
pu € Rx].

Proof For the existence it suffices to apply the Gram—Schmidt procedure to the basis
{1,x,x%,...} of the unitary space (C[x], {-,-);). Since the scalar product is real on
RR[x], we obtain an orthonormal sequence p, € R[x] such that deg (p,) = n. Upon
multiplying by —1 if necessary the leading coefficient of p, becomes positive. The
uniqueness assertion follows by a simple induction argument. O

That the sequence ( p,).en, is orthonormal means that
([)k,pn)Y = Sk,n for k,n S IN().

Definition 5.2 The polynomials p,, n € INy, are called orthogonal polynomials
of the first kind, or orthonormal polynomials, associated with the positive definite
sequence s.

The existence assertion from Proposition 5.1 will be reproved by Proposition 5.3.
We have included Proposition 5.1 in order to show that proofs are often much shorter
if no explicit formulas involving the moments are required. This is true for many
other results as well, such as the recurrence relations (5.9) and (5.11). But our aim
in this book is to provide explicit formulas for most quantities if possible.
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Proposition 5.3 Set D_; = 1. Then py(x) = jxo and for n € N and k € INy,

S0 S1 52 oo Sp
S1 $2 83 ... Sp+1
1 52 §3  S4 ... Sp42
L(x) = , 5.3
Pa(¥) /Dy1D, (5.3)
Sn—1 Sn Sn+1 - -+ S2n—1
I x X ...x
(x", pn)s = \/Dn/Dn_l and (X*.p))s =0 if k<n. (5.4)
The leading coefficient of p, is \/ D,—1/D, . In particular, p1(x) = J ‘“2"_‘” ) -
50(5052—57

Proof Obviously, po(x) = jm‘ In this proof let p,, denote the polynomial (5.3).

First we verify (5.4). The polynomial x*p,(x) is obtained by multiplying the last
row of the determinant in (5.3) by x*. Applying the functional L, to x*p, means that
each terms x**7 in the last row has to be replaced by sx;. Thus,

S0 S1 52 oo Sp
S 52 S3 oo Sp41
W = Ly = | e (5.5)
\/Dn—an
Sn—1 Sn Sn+1 - -+ S2n—1
Sk Sk+1 Sk+2 - -+ Sk+n

If k < n, the last row coincides with the (k4 1)-th row in (5.5), so that (x*, p,,); = 0.
If k = n, the determinant in (5.5) is just the Hankel determinant D,,, that is,

(-xnspn>s Dn = \/Dn/Dn—ls

B \/Dn—an

which completes the proof of (5.4).

Next we prove that ( pi, pn)s = . First let k < n. Since degpy = k < n, we
conclude from (5.4) that ( p, p,)s = 0. Similarly, { px, pn)s = 0 for k > n. Now let
k = n. Since (¥, p,)s = 0 forj < n, (pn. pn)s is equal to (x", p,)s multiplied by
the leading coefficient of p,. From (5.3) it follows that p,, has the leading coefficient

b 1_1D D,—1 = /D,—1/D,. Since (x",p,)s = +/Du/D,—1 by (5.4), this yields

(Pnspn)s=1.
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From the uniqueness assertion of Proposition 5.1 it follows that the polynomial
pn defined by (5.3) concides with the polynomial p,, in Proposition 5.1. O

We now define the general notion of orthogonal polynomials.

Definition 5.4 A sequence (R,),en, is called a sequence of orthogonal polynomi-
als, briefly an OPS, with respect to s if R, € R[x], degR, = n, and

(Rk,Rn)SZO for k#n, k,nGIN().

Let (Ry)nen, be an OPS. Then ||R,||; # 0, since (-, ), is a scalar product, and
7,R,, has positive leading term for 7, = + or t, = —. Hence, by the uniqueness of
the orthonormal sequence ( p,), we have 7,||R,|'R, = p, for all n € IN.

While there are many OPS for a given s, there is a unique OPS consisting of
monic polynomials. Such an OPS will be called monic. Recall that a polynomial
P of degree n is monic if its coefficient of x" is 1. Since p, has the leading term
\/ D,—1/D,, the polynomial

S0 S 52 A
S1 S2 83 oo Sptl
Pu) = VD Dur gy = [T R e )
Dn—l .
Sn—1 Sn Snp4+1 - -+ S2n—1
I x x* ...xX

is monic. Set Po(x) = 1. Then (P,)sen, is the unique monic OPS for s. Thus, there
are two distinguished sequences of orthogonal polynomials associated with s, the
orthonormal sequence (p,)sen, and the monic OPS (P,),en, given by the above
formulas (5.3) and (5.6), respectively.

We close this section with a beautiful classical formula for the polynomial P,,. It
will be not used later in this book. Another formula for P, is given in Lemma 6.27(i).

Proposition 5.5 (Heine Formulas) Suppose that i € M. Then, forn € N, n > 2,
we have

1 n
P,(x) = ! Dy /]R l—[(x—xj) l—[ (o —x) dp(xy) ... dp(x), 5.7

" =1 I<k<i<n
1
Do = o [ TT =P duton) ). 58)
IR g <n

Proof Let us abbreviate P,(x) := D,_pn(x).
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If o is a permutation of {0, 1, ...,n — 1}, we compute
1
1 X5(0) . xﬁff
1 2
Yoy Koy T

Bo(x) = [R Ao - G |
" —1 n—1
Xot=1) Xo(n—1) - - x(zr(n—l)

1 X Lot
1
1 ler<0> - X5(0)
n
1 Yo (1) - o)
0 .1 n—1
= d/L(xa(o)) e dﬂ(xg(n—l)) ............ 'x(T(O)x(T(l) .. .xg(n_l)
1
1 Xo(n—1) xg(n—l)
1 x X"
1 x(l) . X
1 x{ R
= /du(xo)...du(xn_l) ............ (sign U)xg(o)xé(l)...f;@l_l).
1
1 xn—l . xﬁ—l
1 x X"

Here the first equality follows from formula (5.6) by replacing the moments s; in row
JH1by [ xl ) dp(x) ) and using the multilinearity of the determinant. For the
third equality the rows in the determinant are permuted and the integration variables
are changed to xp, . .., X,—.

Summing over all n! permutations o of {0,1,...,n — 1} and inserting the
determinant definition it follows that the polynomial n!P,(x) is equal to

1 x(l) .. X ! . x’(’)_l
I x ...x | x el
/ din(xo) ... dp(xp—1) | ... ... ... ! !
R"l l ............
Lox 1
1 x o L A IR

Both determinants under the integral are Vandermonde determinants. The formula

y(l) yg”
Loyl oy

yl yl = l—[ ()’k_yl)
0<k<i<m

L VA
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for a Vandermonde determinant implies that these determinants are

n—1
n(x —Xj) 1_[ (xx —x;) and l—[ (xx — x7),
j=0 0<k<i<n—1 0<k<l<n—1
respectively. Changing the variables from xo, . . ., x,—j to x1, ..., x, and inserting the

preceding expressions shows that n!P,(x) = n!D,_p,(x) is equal to the integral in
(5.7). This proves (5.7). Comparing the coefficients of x" in (5.7) gives (5.8). O

5.2 Three Term Recurrence Relations

Orthogonal polynomials can be characterized and studied by means of three term
recurrence relations. We begin with the orthonormal sequence (py,)nen,-

Proposition 5.6 Set a, = /D,—1Dy+1 D}, and b, = L,(xp?) for n € Ny. Then we
have a, > 0 and b, € R for n € Ny, and

-xpn(-x) = anpn+l(-x) + bnpn(x) + an—lpn—l(x)s n € Ny, (5.9

where a_y := 1 and p_(x) := 0. In particular, po(x) = sal/z,

p1(0) = 55 Pag (x=bo), pa(x) = s, (ay" a7 (x—bo) (x—b1) — agai’).

Proof Since Dy > 0 and p; € R][x] for all k, we have a, > 0 and b, € R.

Since xp,(x) has degree n+1 and {py, ..., p,+1} is a basis of the space of real
polynomials of degree less than or equal to n+1, there are reals ¢, such that
xpa(x) = S 4ES cupr(x). Comparing the coefficients of x**', it follows that ¢, ,+1
is the quotient of the leading coefficients of p, and p,+;. By Proposition 5.3 this
yields ¢, ,+1 = a,. Because the basis { p;} is orthonormal, we have

Cnk = (xpmpk>s = Ls(xpnpk) = (Pnska>s» k=0,....,n+ 1 (5.10)

Since xpy is in the span of py, ..., px+1, (5.10) implies that ¢,x = 0 when k+1 < n.
Further, ¢,,,, = Ls(xpﬁ) = b, by (5.10). Using that ¢, , is real we derive

n
Chpn—1 — (Pm xpn—l)x - (Pm Z%—l,k}’k)x = Cn—1,n-
k=0

Hence a,—; = ¢, ,—1. Putting the preceding together we have proved (5.9).
The formulas for p; and p, are easily computed from (5.9). O

Corollary 5.7 The leading term of p,(x) is \/ D;S—l = sal/ 2 Z;%) a;' for ne N.
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Proof We proceed by induction using the relation a;y = «/Dy—1Dj+1 Dk_l, k € INy.

For n = 1 we have \/g‘l’ = Dal/z(\/D_lDl DyHl = s(;l/zaal.

If the assertion holds for n € IN, then

—1 n
Dn Dn Dn—l —1 —1/2n —1 —1/2 —1
= =a, S | | a, =S | | a, . ]
\/Dn+l \/Dn—an+1 \/ Dn n 0 k 0 k

k=0 k=0

Equation (5.9) is a three term recurrence relation for the polynomials p,,, that is,
the polynomial p, is determined by

Pnt1(x) = (x — bn)an_lpn(x) — an_lan_lpn_l(x), n € Ny, (5.11)

where a_; := 1 and p_;(x) := 0. Hence, if p;_(x) and p;(x) are given, then
Eq. (5.9) (and likewise (5.11)) determines all polynomials p,(x), n > j+ 1, uniquely.
This property of a three term reccurance relation will often be used.

The formula a, = +/D,_1D,1 D;l expresses a, in terms of determinants
involving only the moments. To derive a similar result for the numbers b, we set

So S1 S2 cee Sp—1 Sn+l
S1 $2 53 oo Sy Sn+2

A, = 52 83 S4 o Su+1l Sn+3 ,nelN, and Ay = s1, (5.12)
Sn Sn+1 Sp+2 -+ S2n—1 S2n+1

that is, A,, is obtained from the Hankel determinant D,, (see (5.1)) by adding 1 to all
indices in the last column.

Proposition 5.8 For any n,m € Ny, we have

Apt

A, - Ap
bpy1 = ~ b, and zz(:)bnz g (5.13)

Dn+1 m

Proof First let m = 0. Then (x — bo)po = agp1 by (5.6). Since Ly(p;) = 0, we get
Pos1 = L‘Y(p()x) = L‘Y(p()b()) = poboso and hence by = Slsal = A()Dal.

Let n € IN. By developing the determinant in (5.3) after the last row it follows
that the coefficients of x* and x"~! are D,, and —A,,_;, respectively, so the coefficient

1
—1Dp

Recall that a, = +/D,_1Dy11 D;l by Proposition 5.6. Comparing the coeffients of
X" on both sides of the Eq. (5.9) and inserting a, = +/D,—1D,+1 D;l we obtain

1 D,_D, 1 D,
_ An_lz_‘/ 1541 A, + by, "
\/Dn—an Dn \/DnDn-i-l D

of X" and x"~! in p, are /D D, = \/ DI”);‘, and — \/Dnil D, A,—1, respectively.

n
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From this equation it follows that

An An—l
b, = — for nelN,
Dn Dn—l

which proves the first equality of (5.13). Therefore, since by = AoDy ! we derive

= = An An—l Am AO Am
b, =b — =b — = . O
2 °+;(Dn Dn_l) " p, "Dy~ D,

The next proposition contains the three term recurrence relation for the monic
OPS. Using the formula P, = \/ D, /D,—; p, (by (5.6)) it is easily derived from the
recurrence relation (5.9) for p,. We omit the details of these simple computations.

Proposition 5.9 Let (P,),en, be the monic OPS for s, see (5.6). Let a,— and b,, be
as in Proposition 5.6 and P_; := 0. Then

Poi1(x) = (x = by)Py(x) — > P,—1(x), n €N (5.14)

In particular, Py(x) = 1, Py(x) = x — by, and P(x) = (x — by)(x — by) — a%.

The next result is Favard’s theorem. It is a converse to Proposition 5.9. Its main
direction states that for each set of parameters {a,, b, : n € Ny} with a, > 0 and
b, € R the recurrence relation (5.14) defines a monic OPS of some positive definite
sequence s and hence of some measure . € M.

Theorem 5.10 Let (ot)nen, and (Bn)nen, be complex sequences and set oy :=
1. Let (Ry)nen, denote the sequence of monic polynomials R, which is uniquely
determined by the relations

Ryy1(x) = (x = B)Ry(x) — ap—1Ry—1(x), n € Ny, (5.15)

R_i(x) =0 and Ry(x)=1. (5.16)

There exists a positive definite real sequence s such that (R,)new, is the monic OPS

for s if and only if a, > 0 and B, € R forall n € WNy. If 5o is a given positive
number, then this sequence s = (Sp)nen, is uniquely determined.

Further, if oy, > 0 and B, € R forn € Ny and sy > 0 are given, then there exists
a measure L € M such that u(R) = so and for j,k € No, j # k, andn € NN,

/ Ri(0)R(x) dp(x) =0, / R2(0)dpn(x) = ty_10p_s . .. 20S0. (5.17)
R

Proof First note that the sequence (R),) is indeed uniquely determined by (5.15) and
(5.16). Clearly, R, is monic and has degree n. Hence (R,),cn, is a vector space basis
of Cl[x], so we can define a linear functional L on

L(Ry) =L(1)=sy and L(R,) =0 for nelN. (5.18)
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Applying L to both sides of (5.15) we get L(xR,) = 0 for n > 2. Multiplying (5.15)
by x, applying L again by using the latter equality, we obtain L(x’R,) = for n > 3.
Proceeding in this manner we derive

L(XR,) =0 for j=0,....n—1,nelN. (5.19)
Since deg R,, = m, (5.19) implies that
LRiR) =0 for j ke No,j# k. (5.20)

Multiplying (5.15) by x"~! and applying L by using (5.19) again we get L(x"R,) =
o,—1L(x""'R,—1) and hence L(x"R,) = au—10t,—3 ... pSo, because L(Ry) = so.
Since R, is monic, the preceding combined with (5.19) yields

L(Ri) = 0p_10p—2 ... 0pSo, n € IN. (5.21)

After all these technical preparations we are able to prove the assertions.

First suppose that (R,) is an OPS for some positive definite real sequence s.
Then L; is equal to the functional L defined by (5.18) with so = Ls(1) > 0, since
(Ry, Ro)s = Ly(R,) = 0 for n € IN. By the definition of an OPS, R, € R]x], so that
(R, R,)s = L‘Y(Ri) > 0 for n € IN. Hence, by (5.21), o, > O for all n € IN. Since
a, > 0 and R, € R][x], it follows from (5.15) that §,, is real.

Conversely, assume that o, > 0 and 8, € R for n € INy. Let 5o > 0 be arbitrary.
Then R, € R[x] and L(Ri) > 0 by (5.21). Combined with (5.20) the latter implies
that the linear functional L defined by (5.18) is a positive functional on C[x] such
that L(pp) > 0 for all p € C[x], p # 0. Therefore, setting s, := L(x"), n € Ny, we
get a positive definite sequence s = (s,)nen,- By (5.20), (R,) is an OPS for s. Since
(R,) is monic, it is the unique monic OPS associated with s.

Further, by Theorem 3.8, there exists a measure & € M4 (R) such that s, =
[ x"dp for n € No. Then p(R) = L(1) = so. Since L = L, and 4 is a representing
measure for s, the equations (5.17) follow from (5.20) and (5.21). O

Remark 5.11

1. Clearly, if (R,) is the monic OPS for a positive definite sequence s, so it is for
each positive multiple of 5. Hence the number sy = L;(1) cannot be determined
from the monic OPS (R),).

2. Favard’s theorem for the recurrence relation (5.7) is contained in Theorem 5.14
below, see e.g. Remark 5.15 in the next section. o

Comparing (5.14) and (5.15) shows that ¢, = aﬁ for the monic OPS (P,), so
(5.21) yields the following formula. It also follows from Corollary 5.7.

Corollary 5.12 ||P,|? = Ly(P?) = a*_,a>_,...aksy for n€IN.
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5.3 The Moment Problem and Jacobi Operators

The three term recurrence relation (5.9) links the moment problem to Jacobi
operators. These operators are the basic objects for the operator-theoretic approach
to the moment problem. This approach will be elaborated in the subsequent chapters.

Let H; denote the Hilbert space completion of the unitary space (C[x], (-, -);) and
X the multiplication operator by the variable x with domain C[x] on H; :

Xp(x) := xp(x) for p € DX) := Clx].

Then X is a densely defined symmetric operator with domain C[x] on the Hilbert
space H;, since

(Xp.q)s = Ls(xp q) = Ly(p xq) = (p,Xq)s for p,q € C[x].

Let {e, : n € INy} be the standard orthonormal basis of the Hilbert space /?>(INp)
given by e,,:=(8kn)ren,- Since { p, : n € Ny} is an orthonormal basis of H,, there is
a unitary isomorphism U of H, onto />(INy) defined by Up, = e,. Then, by (5.9),
T := UXU™! is a symmetric operator on /*(INy) which acts by

Te, = apén+1 + bue, + ap—1e,—1, n € Ny, (522)
where e—; := 0. The domain D(T) = U(C[x]) is the linear span of vectors e,, that

is, D(T) is the vector space d of finite complex sequences (o, - .., ¥, 0, ...). For
any finite sequence y = (y,) € d we obtain

T( Zn Ynen) = Zn Yn(@nens1 + bnen + an—1€n—1)
= Zn()/n—lan_l + Vubn + Yt 1an)en
= Zn(anyn+l + bu¥n + an—1Yn-1)en .
where we have set y_; := 0. That is,
(Ty)o = aoy1 + boyo, (TY)n = @n¥Yn+1 + bu¥u + an—1yu—1, n € IN. (5.23)

Equation (5.23) means that the operator T acts on a sequence y € d by multiplication
with the infinite matrix

b() aOO 0 O

ao b1 aq 0 O

J=10 a by a 0 ... [, (5.24)
0 0 an b3 as
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A matrix J of this form is called a (semi-finite) Jacobi matrix. It is symmetric and
tridiagonal. The corresponding operator T = T, (likewise its closure) is called a
Jacobi operator. Thus we have shown that the multiplication operator X is unitarily
equivalent to the Jacobi operator T, for the matrix (5.24).

The numbers s,s;' can be recovered from the Jacobi operator T by

susg !t = s ("1, 1), = ((X)"po, po)s = (T"eq, o), n € N (5.25)

That is, 5,5, 1'is the entry in the left upper corner of the matrix J”. Thus, if s = 1,
then all moments s, are uniquely determined from the Jacobi matrix. In particular,

slsal = (Teg, eo) = by, szsal = (Tzeo,eo) = b% + a%,

S3sal = (T3eo, ey) = bg + Za(z)bo + a%bl.

Remark 5.13 Let 5 = cs, where ¢ > 0, be a multiple of the positive definite
sequence s. Then s and 5 have the same Jacobi matrix J (see Exercise 5.1) and
the same Jacobi operator 7. Also, the multiplication operators X for 5 and s are
unitarily equivalent and we have u € M, if and only if cu € Mj5. Thus for all
self-adjointness problems of X and T and for the determinacy of s we could assume
that so = 1. o

Conversely, let a Jacobi matrix (5.24) be given, where a,,,b, € R and a, > 0.
We define a linear operator T with domain D(T) = d on the Hilbert space /*(IN¢)
by (5.23). Clearly, T is a symmetric operator and TD(T) € D(T). Set

s = (sp:=(T"eo, €0))nen,- (5.26)

We prove that the sequence s is a positive definite. For &, ..., &, € C and n € Ny,

D sk = Y (T eq, e0)ii6 =

k=0 k=0

eo z 0. (5.27)

Hence s is positive semidefinite. By a simple induction argument we show that
Tley —ap...a—1e; € Lin {eq,...,e,—1} for I € IN. Therefore, if the expression
in (5.27) is zero, we conclude that all §, are zero, since a; # 0 for all j. Thus, s is a
positive definite real sequence. By (5.26) we have sy = (T, o), = 1.

Recall that U is the unitary of #, onto *(INy) defined by Up, = e,.n € INy.
Put p, := U 'e, for n € INy. Clearly, (5.23) implies (5.22), so the polynomials
Dy satisfy the recurrence relation (5.9). Since a, > 0 and b, € R by assumption,
it follows from (5.9) that p, € R][x] has degree n and positive leading term. The
polynomials p, are orthonormal in H,, since the vectors e, are in I(INy). Therefore,
the p, are the polynomials of the first kind for s, that is, p,, = p, for n € INy. Hence
T is the Jacobi operator associated with s according to the preceding construction.
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Summarizing, we have proved the following

Theorem 5.14 The preceding construction provides a one-to-one correspondence
between positive definite sequences s satisfying so = 1 and Jacobi matrices J of the
form (5.24), where b, € R and a, > 0 for n € Wy, and a unitary equivalence
between the multiplication operator X and the Jacobi operator T = T, given by
a unitary U such that Up,, = e,,n € INy. The Jacobi parameters a,, and b, in the
matrix (5.24) are the numbers occuring in the three term recurrence relation (5.9).

For notational simplicity we identify the operators X and T = UXU~! in what
follows, where U is the unitary of H, onto I>(INy) defined by Up,, = e,, n € N.

Thus, by Theorem 5.14, for any positive definite sequence s the multiplication
operator X is unitarily equivalent to the Jacobi operator 7; of the matrix (5.24),
where a, > 0 and b, € R are as in Proposition 5.6. Conversely, if J is a Jacobi
matrix (5.24) with a, > 0 and b, € R, then (5.26) is a positive definite sequence for
which the above procedure leads again to the matrix (5.24).

Remark 5.15 Theorem 5.14 can be considered as Favard’s theorem. Indeed, sup-
pose that numbers b, € R and a, > 0, n € INy, are given. Then, by Theorem 5.14,
there is a positive definite sequence s with so = 1 such that the Jacobi operator
T = Ty is unitarily equivalent to the multiplication operator X in (C[x], (-, -)s) and
the polynomials p,, defined by (5.7) form the corresponding orthonormal OPS for s.
Further, by Hamburger’s Theorem 3.8, there is a Radon measure 4 € M4 (R) such
that s, = (T"eg, eo) = [ x"dp forn € N,. o

5.4 Polynomials of the Second Kind

In this section, we assume that a,, and b,, n € IN, denote the Jacobi parameters of
the positive definite sequence s and we set a—; := 1. Our aim is to develop another
sequence (¢,)nen, Of polynomials associated with s.

For a complex sequence y = (¥,)nen, We define a complex sequence 7y by

(TY)n = @nYnt1 + bV + an—1yn—1 for n € Ny, where y_; := 0. (5.28)
Then 7 is a linear mapping of the vector space of all complex sequences. For y € d,

it is obvious that 7y € dand 7y = Ty, where T = T is the Jacobi operator.
Suppose that z € C and consider the three term recurrence relation

(TY)n = an¥Ynt1 + bu¥Vn + Gu1Yn—1 = ¥, (5.29)

where y_; := 0, for an arbitrary complex sequence y = (¥,)nen,. Clearly, since
a, > 0, if we fix two initial data y,—; and y; and assume that the relation (5.29) is
satisfied for all n > k, all terms y,,, where n > k + 1, are uniquely determined.
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We set y—1 = 0, yo = sgl/z and assume that (5.29) holds for all n € INy.
Comparing (5.29) with (5.9) by using that p_;(z) = 0 and po(z) = s; /> we
conclude that y, is the value p,(z) of the polynomial p, from Proposition 5.1. We

abbreviate
p. == (po(2), p1(2), p2(2),...), z€C. (5.30)

Now we set yp = 0, y; = aals(l)/2 and suppose that (5.29) holds for all n € IN.
(Note that we do not assume (5.29) for n = 0.) The numbers y,, are then uniquely
determined and we denote y, by ¢.(z), n € INy. Clearly, the same solution is
obtained if we start with the initial data y_; = —s(l)/ 2, Yo = 0 and require (5.29)
for all n € INy.

Using relation (5.29) it follows easily by induction on #n that ¢,(z), n € IN, is a
polynomial in z of degree n—1. We denote the corresponding sequence by

q; = (90(2),q1(2), q2(2), ...), z€C. (5.31)

By definition, go(z) = O and ¢, (z) = a; lsé/ 2 Further, ¢2(z) = (z—bl)(aoal)_lsé/ 2,
It should be emphasized that the numbers a,, b, and the polynomials p,, g,
depend only on the sequence s, but not on any representing measure.

/

Lemma 5.16 7Ty, =zp,and Tq, = s(l) 26‘0 + zq, forall 7 € C.

Proof By the recurrence relations we have (79;), = zp,(2) = (zp;), for n € Ny
and (7q,), = z9.(2) = (zq;), for n € IN. Using that yo=0 and ylzaalsé/z we
compute the zero component (7°q;)o by

/

(Tq.)o = a0y + boyo = aoay 'st/> + 0 = si/* + 2y = st/* + zq0(z). O
0 “0 0 0

Definition 5.17 The polynomials g,(z),n € INg, are the orthogonal polynomials
of the second kind associated with the positive definite sequence s.

From the defining relations and intial data for ¢,(z) it follows that the polynomi-
als pu(2) == s, Y 2a()c]nJrl~(Z) satisfy the recurrence relation (5.29) with a,, replaced
by a, := ay+1 and b, by b, := b,+ and the initial datap_; = 0,po = 1. Therefore,
by Theorem 5.14, the polynomials p,(z), n € INy, are the orthonormal polynomials
of first kind with respect to the shifted Jacobi matrix

bl ay 0 0 0
a bz a 0 0

7 =10 ay b3 as 0 A (532)
0 0 as by a4
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The corresponding positive definite sequence is’s = (5,), where’s, = (Trey, eo) and
T is the Jacobi operator corresponding to the Jacobi matrix 7. Hence gn,n € N, are
orthogonal polynomials (according to Definition 5.4) for the sequence 5.
The next proposition contains another useful description of the polynomials g,.
Let r(x) = Y ;_, vex* € C[x], n € IN, be a polynomial. For any fixed z € C,

r(x)—r(z)_i: — 2 Xn:ki”k”
= = k
r=z k=0 k=1 =0

is also a polynomial in x, so we can apply the functional L, to it. We shall write L ,
to indicate that x is the corresponding variable.

Proposition 5.18 ¢,(z) = L;.. (Pn“}(:g"(z)) forn e Nyandz € C.

Proof Let us denote the polynomial on the right-hand side by r,(z). From the
recurrence relation (5.9) we obtain for n € IN,

anpn+1(X)—pn+1(z) n bnpn(X)—pn(Z) +an_1pn—1(X)—pn—1(Z)
X—2Z X—2Z X—2Z
= xpn(X))C - jpn(z) _. pn(Xi :l;n(z) + o).

Applying the functional L, to this identity and using the orthogonality relation
0= (pn, 1)y = Lyx(py) forn > 1 we get

anrn-i—l(z) + bnrn(z) + ap—17p—1 (Z) = Zrn(z) for n € IN.

Since p;(x) = so_l/zag1 (x—bp) and py = sgl/z by Proposition 5.6, we have ry(z) =
L;«(0) = 0 = go(z) and

x) —pi(z 12 _ x—7z s
@) = Ly (Pl( ) —pi( )) =5 1/2a01Lu( ) = 5550 = a1 (2).
X—2Z X—2Z

This shows that the sequence (r,,(z)) satisfies the same recurrence relation and initial
data as (¢,(z)). Therefore, r,,(z) = ¢.(z) for n € INy. O

The next corollary expresses the polynomials g, in terms of the moments.

Corollary 5.19 Set g, (z) = Zf;é Skei—12. fork>1andqg,o = 0. Forn € NN,

S0 S1 A\Y) A
S1 52 §3 eee Sp4l
1 52 S3 S4 e Sp42
qn(z) == ) ,z€eC. (5.33)
" \/Dn—an ce
Sp—1  Sn Sn+1 -+ S2p—1
4n0(2) Gn1(2) Gn2(@) ... Gua(2)
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Proof From (5.3) it follows that ” ”(X):f ") is given by the same expression as in

(5.3) when the entries x* of the last row are replaced by A= o Zf;(l) P
Applying the functional Ly, to this determinant gives the determmant in (5.33). By
Proposition 5.18, the corresponding polynomial in z is g, (z). O

Corollary 5.20 The monic polynomial associated with q,(z) is

P,(x)—P,
04(2) = 57" Ly ( ) (Z)) for neN,. (5.34)
X—2Z
Further, forn € N and 7 € C we have
1/2 —-1/2
Pu(z) = sy'" aoay ... an-1pn(2). On(2) =50 " aoar ... an-1Gx(2). (5.35)

(2 Oul(2)

= . 5.36
Pn (Z) 0 P, (Z) ( )

Proof Let ¢,x" be the leading term of p,(x). Then P, = c,'p,. Therefore by
(5.34) and Proposition 5.18, 0,(z) = 53¢, gu(z). Since x;:; Zz o XM
the leading term of g, is 2" !¢, Ly (1) = cu502"". Hence Q,(z) = s5'c; 'qu(2) is
monic.

By Corollary 5.7, crjl = s(l)/zaoal ...ap—1. Since P, = C,Tlpn and Q, =
salcn_lqn, this implies (5.35) and hence also (5.36). O

In what follows we will often use the function f; and the Stieltjes transform 1,
(see Appendix A.2) of a finite Radon measure i on R. They are defined by

fx) = ! and I,(2) :=/ ! du(x), ze€ C\R. (5.37)
xX—z RX—2Z

Proposition 5.21 Suppose that p € M. For z € C\R and n € N,

(forn) @ = 4n(2) + 1(2)pa(2), (5.38)
Im1I,
o+ R = 3 10+ LOpF = 539
n=0

In particular, q; +1,,(2)p; € P(INg). Moreover, we have equality in the inequality of
(5.39) if and only if the function f, is in H.

Proof Clearly, the bounded function f;(x) = ! . isin L*(R, ). We compute

i = [ "0 aue+ [ 79 auc

X—Z

=" 01,0 = 0,0+ 100
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which proves (5.38). Here the equality before last holds, since p is a representing
measure for s, and the last equality follows from Proposition 5.18.

The equality in (5.39) is merely the definition of the norm of />(INy). Since
(C[x]. (-, -)s) is a subspace of L*(R, 1), {p, : n € INy} is an orthonormal subset
of L*(R, it). The inequality in (5.39) is just Bessel’s inequality for the Fourier
coefficients of f, with respect to this orthonormal set, because

1 1 1 1 Im17,(z)
”fZ”iz(]R,u) = / ez du(x) = / s (x—z — x—z) dp(x) = Imﬂz .

By an elementary fact from Hilbert space theory, equality in Bessel’s inequality
holds if and only if f; belongs to the closed subspace generated by the polynomials
Dn, that s, f, € H,. O

Corollary 5.22 p. € ’(INy) if and only if q. € [>(INg) for z € C\R.

Proof Let z € C\R. Since then I,(z) # 0 and q; + I,(2)p. € FP(INo) by
Proposition 5.21, it is clear that p, € (INy) is equivalent to q. € I>(INp). O

5.5 The Wronskian and Some Useful Identities

Suppose that y = (Yn)nen, and B = (Bn)nen, are complex sequences. We define
their Wronskian as the sequence W(y, B) = (W(y, B)n)nen, With terms

W(]/, IB)n = an()’n-‘rlﬂn - Vn,Bn-‘rl)v ne IN(), (540)

Let 7 be the linear mapping of complex sequences defined by (5.28), that is,
(TY)n = anVu+1 + bpyn + an—1yn—1 for n € Ny, where y_; := 0.

The following lemma on the Wronskian is the crux for several applications. It will
play an essential role in the study of the adjoint of the Jacobi operator in Sect. 6.2.

Lemma 5.23 Let y = (Yn)neNy B = (Bu)nen, be sequences, and x,z € C. Then

n

> (B —v(TB)) = W(y. Bl for n e No. (5.41)

k=0

Letm,n € WNo,n > m. If (Ty)r = xyx and (T B)r = zBr for k = m+1,...,n, then

x=2) Y B =W B — W, Bln- (5.42)

k=m+1
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In particular, if x = z in this case, then

W(]/, IB)n = W()/, ﬂ)m (543)

Proof We prove the first identity (5.41) by computing

> UTYBe = v(TA)]

k=0

= (aoy1 + boyo) Bo — yo(aoB1 + boPo)

+ D [(@yiri+beyitayi) B — vi(aBen +biBitai—i i)
k=1

= ao(y1Bo— voB) + Y, (@1 Bi—viBr+1) — -1 (ViBio1—yi—150)]

k=1

=W Bo+ Y W Bk —W(y.B-1] = W(y. ).
k=1

Equation (5.42) is obtained by applying (5.41) to n and m and taking the
difference of both sums. Setting x = z in (5.42) yields (5.43). O

Now we use Lemma 5.23 to derive some important identities on the polynomials
DPn, qn- Further, we define four polynomials A,,, B,,, C,, D,, that will be used later in
Sect.7.1. Equation (5.47) is called the Christoffel-Darboux formula.

Proposition 5.24 For x,z € C and n € Ny, we have

Anx,2) 1= (=2) ) k(09k(2) = an(Gn+1 ()92 () =42 () gn+1(2), (5:44)
k=0

B,(x,2) == =1 + (x=2) ) pe®)qu(@) = au(pus1()4u(2)=pu(X)gn+1(2)),
k=0
(5.45)

Co(x,2) := 1 + (x—2) Z @k ()Pi(2) = an(Gn+1(X)Pn(2)—qn(X)Pn+1(2)),
= (5.46)

Dy(x.2) := (x=2) Y pe@)p(2) = au( pat1 @)pn(2)—pu(@)pat1(2))- (5.47)
k=0

Proof All four identities are derived from Eq. (5.42). As samples we verify (5.45)
and (5.47). Recall that the sequences p, = (pn(x)), 4;: = (¢.(2)), and q; = (g.(z))
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satisfy the relations

(Tpx)n = xpn(x)s (qu)n = ZQn(Z)v (sz)n = an(Z) for nelN. (5.48)

Hence the assumptions of Eq. (5.42) in Lemma 5.23 with @ = p,, 8 = q;, p;, and

m = 0 are satisfied. Inserting po(x) = sal/z, pi(x) = so_l/zagl(x—bo), qo(z) = 0,

and q1(z) = ay'sy/*, we compute

W(px. q:)o = ao(p1(x)qo(2)—po(x)q1(2)) = —1, (5.49)
WPz p2)o = ao(p1(x)po(2)—po(0p1(2)) = (x —2)s5 " (5.50)
For n = 0 the right-hand sides of (5.45) and (5.47) are just W(p,,q;)o and
W(p., p;)o, respectively, so these equations hold by (5.49) and (5.50). Now suppose

that n € IN. Then (5.42) applies with m = 0.
From equations (5.42) with ¢ = p,, B = q, by using (5.49) and (5.40) we derive

(x=2) Y P = (—2) Y pe® ()

k=0 k=1

= W(px, 9)n—W P, 9)0 = @n( Pt 1()qn(2) —pu(X)gn+1(2)) + 1.

Applying (5.42) with ¢ = p,, B = p, combined with (5.50) and (5.40) yields

(x=2) Y pe@pi@d) = (=255 + (=2) Y pe®)pa(2)

k=0 k=1

= (x - Z)Sgl + W(px’ pz)n_W(pm pz)O = an(l’n+1(X)Pn(z)—Pn(x)PnH(Z))-

This proves (5.45) and (5.47). O
Corollary 5.25 Let x € C and n € INg. Then

D P = au[ply ©pa) = P (D)pat1 ()], (5.51)
k=0

L (001 (0 — Pt (D40 (1), (5.52)

n

Proof From the identity (5.47) it follows that

[Pr+1(X) = Put1(2)]pn(2)—[pn(x) —pn(Z)]an(Z)‘

X—Z

> @) = an

k=0
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Letting z — x we obtain (5.51). Equation (5.52) is obtained by setting x = z in
(5.46). ]

Corollary 5.26 Forx,z € C andn € Ny,

Pt V) = put1 (D) = (6= 2) Y [P(Dgnt+1(2) = par1 @Q@@pe®),  (5.53)
k=0

Gri1 (V) = gut1 (D) = (* = 2) Y [P(Dnt1G) = a1 Q@@ (). (5.54)
k=0

Proof First we prove (5.53). We multiply (5.47) by ¢,+1(z) and (5.45) by —p,+1(2)
and add both equations. On the right we get

n(Gn+1@) Pat1(DPn(2) = Pa()Pr+1()] = Put 1@ [Pat1 ()G (2) — Pa(X)gn+1(2)])
=Pu+1(X) au[@n+1(2)Pn(2) = Gu(DPn+1(2)]
:pn+1(x) W(% pz)n = pn+1(Z)W(qza pz)O = Pn+1 (x) (555)

Here for the first equality the term p, (x)p,+1(z)¢n+1(z) cancels, while the second
is just the definition of W(q;, p.),. By (5.48) the assumptions of Lemma 5.23 are
satisfied, so (5.43) yields W(q., p;)n = W(q., p;)o for n € IN. For n = 0 this is
trivial. This gives the third equality. Since W(q,, p;)o = 1, the last equality in (5.55)
holds.

On the left we obtain

=2 > a1 @Pe@Pi(@) + put1 (@) — (1= 2) > put1 @pr®)qi(2)

k=0 k=0

=put1@ + (=2 Y Pe@ 1) — Pat1 Qg (D)]pi (). (5.56)

k=0

Comparing (5.55) and (5.56) we obtain (5.53).

The proof of (5.54) is very similar by using (5.46) and (5.44) instead of (5.47)
and (5.45). First we multiply (5.46) by g,+1(z) and (5.44) by —p,+1(z). Adding both
equations, on the right-hand side we derive

an(gnt+1@[Gn+1(0Pu(2) = @Gu)Pu1(2)] = Put1 (D[t 1()Gn(2) — g (X)gnt1(2)])
=qn+1 (-x)an [Qn-f—l (Z)pn(z) - Qn(z)pn+l(z)]
=@n+1)W (A2, P)n = @1 X)W (42, P)o = Gnt1(x).
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The left-hand side gives

Gn1@) + (=2 Y gur1@@@pi@) — (=2 Y a1 Q@ ®) ()

k=0 k=0
=qn+1(2) + (x—2) Z[pk(Z)Qn+l(Z) — Pn+1(2)qk(2)] gk (x).
k=0

Now (5.54) follows by comparing the results on both sides. O

Corollary 5.27 For any x,z € C and n € Ny, we have

A, (x,2)Dy(x,z) — By(x,2)Cu(x, 2) = 1, (5.57)
D, (x,0)B,(z,0) — B,(x,0)D,(z,0) = —D,(x, 7). (5.58)

Proof Inserting the identities (5.44)—(5.47) from Proposition 5.24 we compute

An(x,2)Dy(x,2) — Bu(x,2)Cn(x, 2)
= au[gnt1()91(2)—=Gn(X)Gn-+1(2)] an[(Pr1(X)Pn(2) =P (X)Pnt1(2)]
—an[Pnt1()4n(2)=Pn () Gn-+1(2)] anlgn+1(X)Pn(2) =Gn(X)Pn+1(2)]
= @ [Prr1()g2(0) = Pu@) g1 O] [Prt1(D)90(2) = Gt 1(2D)pa()]
B, (x,x)By(z,2) = (—1)(—1) = 1.

Likewise, we derive

Dn(xs O)Bn(zv O) - Bn(xs O)Dn(zv O)
= ay [pn-}—l (-x)pn (O)_pn (-x)pn+l(0)] an [pn-}—l (Z)Qn(o)_pn(z)q"-l-l (O)]
—day [pn-}—l (-x)CIn (O) —Pn (-x)CIn+ 1 (0)] an [pn-}—l (Z)pn (0)_pn (Z)pn-l-l (O)]

= ai [pn+l(-x)pn(z) _pn(x)pn+l(Z))(pn+l(0)Qn(O) _pn(O)Qn-H(O)]
= Dy(x,2)B,(0,0) = —D,(x, z). O

5.6 Zeros of Orthogonal Polynomials

In this section, we derive a number of interesting results about zeros of the
orthogonal polynomials .

Proposition 5.28 Suppose that p € R|x] has degree m € IN and (p(x),x)s = 0
forj € Ny,j < m— 2. Then the polynomial p(x) has m distinct real zeros.
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More precisely, if 1 is a solution of the moment problem for s and J is a closed
interval containing supp W, then all zeros of p lie in the interior of J.

Proof First we recall that by Theorem 3.8 there exists a solution p of the moment
problem for s. Let Ay, ..., A; denote the distinct real points in the interior of J,
where p changes sign, and put r(x) = (x — A1) ... (x — Ay). If there is no such
Aj, we set r=1. Then the polynomial r(x)p(x) does not change sign on J. Hence
q(x) ;= tr(x)p(x) > 0onJ fort=1or t=— 1.

We shall prove that k = m. Assume to the contrary that k < m.

If Kk = m — 1, then p is a real polynomial of degree m which has m — 1 distinct
real zeros. The latter is only possible if k& = m, which is a contradiction. Hence
k < m — 2. But then (p, r); = 0 by assumption, so that

/ 40 dp(x) = 7 / PIF(R) dp () = T{p.r)s = 0.
J J

Since g(x) > 0 on J, this implies that i has a finite support. But then s is not positive
definite, which contradicts our standing assumption.
This proves that k = m. Thus p has m distinct real zeros A1, ..., A,,. O

In particular, Proposition 5.28 applies orthogonal polynomials and yields
Corollary 5.29 If (R,)nen, is an OPS, then R, (x) has n distinct real zeros.

Clearly, Corollary 5.29 holds for the polynomials p,. As noted in Sect.5.4, the
polynomials p,(x) = s, 1 zaoq,H_l (x), n € Ny, are orthonormal polynomials for the
positive definite sequence obtained from the shifted Jacobi matrix (5.32). Therefore,
Corollary 5.29 applies to p,,, hence also to ¢,+1, and we have the following

Corollary 5.30 Forn € N, the polynomials p,(x) and g,+1(x) have n distinct real
zeros.

The following corollary plays an essential role in the proof of Lemma 7.1 below.

Corollary 5.31 Letn e Nyandz,7 € C. If |Imz| < |ImZ/|, then

[Pa(@)] < |pu(@)] and |gn(2)| < lga(2)I. (5.59)

Proof Let r be a polynomial of degree n € IN which has n distinct real zeros, say
X1s...,X;. Then r(z) = c(z—x1)...(z—x,) for some ¢ € C. Therefore it is easily
seen that |r(z)| < |r(z’)| when |Im z| < |Im Z’|. By Corollary 5.30 this applies to
pn and g+ for n € IN and gives (5.59). For the constant polynomials py, qo, g; the
assertion (5.59) is trivial. ]

Let us denote the m zeros A;m) of the polynomial p,, in increasing order

(m) (m)
A <A <<,
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Proposition 5.32 The zeros of p,(x) and p,+1(x) interlace strictly, that is,

D A <0 < d QD e N (5.60)

Proof Since py(x) = 1, it follows from Eq. (5.51) that

Prg1®)pa(x) — pl)pat1(x) >0 for xeR.

Setting x = Aj(."—H) therein we get

Pt A N, >0 for j=1....n+ 1. (5.61)

Since each zero k}"+l) is simple and p,4+; has a positive leading coefficient,
we conclgde that signp;+l(kj(."+l)) = (=1)"*t'7. Therefore, Signpn(kj(."H)) —
(=1)"*17 by (5.61). Thus, by the mean value theorem, p,(x) has at least one zero

in each of the n intervals (/\j(."H) , Aj(.':l) ). Since p, has only n zeros, we conclude
that there is precisely one zero in each of these intervals. O

Corollary 5.33 The two limits ;1= lim, oo A" and B, := im0 AV exist
in R U {—o0} U {+ool.

Proof By (5.60), the sequence (/\(1")) is decreasing and the sequence (Ail")) is
increasing. O

Proposition 5.34 The zeros of gn+1(x) and p,+1(x) strictly interlace, that is, if

K§n+1) (nt1) _

1
<« el < K,(l""' ) are the zeros of qn+1, then

AED <D QOFD L Q0D < D QD e N

Proof The proof is similar to the proof of Proposition 5.32. Setting x = )L;’H'l) in
formula (5.52) of Corollary 5.25 we obtain

PaA g W) = g > 0. (5.62)

By (5.60), p, has precisely one zero in each of the open intervals ()L;"+1), )L](.Tl'l) ) and
this zero is simple. Hence p, has different signs at the end points and so does g+
by (5.62). Therefore, g,+; has at least one zero in (/\](."H), /\j(.:’_”;l)) forj=1,...,n.
Since g+ has n zeros, this gives the assertion. O
Since P, = \/D,, /Dn—1 pn, the preceding assertions hold for the monic
polynomials P, as well. In particular, the zeros of P, and P, strictly interlace.
The next proposition says that two arbitrary interlacing finite sequences are zero

sequences of some monic orthogonal polynomials.
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Proposition 5.35 Given real numbers Ay, ..., Apt1,K1, - .., Ky satisfying
M<K <Ay < oo <Kp<Aptl, (5.63)

there exists a positive definite sequence s = (Sp)nenN, Such that so = 1 and a monic
OPS (Pp)nen, for s such that

Pu(x) = (x—k1) - (x—ky) and Ppyi(x) = @x—2A1) - (x—Apt1)-
(5.64)

Proof By Favard’s Theorem 5.10, it suffices to show that there exist real sequences
(an)nen, and (B,)ren, such that o, > 0 for all n and a sequence (P,),en, of monic
real polynomials such that

Ppy1(x) = (x = Bp)Pu(x) — apPp—1(x), n € Ny, (5.65)

where P_;(x) = 0, Py(x) = 1, and P,, and P,,+ are given by (5.64).
Since deg (P,,+1 — xP,;) < m, there is unique real number f,,+ such that

Ry—1(x) := Ppy1(x) — (x — Bin)Pi(x) (5.66)

has degree at most m — 1. From the assumption (5.63) it follows that R,,_; changes
signs at the zeros of P,,. Hence there is at least one real zero of R,,—; between
two zeros of P,. Since deg R,—1 < m — 1, there is precisely one zero of R,
between two zeros of P,,. Since P,,+(k;;) < 0 by (5.63), we have R,—i(k,,) < 0
by (5.66), so the leading coeefficient of R,—; is negative. Hence we can write
R,—1 = —a;,P,—1 with ¢, > 0 for some unique monic real polynomial P,,—;. Then,
by construction, (5.65) is satisfied for n = m and the zeros of P,,—; and P,, strictly
interlace. Therefore, we can continue by induction and construct polynomials
Pu—>,...,P1, Py = 1such that (5.65) is fulfilled forn =m—1,m—2,...,0.

To construct the polynomials P, for n > m + 2 it suffices to choose numbers
o, > 0 and B, € R and define P, inductively by (5.65). O

Corollary 5.36 For each monic polynomial P of degree m with m distinct real zeros
there exists a monic OPS (Py)nen, for some positive definite sequence with sy = 1
such that P = P,,.

5.7 Symmetric Moment Problems

As throughout, s = (s,).en, is a real positive definite sequence.

Definition 5.37 We say that s is symmetric if 55,41 = 0 for all n € INy. A measure
won R is called symmetric if w(M) = u(—M) for all measurable sets M.
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Clearly, s is symmetric if and only if

Ly(p(x)) = Ly(p(—x)) for p e C[x]. (5.67)

Further, if a measure € M4 (R) is symmetric, its odd moments vanish, hence
its moment sequence is symmetric. Conversely, each symmetric positive definite
sequence s has a symmetric measure . € Mj. (Indeed, if v € M, then the measure
u defined by u(M) = é(v(M) + v(—=M)) is symmetric and belongs to M.)

Proposition 5.38 Let s be a symmetric positive definite sequence. Then

Pa(=0) = (=1)'pa(®), a0 = (=1)""q,(x), by =0 for neN.
(5.68)

The operator V defined by (Vp)(x) = p(—x), p € Clx|, extends to a self-adjoint
unitary operator on the Hilbert space Hy and VXV~ = —X.
Proof Let p, q € Clx]. Using Eq. (5.67) we obtain

(Vp.q)s = Ly(p(—x)q(x)) = Ly(p(x)q(—x)) = {p, Vq)s,
(Vp,Vg)s = Ly(p(—x)q(—x)) = Ly(p(x)q(x)) = (p. q)s.

so V is a symmetric isometric linear operator on the dense subspace C[x]. Hence V

extends by continuity to a self-adjoint unitary on H,. Obviously, VXV~ = —X.
Set p, := (—1)"V(p,). Since p, has degree n, p, has a positive leading coeffient.

Since V is unitary, (p,).en, is an orthonormal basis of (C[x], (-, -)s). Therefore, by

the uniqueness assertion of Proposition 5.1, p, = p,, so that p,(—x) = (—1)"p,(x).
Using Corollary 5.18 and Eq. (5.67) we derive for n € Ny,

pu(y) — pn(_x)) _ _(_1)an,y (pn (=) — pn(x))

qn(_x) = Ls,y ( y— (—X) —y—x

= (=1)"gu().

— (_1)n+1L‘v,y (Pn()’) _pn(x))
y—Xx

Finally, we prove that b, = 0. By (5.9) we have the three term recurrence relation
xpn(-x) = anpn+l(-x) + bnpn(-x) + an—lpn—l(-x)-
Replacing x by —x, using that p;(—x) = (—1)*pi(x), and dividing by (—1)" we get

_xpn(-x) = _anpn+l(-x) + bnpn(x) - an—lpn—l(x)-

Adding both equations gives 2b,p, = 0. Hence b, = 0. O
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5.8 Exercises

1

. Let s be a positive definite real sequence and set 5 := c¢s, where ¢ > 0. Prove

the following for n € WNy:

a. Iy = cL; and D,(5) = ¢"T'D,(s).

b. 1~7n = C_l/zpn s én = Cl/ZQm and Pn = P,, Qn = Q.

c. a, = a, and 13,1 = b,.

d. An(x, 7) = cAn(x, 2), En(x,z) = B,(x,2), én(x,z) = Cp(x,2), Dn(x,z) =
¢ 'D,(x, 2).

Here all quantities with a tilde refer to the positive definite sequence 5.
Hints: Use (5.3) for p,, Proposition 5.18 for ¢,, and Proposition 5.6 for a,, b,.

2. Let T be a symmetric linear operator with domain D(7') on a Hilbert space such

3.

that TD(T) € D(T) and let e € D(T). Define s, = (T"e, e) for n € INy.

a. Show that s = (s,).en, is a positive semidefinite sequence.

b. Show that there exists a positive Radon measure u € M(IR) such that u €
M.

c. Show that s is positive definite if and only if the span of vectors T"e, n € Ny,
is infinite-dimensional.

What is the norm of the monic polynomial P,(z)?

4. Let s be positive real sequence. Prove the following:

a. If p,(—x) = (=1)"pu(x) for all n € Ny, then s is symmetric.
b. If b, = O for all n € IN, then s is symmetric.

In the remaining exercises we develop important examples of orthogonal poly-

nomials. Detailed treatments can be found in standard books such as [Chil] or [Is].

S.

. Set sy, =

We begin with the Chebyshev polynomials T,,.

Show that for each n € INy there is a unique polynomial 7,, € R[x] such that
T,(x) = cos(narccosx), x € R, or equivalently, T,,(cos 8) = cos(nf), 0 € R.

. Show that the polynomials 7, are uniquely defined by the recurrence relation

Ty41(x) = 2xT,(x) — T—1 (x), n € IN, with initial data To(x) = 1, T1(x) = x.
Show that the leading coefficient of T}, is 2" forn € INy.

22(3("’3!!)2 and sp,4+1 = 0 for n € INy. Let u be the probability measure
on [—1, 1] defined by dju(x) := 7~ (1 — x?)~"/?dx. Show that s = (s;)ren, is
a moment sequence with representing measure (L.

Hint: Use [RW, p. 174 and p. 274].

Show that f_ll T ()T (x)du(x) = 0if k # |, f_ll Ti(x)du(x) = ; if k e IN
and [_11 To(x)>du = 1, that is, the orthonormal polynomials p, of the moment
sequence s are po = Tp and p, = V2T, forn € IN.
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Now we turn to the Hermite polynomials H,. Define polynomials H, by
H,+1(x) = 2xH,(x) — 2nH,—(x), n € N, and Hy(x) =1, H(x) = 2x.

10. Letso = 1, 52041 = 0,52, =27"2n—-D!:=27"-1-3---2n—1) forn € IN.
Let p be the probability measure on R given by du = jn ¢~ dx. Show that

s = (Sk)keN, 1S @ moment sequence with representing measure /L.
11. Show that u is the unique representing measure of s.

12. Prove that fRHk(x)Hl(x)d,u(x) = 21§,  for k,1 e NNy, that is,
( le,,n,Hn(X))nelNo is the sequence of orthonormal polynomials associated
with s.

13. Show that H,(x) = (=1)"¢” (2)"e™ and ¢ H,41(x) = 2(n + 1)H,(x) for
n € INp.

Next we treat the Laguerre polynomials L} (x), where o > —1.
Define a sequence of polynomials L by L§ = 1,L{(x) = —x+ 1 4+ «, and

— 2 1
Xt +aLz(x)—n+a n € NN.
n+1

L = ,
n+1(x) n + 1

14. Lets, = " 1(:1(—5 rlr)a) for € INy and let  be the probability measure on [0, 4+00)
defined by du = (I'(a + 1))"'x¥e *dx. Show that s is a moment sequence
with representing measure /.

15. Show that u is the only representing measure for s.

16. Show that [;° L¢ (x)L¢ (x)dp = @D+ 5,

17. Show that L%(x) = |\ x™¢*( 4 )" (x"**¢™) for n € IN,.

18. Show that the leading coefficient of L (x) is enr

n!

Finally, we develop the Legendre polynomials R,,.
Define a sequence of polynomials R, by

(n+ DPpt1(x) = 2n + DxR,(x) —nRy—1(x), n€ N, and Ro(x) = 1,R;(x) = x.

19. Verify that the Lebesgue measure on the interval [—1, 1] has the moment
sequence s = (Sk)kel,, Where s, = ZnZi , and 52,41 = 0.

20. Show that /1| Re()Ri(x)dx = , 2| 8u for k.l € No, that is,

pn(x) = \/ k+ ; R, (x), n € IN_ are the orthonormal polynomials for s.
21. Show that R,(x) = " (4)"((1 — x?)") for n € Ny.

2"n!
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5.9 Notes

The study of orthogonal polynomials is a large classical subject which is treated
in many books such as [Sz], [Chil], [DX], [Is], [Sim2], [Sim3]. We do not make
an attempt to discuss the history of this subject and mention only a few highlights.
A number of formulas such as (5.6) and (5.7) go back to E. Heine (1878) [He].
Favard’s theorem is in [Fv], see [MA] for a discussion of the history of this result.
Proposition 5.35 was proved by B. Wendroff [Wen].



Chapter 6
The Operator-Theoretic Approach
to the Hamburger Moment Problem

In this chapter we begin the study of moment problems using self-adjoint operators
and self-adjoint extensions on Hilbert spaces. The operator-theoretic approach is a
powerful tool and it will be used in the next two chapters as well.

In Sect. 6.1, solutions of the Hamburger moment problem are related to spectral
measures of self-adjoint extensions of the multiplication operator X (Theorem 6.1).
In Sect. 6.3 we show that the moment problem is determinate if and only if the
operator X is essentially self-adjoint (Theorem 6.10) and we characterize von
Neumann solutions (Theorem 6.13). The multiplication operator X is unitarily
equivalent to the Jacobi operator 7. In Sect. 6.2 the adjoint of the operator T is
analyzed, while in Sect.6.4 various determinacy conditions (Theorem 6.16 and
Corollary 6.19) are derived. In Sect. 6.5, all self-adjoint extensions of the symmetric
operator T on the Hilbert space /*(INy) are described (Theorem 6.23). In Sect. 6.6
we prove Markov’s theorem (Theorem 6.29) for determinate moment sequences.
Section 6.7 gives a short disgression into continued fractions.

Throughout this chapter, s = (s,)seN, is a positive definite real sequence.

6.1 Existence of Solutions of the Hamburger
Moment Problem

In this section we rederive the existence theorem for the Hamburger moment
problem from the spectral theorem for self-adjoint operators. This is not only the
shortest, but probably also the most elegant and natural approach to this result.

Theorem 6.1 Let s be a positive definite real sequence. Then the Hamburger
moment problem for s has a solution.

© Springer International Publishing AG 2017 121
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Let A be a self-adjoint operator on a Hilbert space G such that Hy is a subspace
of G and X C A. If E, denotes the spectral measure of A, then

pa() = (Ea()1,1)g (6.1)
is a representing measure for s. Every representing measure for s is of this form.

Proof Suppose that A is a self-adjoint extension of X on G. By the spectral theorem
(see Appendix A.7 or [Sm9]), A has a spectral measure E4. Since X € A and hence
(X)" € A", the polynomial 1 is in the domain D(A") and we have

/ X dpa(x) = / Kd(Eq(0)1.1) = (A"1.1) = (X)"1.1)5 = (", 1) = Li(x") = s,
R R

for n € INy. This shows that 4 is a solution of the moment problem for s.

That each solution is of the form (6.1) follows from Proposition 6.2 below.

To prove that the moment problem for s has a solution it therefore suffices to show
that the symmetric operator X has a self-adjoint extension. Define (Jp)(x) = p(x),
p € C[x]. Then J is a conjugation (see (A.28)) on C[x] (that is, J is antilinear, J?> = 1,
and (Jp, Jg)s = (q,p); for p, g € C[x]) which commutes with X (that is, JXp = XJp
for p € Clx]). Clearly, J extends by continuity to a conjugation on H,. Hence, by
Proposition A.43, X has a self-adjoint extension on the Hilbert space H,. O

Proposition 6.2 Let i be a representing measure for s. Then
{(P.q)s = (P @) 2@wp for p.q € Cla.

The inclusion Clx] € L*(R, i) extends to a unitary operator of Hs on a closed
subspace of L*(R, ju). We identify H, with this closed subspace via this unitary
mapping. Then the operator A, on L*(R, w) defined by

AN = xf () for f € DA,) :={f € PR, p) : i (x) € PR, )} (62)
is a self-adjoint extension of the symmetric operator X and
() = pa, () = (Ea, )1, 1) 2w p0)-

Proof From u € M (R) it follows that C[x] € D(A,,). Obviously, X C A,,. Since
W is a representing measure for s, we have L,(f) = [ fdu for f € C[x], so that

(p.a)s = L(pg) = / P9 dit = (. @) 2

Hence the inclusion C[x] € L*(RR., i) can be extended by continuity to a unitary
embedding of H, into G := L>(R, ).
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From Hilbert space operator theory it is known (see e.g. [Sm9, Example 5.2]) that
the operator A, is self-adjoint and that the spectral projection E, (M) acts as the
multiplication operator by the characteristic function y of M on L*(RR, it). Hence
wM) = [ yux)du = (Ea, ()1, 1) 12w ;- The latter proves that 4 = 4, . O

The following corollary reformulates the second assertion of Theorem 6.1 in
terms of the Jacobi operator T associated with s.

Corollary 6.3 The representing measures of s are precisely the measures of the
form

1B () = so(Ep(-)eo. eo) 7, (6.3)

where B is a self-adjoint extension of T on a possibly larger Hilbert space F and
Ep is the spectral measure of B.

Proof Recall from Sect.5.3 that X = U~'TU, where U is the unitary of H, onto
lz(lNO) defined by Up, = e,, n € INy. The sets of self-adjoint extensions A of X
and B of T are in one-to-one correspondence by a unitary equivalence. It suffices
to extend U to a unitary, denoted again by U, of G onto F such that A = U~'BU.

Then E4 = U~'EgU. Since po(x) = sal/z, we have Ul = s(l)/zeo and hence

pa() = (Ea()1, 1)g = (U Eg()U 1, 1)g
= (EB(-)UI, Ul)]: = S()(EB(-)E(), Eo)]: = UB. ]

Note that the measure (Eg(-)ep, €o) 7 in (6.3) is always a probability measure,
since e 1s a unit vector.

By Proposition 6.2, for each representing measure p the canonical Hilbert space
H, is a closed subspace of L?>(IR, 1) and X is a restriction of the self-adjoint operator
A, on L*(R., ). We shall see in Sect. 7.4 that for most solutions in the indeterminate
case H, is a proper subspace of L*(R, 11).

The following definition gives a name for those solutions obtained from self-
adjoint extensions acting on the same Hilbert space H.

Definition 6.4 A measure i € M is called a von Neumann solution of the moment
problem for s if C[x] is dense in L?(IR, 1), or equivalently, if the embedding of C[x]
into L?(IR, ;1) extends to a unitary operator of H onto L*(R, 11).

6.2 The Adjoint of the Jacobi Operator

Recall from Sect.5.3 that the Jacobi operator T = T, is the symmetric linear
operator with dense domain d in the Hilbert space />(INy) given by

(Ty)n = anYn+1 + bnyn + ap—1Yn—1, N € Ny, (64)
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for (y,) € d, where y—; := 0. The next proposition shows that the adjoint operator
T* is the “maximal operator” on />(INy) which acts by the same formula (6.4). For
this we essentially use the Wronskian defined by (5.40) and Lemma 5.23.

Proposition 6.5 The adjoint operator T* is given by
T*y =Ty for yeDT*) ={yelPNy): Ty e PNy}
Fory, B € D(T*), the limit W(y, B) oo := lim,—c0 W(y, B), exists and

(T*y. B) = (n.T"B) = W(y. B)oo - (6.5)

Proof Let y € (INy) be such that Ty € >(INy). A straightforward computation
shows that (T8,y) = (B, Ty) for § € d. Therefore,y € D(T*) and T*y = T y.
Conversely, let y € D(T*) and n € IN. Using (6.4) (or (5.22)) we derive

(env T*)/) = (Tenv V) = apYn+1 + bn)’n + ap—1Yn—1 = (T*)/)n,

so that 7%y = T y. This proves the first assertion concerning 7*.
Further, by (5.41) we have

> UTyBi = v (TH] = W(y. Bl

k=0

Since y, B, Ty, TB € I>(INy), the limit n — oo in the preceding equality exists and
we obtain Eq. (6.5). O

Proposition 6.6 Suppose that z € C.

(i) N(T*—zl) = {0} if p. ¢ *(No) and N (T*—zl) = C-p_ if p. € P(INo).
(ii) Ifh e N(X*—zl) and {(h,1); = 0, then h = 0.

Proof

(i) From Proposition 6.5 it follows that a sequence y is in N (T*—zI) if and only if
y € ’(INg), Ty € I*(INg) and the recurrence relation (5.29) holds for n € INy,
where y_; = 0. Since y_; = 0, any solution y of (5.29) is uniquely determined
by the number yy, so we have y = yppp,. This implies the assertions.

(ii) Passing to the unitarily equivalent operator 7 the assertion says that yo = 0 and
y € N(T*—zl) imply y = 0. Since y = yop;, this is indeed true. O

Corollary 6.7 The symmetric operator T (or equivalently X) has deficiency indices
(0,0) or (1, 1). The operator T (or X) is essentially self-adjoint if and only if p; is
not in I*(Ny), or equivalently Y oo |pa(2)|* = oo, for one (hence for all) z € C\R.

Proof Since p,(x) € R[x] and hence p,(z) = p,(z), we have p, € [>(INy) if and
only if p. € 2(INg) for z € C. Therefore, by Proposition 6.6(i), T has deficiency
indices (0, 0) or (1, 1) and T has deficiency indices (0, 0) if and only if p, ¢ *(INy)
for some (then for all) z € C\R. O
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6.3 Determinacy of the Hamburger Moment Problem

We begin with two technical lemmas which are used in the proofs of Theorems 6.10
and 6.13 below.

Lemma 6.8 If A and B are different self-adjoint extensions of the multiplication
operator X on Hy, then ((A—z)~'1,1); # (B—z)~'1, 1), forall z € C\R.

Proof Fix z € C\R and assume to the contrary that
(A=zD) 7' 1) = ((B=zD 7' 1. 1), (6.6)

Putf := (A—zl)~'1 — (B—z)"'1. Since X € A and X C B, we have A C X* and
B C X*. Hence f € D(X*) and

X*—zD)f = X*—2)A—z)" "1 — (X*—z2)(B—z) "1 =1—1 =0,

so f € N(X*—zl). Since (f, 1); = 0 by (6.6), Proposition 6.6(ii) yields f = 0.
Set g:=(A—zl)"'1. If g were in D(X ), then for h € N'(X*—zI) we would get

0= ((X* - Zl)hs g)s = (hs (X_Zl)g>s = (hs (A_ZI)(A_ZI)_11>S = (hv 1)&7

so h = 0, again by Proposition 6.6(ii). Thus, N'(X*—z[) = {0}. This is a
contradiction, since X has two different self-adjoint extensions and hence its
deficiency indices are (1, 1) by Proposition A.42 and Corollary 6.7. Hence g is not
in D(X).

Let S denote the restriction of A to D(X) + C-g. Then S is symmetric, because
A is self-adjoint. Since X, hence X, has deficiency indices (1, 1) by Corollary 6.7
and g ¢ D(X), S has deficiency indices (0, 0). Therefore S is self-adjoint and hence
S = A. (In fact, the operator S is closed, but this is not needed here.)

Since f = 0 and hence g = (B—zI)~'1, the same reasoning with B in place of A
shows that S = B. Thus A = B, which contradicts our assumption and shows that
Eq. (6.6) cannot hold. O

Lemma 6.9 Suppose that u € M4 (R) is a finite measure. Let f,(x) denote the
function ! from L*(R, ) for z € C\R. Then E,, = Lin {(f,,))", (f;,)" : k € No}
forzo € C\R and E = Lin {f, : z € C\R} are dense linear subspaces of L*(R., j).

Proof Letg € L*>(R, u). Since £(R) < oo, there is a finite complex Radon measure
v, on R given by dv, = @du. Its Stieltjes transform 1,,,(z) := Ix xiz dv,(x) is
holomorphic on C\R. Using Lebesgue’s convergence theorem we obtain

(L, M) = k!/]R (x_i)kﬂ dv,(x) for k€ Nj. (6.7)
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Let us begin with E;, and assume that ¢ LE . Let k € INg. Then, by (6.7),

@(x)

_ Z())k+l d/“L(x) = (I\Jw)(k) (ZO)'

0= ko, o = [

Similarly, (1, w)(k) (z0) = O for k € INy. Therefore, since I, , 18 holomorphic on C\R,
we conclude that 1, (z) = 0 in the upper half plane and in the lower half-plane. That
is, the Stieltjes transform /,,, is zero on C\R. From Theorem A.13 it follows that
the measure v,, is zero.

We prove that ¢ = 0 p-a.e. on R. Fore > 0 put M, := {x € R : |p(x)| > ¢}.
Then, since the measure v, is zero and the measure  is positive, we derive

Hence u(M,) = 0. Letting ¢ — 40, we get u({x € R : ¢(x) # 0}) = 0, that is,
@ = 0 p-ae.. Thus, ¢ = 0in L2(R, w). This proves that E,, is dense in L*(R, p).
Now assume that ¢ LE. Then ¢ Lf; means that 1,,(z) = 0. Hence the Stieltjes
transform /,, (z) is zero on C\R, so that v, = 0 by Theorem A.13. As shown in the
preceding paragraph this implies ¢ =0. This proves that E is dense in L>(R, ). O

The following theorem gives an operator-theoretic answer to the uniqueness
problem for the Hamburger moment problem.

Theorem 6.10 The moment problem for a positive definite sequence s is determi-
nate if and only if the multiplication operator X (or equivalently, the corresponding
Jacobi operator T) is essentially self-adjoint. If this holds and | is the unique
representing measure for s, then C[x] is dense in L*(R., w), that is, H = L*(R, ),
so W is a von Neumann solution of the moment problem for s.

Proof First assume that X is not essentially self-adjoint. Then, by Corollary 6.7,
X has deficiency indices (1, 1). Therefore, by Proposition A.42, X has at least two
different self-adjoint extensions A and B on H,. By Theorem 6.1, s (-)=(E4(-)1, 1)
and up(-)=(FEg(-)1, 1), are representing measures for s. If 4 were equal to g, then
for z € C\R the functional calculus would yield

(A=D1, 1) = /(X—Z)_ldMA(X) = /(X—Z)_ldMB(X) = ((B=zD)"' 1, 1),,

which contradicts Lemma 6.8. Thus @4 # up and s is indeterminate.

Suppose now that X is essentially self-adjoint. Fix z € C\R. Since X is
essentially self-adjoint, (X—z/)C|[x] is dense in H,, again by Proposition A.42.
Hence there exists a sequence (7,(x)) of polynomials such that 1 = lim,(x—z)r,
in H,. (The sequence (r,) may depend on the number z, but it is crucial that it
is independent of any representing measure.) Let i be an arbitrary representing
measure for s. Since w is finite, the bounded function Xlz isin (R, u) NL'(R, ).
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Using the equations L,(p) = [ p du for p € C[x], ||1 ||iz(]R 0 = 53, and the Holder
inequality we derive
2
11,(2) = Ly(r)|” = ‘/}R(X—Z)_l dju(x) — /}an(X) dju(x)
2
< ([ =o' =l aue)
< Ml [ 16=97' =P duco 68)

= S%/R |x—z| 2|1 — (x—2)r (%) |* dpa(x)

<s%|Imz™2 / 11— (x—2)rn (x)|? dju(x)
R
= sg Imz| ™2 ||1 — (x—z)r,,(x)”f — 0.

Therefore 1,(z) = lim, Ly(r,) is independent of the representing measure j. By
Theorem A.13 the values of the Stieltjes transform /, determine the measure
1. Hence p is uniquely determined by s, that is, the moment problem for s is
determinate.

The preceding inequalities, especially (6.8), imply that for z € C\R the function
fx) =, ! . 1s in the closure of C[x] in L?>(R, 11). Since the span E of such functions

is dense in L>(RR, 1) by Lemma 6.9, so is C|[x]. O

Corollary 6.11 Suppose that p € M4 (R). Then the moment sequence s of | is
determinate if and only if Clx] is dense in L*(R, (1 + x*)d ).

Proof Without loss of generality we can assume that s is positive definite. Indeed,
otherwise p has finite support (by Proposition 3.11), hence the image of C[x]
coincides with L2(R, (1 4 x?)du), and s is determinate by Corollary 4.2.

By Theorem 6.10, s is determinate if and only if X is essentially self-adjoint, or
equivalently by Proposition A.42, (x 4+ z)C[x] is dense in H, for z = =i. Recall
that , is a subspace of L?>(RR, i) by Proposition 6.2 and H; = L*(R,u) if s
is determinate. Therefore, s is determinate if and only if (x 4+ z)C[x] is dense in
L*(R, ) for z = =i. It is easily checked that this holds if and only if C[x] is dense
in L>(R, (1 4 x?)dp). (It suffices to approximate all functions of C.(RR).) O

By Proposition A.42, the operator X is essentially self-adjoint if (x £ i)C[x] is
dense in H,. In the present situation we have the following stronger criterion.

Corollary 6.12 [f there exist a number zo € C\R and a sequence (r,(x))nen of
polynomials r, € C[x] such that

1 = lim (x — z0)rn(x) in H,
n—>o00

then the moment problem for s is determinate.
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Proof Fix p € Clx]. Since zo is a zero of the polynomial p(x)—p(zo), there is a
polynomial ¢ € C[x] such that p(x)—p(z0) = (x—z0)g(x). Then

(x—20)(g+p(z0)7n) = p—p(20) + p(20) (x—20)72 = p — p(20) + p(20)1 = p.

Therefore, because C[x] is dense in H, (X—z0I)C[x] is dense in H,. Since X has
equal deficiency indices by Corollary 6.7, X is essentially self-adjoint. Hence s is
determinate by Theorem 6.10. O

Theorem 6.13 For a measure i € M the following statements are equivalent:

(i) w is von Neumann solution.
(i) fi(x) := Xiz is in the closure of C[x] in L>(R, ) for all z € C\R.
(iii) f;(x) := x—lz() is in the closure of C[x] in L*>(R, ) for one zo € C\R.

Proo

(i{—>(ii) That y is a von Neumann solution means that C[x] is dense in L?(RR, ).
Hence the function f, € L?>(RR, 1) is in the closure of C|x].

(i1)—(iii) is trivial.

(iii)—(i) Set b := Im zo. Let G denote the closure of C[x] in L*>(R, ). We first
prove by induction on k that lef) € G for all k € IN. For k = 1 this is true by

assumption. Suppose that Z’; € G. Then there is a sequence (p,)nen of polynomials

such that p, — f~ in L*(R, i). We can write p,(x) = pu(20) + (x—20)gx(x) with
gn € C[x]. Using that | £, (x)| < |b|™! on R we derive

14 (0 = Pal20) (x=20) ™ =) [l 220)

= {12 () (£ (0) = Pa(20) —(x = 20)gn (X)) ]2 0
= ||fzo(x)(ﬂf)(x) = PaD 2 (0)
< BI7M1£ ) = pa) 20y — O as 7 — oo.
Since f,, € G by assumption and hence p,(z0)(x—20) ' —¢, € G, this shows that
f5+! € G, which completes the induction proof.
Clearly, fZ’; € G implies that lef) € G. Hence the vector space E,, from Lemma 6.9

is contained in G. Since E,, is dense in L*(RR, u) by Lemma 6.9, C[x] is dense in
L>(R, 1). Hence j is a von Neumann solution. O

We close this section by developing an operator-theoretic construction of inde-
terminate moment sequences.

Example 6.14 For a € R, let S, denote the operator —id‘i with dense domain

D(S,) = {f € AC[0,2x] : f € L*(0,27),f(27) = €'*¥"£(0) }
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of L2(0, 27r) with Lebesgue measure. Here AC[0, 27r] are the absolutely continuous
functions on [0,2m]. (Recall that a function f on [0,2r] is called absolutely
continuous if there exists a function 4 € L' (0, 27) such that f(x) = f(a) + f:f (n)dt
on [0, 27]; in this case Tf = —ih.) Then S, is a self-adjoint operator with spectrum
0(Sy) = {a+k:keZ}, seee.g. [SmY, p. 16, 34]. Each number « + & is eigenvalue
of multiplicity one with normalized eigenfunction ¢, x(x) = len ¢@TPx and the
functions @, 4,k € Z, form an orthonormal basis of the Hilbert space L?(0, 27).
(The latter follows from the spectral theory of self-adjoint operators; it can also be
verified directly. That the span of functions ¢y 4, k € Z, is dense for @ € R follows
at once from the denseness of functions @g, k € Z.)
We fix a function f € C5°(0,2x),f # 0, and define

Sy = ((_i)nf(n)vf>v ne INO’ and s = (Sn)nE]NO'

Since f™(0) = f™(2m) = 0 for n € Ny, f is in the domain of each power (S,)"
and (S,)"f = (—i)"f® for o € R and n € INy. We develop f with respect to the
orthonormal basis {@ox : k € Z} and write f = Y, cax@ak- For n € INy we have
(So)"f = Yy can(at + k)"@o x and hence

50 = (V1) = (S00) = { oo+ 001, Yt

keZ I€Z

= Zci’k(a + k)" = /x"dua, where o := Zcéqk&xﬂ.

kEZ kEZ

Therefore, s is a moment sequence and (y, @ € R, is a representing measure of s.
Leta,B €[0,1),a # B. Since f # 0, there is a k € Z such that Ci,k # 0. Hence
e ({a + k}) # 0, while pug({a 4+ k}) = 0. Thus pe 7# g and s is indeterminate. o

6.4 Determinacy Criteria Based on the Jacobi Operator

The following lemma is a main technical ingredient of the proof of Theorem 6.16.

Lemma 6.15 Suppose that ¢ = (¢,), ¢ = (¢n), ¥ = (Yn),n = (nn), and ¢ = (&)
are sequences from 2(No). If f = (f,)nen, is a complex sequence satisfying

fort = Cut@u ) mfi A Yn Y Gfc for neNo, (6.9)

k=0 k=0

then f € I2(INy).
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Proof Lete > 0. Since ¢, ¢, ¥, 1, ¢ € P(INy), there exists an / € IN such that

Z|cn|2+||n|| Z|<pn|2+||t|| Z|wn|2<s

n=I n=l[

for all m > . Suppose that m > [. Using the inequality

n 2 n n m
S m| < (zmkv)(zw) < Inl? SIAR m>
k=0 k=0 k=0 j=0

we derive

>

n=I

n

2
@n Z nkﬁc
k=0

m

2

<Y ol
n=lI

n 2
Z Nk Sk
=0

<P D IAPY leal®> <& > 1A
j=0 n=l j=0
and similarly

>

n=I

Y ) Gl
k=0

2 m
<&y |fil
Jj=0

From the preceding two inequalities and Eq. (6.9) we therefore obtain

n 2 m
Z| %anfk +Z Yn ) Gfi| <e+2eYy AP
n=lI k=0 Jj=0
and hence
1 -1
2 Z|fn+1|2 <e+2e Y |fl* for m=1
j=0
Choosing ¢ < é we conclude that £ is in 2(INp). O

The next theorem sharpens Corollary 6.7 and it is the main result of this section.
Theorem 6.16 For any positive definite sequence s the following are equivalent:

(i) The moment problem for s is indeterminate.
(ii) The Jacobi operator T = T; is not essentially self-adjoint.
(iii) p, € (INy) for some (equivalently, for all) z € C\R.
(iv) q. € P(INy) for some (equivalently, for all) z € C\R.
(v) p, € P(INy) and q, € I*(Ny) for some (equivalently, for all) z € R.
(vi) p, € 2(Ny) and q, € P(INy) for some (equivalently, for all) 7 € C.



6.4 Determinacy Criteria Based on the Jacobi Operator 131

Proof First we note that (i)<>(ii) by Theorem 6.10, (ii)<>(iii) by Corollary 6.7,
and (iii)«<>(iv) by Corollary 5.22. Further, (vi)—(iv) and (vi)—(v) are trivial. The
proof is complete once we have shown that (iii) and (iv) together imply (v) and that
(v) implies (vi). For this it suffices to prove the following assertion:

If p. and q. are in I*(INg) for some z € C, then this holds for all x € C.

Indeed, suppose that p, and q; are in *(INy). Fix x € C. Set f, = p,(x) and

cn = Pnt1(2), on = (X = 2Gnt1(2), ¥ = @ = X)Ppt1(2), Mn = Pu(2), & = ¢u(2)

for n € INy. Since p.,q. € [>(INp), the sequences ¢ = (c,),¢ = (¢,), ¥ =
(Yn).n = (), and & = (¢,) are in [>(INy). Further, from the identity (5.53) it
follows that

Prtt(9) = Put1(2) + (=2gut1(2) Y pr(@pi®) + @E=0)pas1(0) Y qe(@)pa().

k=0 k=0

This means that Eq. (6.9) holds. Therefore, all assumptions of Lemma 6.15 are
fulfilled, so we obtain p, = (f,) € P(INg). Replacing (5.53) by (5.54) and
proceeding verbatim in the same manner we derive that q, € />(INy). O

Remark 6.17 The equivalence of conditions (i)—(iv) of Theorem 6.16 was obtained
by general operator-theoretic considerations. For the description of self-adjoint
extensions in Sect. 6.5 we need that po and qo are in ”(INy) if s is indeterminate. This
is more tricky and follows from the implication (i)—(vi) and also from Lemma 7.1
proved in the next chapter. o

Combining Theorem 6.16 (i)—(vi), Proposition 6.5, and Lemma 5.16 we obtain
the following important corollary.

Corollary 6.18 If's is an indeterminate moment sequence, then for all (!) z € C the
sequences p; = (pn(2))nen, and q; = (gx(2))nen, are in D(T™),
T*p. = zp. and T*q. = sy eo + 24 . (6.10)

The next corollary contains another sufficient condition for determinacy.

Corollary 6.19 If Y 72 a,' = oo, then the Jacobi operator T is essentially self-
adjoint and the moment problem is determinate.

Proof Assume to the contrary that T is not essentially self-adjoint. Then, by
Theorem 6.16, p. € >(INg) and q. € [>(INy) for z € C\R. Since

a7 = pu@gni1() — pri1@)n(2),
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by formula (5.52), we derive

oo oo

Yt = [pa@gnt1) — Pat1()a(2)]

n=1 n=1

00 12 , oo 1/2 00 1/2 , 00 12
s(Zmn(z)F) (Z|qn+1(z)|2) +(Z|pn+1(z)|2) (Zmn(z)ﬁ)
n=1 n=1 n=1 n=1

< Ipzlleay) Na:llzavg) + la:llzavg) 19:ll2avg) < 00,

which contradicts the assumption Y oo ja,! = oo. O

Remark 6.20 Under additional assumptions a converse to Corollary 6.19 holds (see
[Bz, Theorem 1.5, p. 507]): Suppose that the sequence (by)nen, is bounded and
ap—1ap4+1 < aﬁ for n > ng and some ny € N. If Zsio a;l < 00, the Jacobi
operator T is not essentially self-adjoint and the moment problem is indeterminate. o

In Sect.4.2 Carleman’s theorem 4.3 was derived from the Denjoy—Carleman
theorem 4.4 on quasi-analytic functions. Now we give an operator-theoretic proof
of Theorem 4.3 which is based on Corollary 6.19.

Second Proof of Carleman’s Theorem 4.3(i) If sy > 0 and (s,) satisfies Carleman’s
condition, then so does (s,s; l). Hence we can assume that sy = 1. Then,
by Corollary 5.7, p, has the leading coefficient (ay . ..ay—1)"". Therefore, since
(xk, pu)s = 0 for 0 < k < n, we have

((aO e an—l)_lxnapn)s = (pnapn)s =1.
From the Cauchy—Schwarz inequality we obtain
U< (@ am1) "X [FlIpall} = (a0 .. an—1)"s20,

so that

sy < (ag...an1)" ", nelN. (6.11)

Stirling’s formula (see e.g. [RW, p. 45]) yields (”)" < n! and hence (;!)1/” <.
Using this fact and the arithmetic-geometric mean inequality we derive

1 1 1 n
1 1\~ 1\"/1 2 " 1 k
( ) =( ) ( o0 ) <o (6.12)
ao ay—1 n! ap ay ay—1 nn ar—1

k=1

Letus fix N € N. Fork € IN, k < N, we get

N N N
k 2k 1 1 1 1
< <2k - =2k| - 2.
an_zn(n+l)_ ;(n n+1) (k N+1)<

(6.13)



6.5 Self-Adjoint Extensions of the Jacobi Operator 133

Using first (6.11) and (6.12) and finally (6.13) it follows that

N N ook NN,k N, N e
IBELEDD =22 g, S D S
mo= n? ag—1 n*ap_y ~ ag—1 n* ~ ag
n=1 n=1 k=1 k=1 n=k k=1 n=k k=0
Therefore, the assumption Y o | s2nl/ = o0 implies that Y >~ a,' = oco. Hence
s is determinate by Corollary 6.19. O

The case when a Jacobi operator is bounded is clarified by the next proposition.
In this case it is obvious that T is essentially self-adjoint, so s is determinate.

Proposition 6.21 The Jacobi operator T is bounded if and only if both sequences
a = (ay)nen, and b = (by)nen, are bounded.

Proof If T is bounded, the sequences a and b are bounded, since
|an—l|2 + |bn|2 + |an+l|2 = ”anen-l—l + bnen + ap—1€p—1 ”2 = ”Ten”2 =< ||T||2

Moreover, sup, |a,| < ||T|| and sup, |b,| < ||T|.
Conversely, assume that both sequences a and b are bounded, say |a,| < M and
|b,| < M for n € INy. Let y € d. Using the triangle inequality in 2(INy) we derive

1Tyl = (3 lanvamt + buya + anmrvam 'V

< (X a1 + (30 1B+ (3 Nawvani )7 < 3MI1y 1,

that is, T is bounded and || T|| < 3M. O

6.5 Self-Adjoint Extensions of the Jacobi Operator

If a moment sequence is determinate, the Jacobi operator 7 is essentially self-adjoint
by Theorem 6.10 and hence its closure is the unique self-adjoint extension of 7.
Throughout this section, s is an indeterminate moment sequence. By Theo-
rem 6.10 and Corollary 6.7, T has deficiency indices (1, 1). Our aim is to describe
all self-adjoint extensions of the symmetric operator T on the Hilbert space H;.
Recall from Corollary 6.18 that for each z € C the sequences p., q, are in D(T™*)
and satisfy T*p, = zp, and T*q, = s(l)/ Ze0 + 4. In particular,

T po=0, T*qo = s(l)/zeo, and po(z) = s(;l/z, q0(0) = 0.

To simplify some computations we set p := s(l)/ 2p0 and q:=s, 1 2qo. Then

T*p =0, T*q=¢p, and p=(1,...), q=(0,...). (6.14)
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These properties of p and q will play an essential role in what follows.
Let + denote the direct sum. Recall that T is the closure of the operator T.

Lemma 6.22 D(T*) = D(T)+C - qo+C - po.
Proof Obviously, D(T)+C-qo+C-po = D(T)+C-q+ C-p C D(T*). It suffices
to prove the converse inclusion of the latter.
Using (6.14) and the fact that the operator T is symmetric we compute
(T*(¢ + coq + c1p). ¥ + doq + dip) — (¢ + coq + c1p, T* (Y + doq + dip))
= (Te + coeo, ¥ + doq + dip) — (@ + coq + c1p, TV + doeo)
= (@, doeo) + (coeo, ¥ + dip) — {coeo, ¥) — (@ + c1p, doeo)
= @odo + co (Yo +di ) —copo — (g0 + 1) do = co di — c1 do (6.15)
for arbitary ¢, ¢ € D(T) and ¢y, c1,dy, d; € C.
Since T has deficiency indices (1, 1), we have dim D(T*)/D(T) = 2 by formula
(A.27) in Appendix A.7. Therefore, to prove that D(T*) S D(T) + C-q+ C-p it

suffices to show the vectors q and p are linearly independent modulo D(7'). Indeed,
if coq + c1p € D(T), then

(T*(coq + c1p). doq + dip) = (coq + c1p. T* (doq+dip))

and hence cod; — c;dy = 0 by (6.15) for arbitrary dy,d; € C. Therefore, ¢y =
c1 = 0, so q and p are linearly independent modulo D(T). O

(%

Theorem 6.23 The self-adjoint extensions of the Jacobi operator T on H,
2(INy) are precisely the operators T, = T*[D(T;), t € R U {oo}, where

D(T;) = D(T)+C- (qo + tpo) for t € R, D(Too) = D(T)+C - po. (6.16)

Further, if the symmetric operator T is positive, so is the self-adjoint operator Teo.

Proof Let A be a self-adjoint extension of 7 on the Hilbert space H,. Because T € A
and hence T* D A* = A, the operator A is completely described by its domain
D(A). Since T has deficiency indices (1, 1) and hence dim D(T*)/D(T) = 2, we
conclude that dim D(A)/D(T) = 1. Thus, up to complex multiples, there exists a
unique 7 € D(A) which is not in D(T). By Lemma 6.22 the vector 1 can be chosen
to be of the form n = coqo + c1po € D(A). Further, upon scaling we can write
n=soq+tpwithte Corn=p.

First we treat the case n = soq + p. Let ¢, do,d; € C and ¢y € D(T). Since
@ 4 con = ¢ + cosoq + cotp € D(A) and A C T*, it follows from (6.15) that

(A(p + com), ¥ + doq + dip) — (@ + con, T* (¥ + doq+d1p))
= C()(S() d—t d()) (6.17)
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Let dyq + d1p be a nonzero vector in D(A). Then dyq+ d,p is a multiple of 7, so that
sod; = dpt and dy # 0. Hence co(sody — t do) = cosodo(t — t). Therefore it follows
from (6.17) that the operator A is symmetric if and only if (6.17) vanishes for all
co € C, or equivalently, if 7 is real. Since n = soq + tp = s(l)/2(C|0 + tpo) € D(A),
then we have A = T;.

Now letn = p. Then A = Too. If ¢1,dp, dy € C and ¥ € D(T), then by (6.15),

(Alp + c1m), v +dog+dip) — (@ + c1n, T* (Y +doq+dip)) = c1 dy. (6.18)

If doq + dip € D(T), then dy = 0 and the right-hand side of (6.18) vanishes. This
proves that A = T, is symmetric.

We have shown that all operators T3, t € R U {oo}, are symmetric. It remains
to prove that they are self-adjoint. Assume to the contrary that A = T is not self-
adjoint. Then A # A*. Since T € A € A* C T* and dim D(T*)/D(A) = 1 (by
dim D(T*)/D(T) = 2), we conclude that A* = T*. Hence the right-hand side
of Eq. (6.17) resp. (6.18) has to vanish. Since ¢y, dy,d; € C resp. c;,dp € C are
arbitrary, this leads to a contradiction.

To prove the last assertion let ¢ € D(T) and ¢ € C. Since the symmetric operator
T is positive, so is its closure 7. Using that Toop = T*p = 0 we obtain

(Too(@ + cp). @ + cp) = (T, ¢ + cp) = (T, ¢) + c({p. T*p) = (Tp,¢) > 0.

This shows that T is positive. O

For t € R U {oo} we set u,(-) := so(E:(-)eo, eo), where E; denotes the spectral
measure of the self-adjoint operator 7. The next lemma plays an essential role in
the proof of Theorem 7.6 below. It shows how the parameter € R can be recovered
from the measure , and from the operator 7.

Lemma 6.24 Fort € R, the operator T; is invertible and

yel{%gl_)o qu(y')—SOye]%gl_)o((Tr yil)" eq, e0) = s0(T; "eo, e0) = 1. (6.19)

Further, m |, (y)| = +oo.

li
yER,y—0
Proof Let t € R. Since N(T;) € N(T*) = C - p by Proposition 6.6(i) and p ¢
D(T,), we have N (T;)={0}, so the operator 7, is invertible. Recall that q+s;'tp =
sg"2(qo + tpo) € D(T}). From T*p = 0 and T*q = e by (6.14) it follows that
T,(q + s3'tp) = T*(q + 55'1p) = eo. Thus ey € D(T;!) and T, ey = q + s; '1p,
so that

so(T; " eo, e0) = (s0q + tp. eo) = 1. (6.20)

Since ey € D(T; '), the function h(x) = x~2 is p,-integrable. In particular,
w({0}) = 0. We set hy(x) = |(x—yi)~! —x7'|*> for y € (=1,1). Then hy(x) — 0
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w—ae.on Rasy — 0and |hy(x)| < h(x) fory € (—1,1). Therefore, Lebesgue’s

dominated convergence theorem applies and using the functional calculus for the
self-adjoint operator 7, we derive

I(Ti—yiD) " eo — T; ' eol|* = / (=)™ —x7' P d(Ei(x)eo, eo)
R

57! / (=)~ = 5 P dptg(x) = 0 as y — 0.
R

Therefore, lirr(l) (T,—yil)~'ey = T 'ey. Combining this with (6.20) and using the
y—>

equality 7,,,(yi) = so{(T;—yil)"'ep, eo), by the functional calculus, we get (6.19).

Since Tooeop = 0, poo({0}) > 0. Hence it follows from [[,. (y)| >
Poo({0)|y|™! that |1, (yi))] > +ocas R>y— 0. O

In the remaining part of this section we consider symmetric moment sequences.

Proposition 6.25 Suppose that the indeterminate moment sequence s is symmetric,
that is, sou+1 = 0 for n € WNy. Let V be the self-adjoint unitary operator (see
Proposition 5.38) of the Hilbert space H; defined by V(p)(x) = p(—x), p € Clx].
Then VIoV™!' = —Ty and VToo V™' = —Tw. Further, ift € RU{oco} and VD(T,) C
D(T;), thent = 0 ort = o0.

Proof Since s is symmetric, p,(—x) = (—1)"p,(x) and ¢,(x) = (—=1)"*!g,(x) by
(5.68). Therefore, pyi+1(0) = g2(0) = 0 for all k € INy. Hence the Fourier series
of po and qo with respect to the orthonormal basis (p,(x)),en, of the Hilbert space
P(INg) = H, have the form

P puOpx(®) and 9= gur1(0)pat1 ().
k=0 k=0

Hence Vpo = po and Vqp = —qo, so that V(qo + po) = —qo + #po. Thus, by (6.16),
the relation VD(T;) € D(T;) holds if and only if the parameter ¢ is O or co.

Recall that VTV~ = —T by Proposition 5.38. (As throughout, we identify X and

T via the canonical unitary isomorphism of H, and /?(INg).) Hence VD(T) = D(T)

and VT*V~! = —T*. As noted in the preceding paragraph, VD(T;) = D(T;) for

t = 0, co. Therefore, since T,  T*, we conlude that VT,V~! = —T, for t = 0, co.

O

Corollary 6.26 If s is a symmetric indeterminate moment sequence, then |1y and
Woo are different symmetric (!) representing measures for s.

Proof Lett = 0 or t = oo. Then VT,V~! = —T, by Proposition 6.25. We define a
positive Radon measure fi; on R by dji,(—x) = du,(x), x € R. Clearly, it follows
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from that equality —7; = VT,V~! that (=T,—z)~! = V(T,—zl)~'V~! for z € C\R.
Using the relations V=ley = ep and V = V* we derive

15,(2) = 50 ((—=T: — ) e, e0) = so (V(T, — 21) 'V e, eo)
= 50 ((T, — 2) "eq, e0) = 1,,,(z) for z € C\R,

that is, the Stieltjes transforms of fi, and w, coincide. Hence i, = u, by
Theorem A.13. This means that p, is symmetric.

To prove that 1y # [Loo We assume to the contrary that ;19 = teo. Then we have
((To—2zI)""ey. e0) = ((Too—2I) " 'eq. o). This contradicts Lemma 6.8, since T and
T are different self-adjoint extensions of 7. (Note that Lemma 6.8 was formulated
for the operator X, but X is unitarily equivalent to 7'.) O

6.6 Markov’s Theorem

In this section s = (s,).en, 1S a positive definite sequence and a = (a,)nen, and
b = (by)nen, are the sequences in the corresponding Jacobi matrix J.
Let J,, be the operator on C" defined by the truncated Jacobi matrix

b() a()O ...0 0 0
ao b1 aq O 0 O

Iy = a , nel. (6.21)

This matrix and Lemmas 6.27 and 6.28 will be used later in Sect. 8.4 as well.

The next lemma gives another description of the monic polynomial P, and it
shows that eigenvalues and eigenvectors of the self-adjoint operator J,, can be nicely
expressed in terms of zeros of the orthogonal polynomials py.

Lemma 6.27

(1) Pn(z) = det(zl, —J,) forne N,z € C.
(ii) Let Ay,..., A, be the zeros of p, and y) = (po(A)),....pn—1(A))) € C". Then
we have J,y") = )kjy(j)forj =0,....,n—1landn € IN.

Proof

(i) By developing det(z/,,+1—J,+1) after the last row we obtain

det(zly+1—Jn+1) = (2 — bn) dEt(ZIn_Jn) - ai—] det(zly—1—Ju—1) (6.22)
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for n € IN. Note that (6.22) is also valid for n = 1 by setting det(z/y—Jy) := 1.
From (6.22) and Proposition 5.9 it follows that the sequence of polynomi-
als det(zl,—J,) satisfy the same reccurence relation (5.14) and intial data
det(zlp—Jy) = Po(x) and det(zl;—J) = z — by = Pi(z) as P,. Hence
P,(z) = det(zl,—J,) forn € IN.

(ii)) For n = 1 the assertion is easily checked, so we can assume that n > 2.
Consider an equation J,y = zy, where y = (yo,...,yn—1) € C",y # 0,and z €
C. For the first n—1 components this equation means that yy, ..., y,—; satisfy
the same recurrence relations (5.29) as the polynomials py(2), ..., ps—1(z) do
with y_1=p_1(z) := 0. Hence yx = cpi(z) fork = 0,...,n — 1 and some
nonzero ¢ € C. Inserting this into the n-th component of J,y = zy yields

Pn—1(2) = an—2Pp—2(2) + bp—1pn—1(2).

On the other hand, by the relation (5.29) we have

2Pn—1(2) = an_1pn(2) + +by—1Pn—1(2) + an—2pn—2(2).

Since a,—; # 0, it follows that J,y = zy holds if and only if p,(z) = 0. Hence
the eigenvalues of J, are precisely the zeros A; of p, and the corresponding
eigenvectors are the vectors y\/). O

Lemma 6.28 Let K, be the matrix which is obtained from J,, by removing the first
row and the first column. Then

det(zl — K,) = Q,(z) for ne N,n>2, z€C, (6.23)
((Jn —2D)""eq, e) = —gng)) for z € p(J,). (6.24)

Proof It suffices to prove the assertion for n > 3. Consider an equation K,y = zy
fory = (y1,....-1) € €',y # 0, and z € C. Recall that K, is the
(n—1) x (n—1) matrix in left upper corner of the shifted Jacobi matrix J from (5.32).
Therefore, setting yo := 0 and using that go = 0, the first n—2 components of
the equation K,y = zy coincide with the recurrence relation for the polynomials
q1(2), ..., qu-1(2), see Sect.5.4. Hence y; = cg;(z) forj = 1,...,n — 1 and some
¢ € C,c # 0. For the (n—1)-th component it follows in a similar manner as in
the proof of Lemma 6.27 that z is an eigenvalue of K, if and only if ¢,(z) = 0, or
equivalently, Q,(z) = 0. Thus, det(z/ — K,;) and Q,(z) are monic polynomials of
degree n — 1 having the same zeros. Hence these polynomials coincide. This proves
(6.23).

Finally, we prove (6.24). Let z € p(J,). Setting f = (fo.+- .f,) := (Ju—zI) ' eo,
to compute f; we apply Cramer’s rule and get
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0 0 0 ...a,— b,—z
((Un— D)oo, e0) = fo = :

det (J, — zl)
_ det(K,—z) _ det(@l —K,) _  0u.(2)
T det(J,—z)  det(zl—J,)  Pu(@)’
Here for the last equality we used (6.23) and Lemma 6.27(i). O

Equation (6.25) in the following result is called Markov’s theorem.
In particular, if supp p is bounded, or equivalently, if the operator T = X is
bounded, then s is determinate and the equality (6.25) holds.

Theorem 6.29 Suppose that s is a positive definite determinate moment sequence.
If | is the representation measure for s and R is an interval containing supp W, then

— lim

qn(2) _ . 0.(2) _/ dpu(x) for ze C\R (6.25)
n—>00 pn(z) R

—so lim =
0, 5% P(2) x—z

Proof The first equality in (6.25) follows at once from (5.36). To prove the second
equality we extend J,, to a finite rank operator J, on /2(INg) by setting

J = (J" 0) on F(INg) = C" @ P(IN,),
00
where IN,, = {k € IN : k > n}. Fix a number z € C\R.

Because s is determinate, 7 = X is essentially self-adjoint by Theorem 6.10 and
H, =~ L*(R, w). Since the multiplication operator A,, by the variable x in L*(RR, w)
(see Proposition 6.2) is a self-adjoint extension of X and so of M, we have A, =
M. Therefore, the spectrum of the operator T = M, = A, is the support of x and
so a subset of R. Hence, since z € C\R, (T — zI)d is dense in /*(IN). Further, since
P,(z) = det(z[—J,) by Lemma 6.27(i), the spectrum of J,,, hence of 7;1, consists
of the zeros of P,, so it is also contained in R by Corollary 5.28. Thus, z is in the
resolvent sets of 7;1 and T.

_Letg = (g0, , ¢, 0,...) € d. If n > k, then we have (T —zl)¢p € C"*! and
J, —z)p = (T — z) g, so that

(o =2 = (T =2y ) (T — 2D
=w—) ' Tu—Dp— (T -y (T—2Dp =¢—¢ =0.

Hence, since ||(7n —zI)7Y| < (dist(z, R))~! and (T — zI)d is dense, it follows that
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lim (J, —z) "'y = (T—z)~'y  for ¢ € P(Np). (6.26)
n—>oQo

Since T is self-adjoint, we have w(-) = so(E;(-)eo, e0) by formula (6.3) in
Corollary 6.3. Therefore, applying (6.24) and (6.26) with Y = ¢j, we derive

—so lim 2@ _ so lim ((J, —zl)"eq, o) = so lim ((J, —zI) 'eo. eo)
n—00 Pn(z) n—00 n—00

= 50 (T — 2I) " eo, e0) = 50 /R (x = 27 d(E; (x)eo. e0) = /R (= 2 ),

which proves the second and main equality of (6.25). O

6.7 Continued Fractions

We begin with general continued fractions. Let (¢,),en and (B,)nen, be complex
sequences. An (infinite) continued fraction is a formal expression
o1
Br + “
ﬂz+' 4o
Pat "

Bo + (6.27)

Just as in case of infinite series we want to associate a number to this expression.
For this reason we set

o
B+ *
c. o,
Bat T+

C, = Bo+ (6.28)

Note that it may happen that C, is not defined if some denominator is zero. To save
space the expressions (6.27) and (6.28) are written as

oy ol oyl
Bo+ , + ., Ft
B1 B2 |Bn
all O52| O5n|
Co=pBo+ ,, + :
" B1 182 |Bn

Definition 6.30 The continued fraction (6.27) converges to C € C if the numbers
C, are defined up to a finite subset of INy and lim,— - C, = C. In this case we
write

[24] | Ol2| anl

C=hot g+ g Tt g T
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Proposition 6.31 For the numbers C, we have C, = g” for n € Ny, where

An = ,BnAn—l + anAn—2a AO = ,307 A—l = 17 (629)
B, = IBan—l + apBy—2, By =1, B_1=0. (6.30)

IfB, #0forn=1,...,m, then

)n+1

1
_ —/30+Z( o (631)

Proof The first assertion will be proved by induction on n. We define A, and B,
recursively by (6.29) and (6.30). Then we have to show that C, = !

For n = 0 this holds. Suppose that C,, = 2:. Recall that C,, is obtained if we
replace 8, by B, + ':i in the formula for C,,. Then, using the induction hypothesis
and formulas (6.29) and (6.30), we derive

(IBn + gnill )An 1+ anAn—Z

(,Bn + gnill) n—1 + aan—Z

Cit1 =

_ ,3n+1(,3n n—1 + anAn—2) + an+1An—l
:8n+l(,8an—l + aan—Z) + an-HBn—l
_ BuriAn + 1At _ A

But1Bn + @up1Bu1 Byt

which completes the induction proof.
Next we prove (6.31). Subtracting (6.29) multiplied by B,—; and (6.29) multi-
plied by A,—; we obtain

A,B,—1 —BA,—1 = _an(An—an—Z - Bn—lAn—Z)-
Repeated application of this relation yields
Aan—l —-B An 1 = ( 1)n+1 <Oy,

which can be written as

A, A )" oy .o
A _ G e on (6.32)
Bn Bn—l Bn—an

Now (6.31) follows by summing overn = 1, ..., m and using that " = Bo. O
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Formulas (6.29) and (6.30) are three term recurrence relations that resemble
the relations for monic orthogonal polynomials. Equation (6.31) implies that the
continued fraction converges if and only if the corresponding series in (6.31) does.

Now we will use the (positive definite) moment sequence s = (Sp)nen, - If an, by
denote the corresponding Jacobi parameters a,,, b,, we set

Bo=0, Bn=2—bs1, @ =50, Qpy; =—a’_, for neN.
Replacing n by n + 1 in (6.30) we obtain for the denominators
Byy1 = (z—by)By—a,_B,1, By=1B_,=0,neN,

and B; = (z—bo)Bo + so - B_1 = z— by. These are precisely the recurrence relation

(5.14) and the intial data for the monic orthogonal polynomials P,(z). Therefore,

we have B, = P,(z) for n € INy. In particular, B, = (z — by)(z — by) — a(z) = P,(2).
For the numerators A,, we obtain in a similar manner

App1 = 2= b)Ay —ay A1, Ap=0,A =1, neN,

and Ay = (z — bp)Ay + so - A_;y = sp. From Corollary 5.20 it follows that
Sy 1A, satisfies the same recurrence relation and initial data as the corresponding
polynomials Q,(z). Hence A, = s0Q,(z) for n € WNy. In particular, A, =
(z=b1)so = 5002(2).

Summarizing the preceding, we obtain

Apr1 500n+1(2) sol —aj| —a,_|
Coy1 = = =

= e , neNN.
B P,11(2) lz—bo |z—b |z — by

(6.33)

Now we assume that the moment sequence s is determinate. Let p be its
representing measure. Then, by Markov’s theorem 6.29,

/ dpu(x) — lim 500n+1(2) L€ C\R.
R

z—x oo Pu(z)

Passing to the limit in (6.33) and inserting the latter equality yields

d(x) sol —ag| —ay_|
7 — — + + - n +..., e C\R.
u(@) /}R z—x |z=by |z—by |z — bu e
(6.34)

Formula (6.34) provides an expansion of the negative Stieltjes transform —/,,(z) of
M as a continued fraction. It connects continued fractions and moment problems.
We will not follow this path in this book and prefer to use other methods.
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Further, suppose that u is supported by a bounded interval [a, b]. Then

dp(x) so 81 Sp
~1,(2) = = 4+ et o 6.35
I‘(Z) / Z—x z Zz Z"+l ( )
for |z| > max (|al, |b]). (Indeed, then le =y, szll converges uniformly on

[a, b], so we can interchange summation and integration.) For general representing
measures there is an asymptotic expansion of the form (6.35), see Proposition 7.12
below.

The interplay between the two expansions (6.34) and (6.35) is one of the
interesting features of the classical theory of one-dimensional moment problems.

6.8 Exercises

1. Let s be a Hamburger moment sequence and p a representing measure for s.
Prove that the following statements are equivalent:

(i) The moment problem for s is determinate.
(ii) There exists a number z € C\R such that p, ¢ *(INy) and q, ¢ *(INy).
(iii) There is a number zo € C\R such that (x — z9)C[x] is dense in L*(RR, ).
(iv) There exist a number zp € C\R and a sequence (7,),en of polynomials
rn € C[x] such that lim,— o (x — 20)7,(x) = 1 in L*(R, p).

2. Let u,v € M4 (R). Suppose that there exists a ¢ > 0 such that u(M) < cv(M)
for each Borel subset M of R. Prove that if v is determinate, so is J.

3. Let s = (sp)nem, and 1 = (f,)ney, be moment sequences such that the moment
sequence s + ¢ := (8, +1,)neN, is determinate. Prove that s and ¢ are determinate.

4. Let u € M4+ (R)andleta,b,c € R,a < ¢ < b Suppose that supp u € R\[a, b].
Prove that p is determinate if and only if (x — ¢)C[x] is dense in L>(RR, ).

5. Prove the “Pliicker identity” for the Wronskian defined by (5.40):

W(e, B)aW(y. 8)n — Wlat, y)aW (B, 8)n + W(a, 8)sW(B, y)n = 0,n € INy,

where «, 8, y, § are arbitrary complex sequences.
6. (Translation of Hamburger moment sequences)
Let s = (sy)nen, be a moment sequence and y € R. Define s(y), =

> ieo (1) ¥*sn—s for n € No.

a. Show that s(y) = (s(y)n)nen, is also a moment sequence.
b. Show that € M, if and only if u, € M), where dp, (x) := dp(x —y).
c. Show that s is determinate if and only if s(y) is determinate.

7. Let u € M4 (R) be symmetric. Assume that (—c,c) N suppu = @ for some

¢ > 0. Show that the sequence (g”zgg)n < does not converge as n — oo,
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6.9 Notes

The Hamburger moment problem was first studied extensively by H. Hamburger
[Hm]. Important classical result were obtained by M. Riesz [Rz2]. Among other
things he discovered the operator-theoretic characterization of determinacy (Corol-
lary 6.11). One-dimensional moment problems in the context of the extension theory
of symmetric operators were treated in [DM]. The terminology of a von Neumann
solution is from [Sim1]. Our approach partly follows [Sm9, Chapter 16] and [Sim1].
Markov’s theorem 6.29 goes back to A.A. Markov [Mvl1]. It is proved in [Chil]
for measures with bounded support and in [VA] and [Be] for determinate measures.
Our approach to Theorem 6.29 and Exercise 6.7 are taken from C. Berg [Be].
Continued fractions are treated in [W1] and [JT].



Chapter 7
The Indeterminate Hamburger Moment
Problem

In this chapter we assume that s is an indeterminate Hamburger moment
sequence. Our aim is to analyze the structure of the set M of all solutions of
the moment problem for s. The central result in this respect is Nevanlinna’s theorem
(Theorem 7.13) on the parametrization of M in terms of the set 3 U {oco}, where 13
are the holomorphic functions on the upper half plane with nonnegative imaginary
parts. It provides a one-to-one correspondence between Stieltjes transforms of
measures 4 € M; and elements ¢ € P U {oco} given by a fractional linear
transformation (7.16) with respect to four distinguished entire functions A, B, C, D.
Note that in contrast to the moments the Stieltjes transform determines a finite
Radon measure uniquely (by Theorem A.13)!

In Sect.7.1 these four Nevanlinna functions A, B, C, D are defined and investi-
gated. Sections 7.2 and 7.5 contain fundamental results on von Neumann solutions
(Theorems 7.6, 7.7, and 7.15). The family of Weyl circles is introduced in Sect. 7.3.
In Sect.7.4 the celebrated Nevanlinna theorem is proved. In Sect.7.6 we give
a short excursion into Nevanlinna—Pick interpolation and derive basic results on
the existence of a solution and on rational Nevanlinna functions (Theorems 7.20
and 7.22). In Sect.7.7 solutions of finite order are studied and a number of
characterizations of these solutions is given (Theorem 7.27 and 7.33).

7.1 The Nevanlinna Functions A (z), B(z), C(z), D(z)

The crucial technical step for the definition of the Nevanlinna functions is contained
in the following lemma.

Lemma 7.1 For any z € C the series Y oo |pa(2)|> and Y o2 |q.(2)|> converge.
The sums are uniformly bounded on compact subsets of the complex plane.

Proof Because the moment problem for s is indeterminate, it has at least two
different solutions p and v. The corresponding Stieltjes transforms [, and I,
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are holomorphic functions on C\R. Since u # v, they do not coincide by
Theorem A.13. Hence the set Z:={z € C\R : I,,(z)=I,(z)} has no accumulation
point in C\R.

Let M be a compact subset of C. We choose b > 0 such that |z| < bforallz e M
and the line segment L:={z € C : Im z = b, |[Re z| < b} does not intersect Z. By
the first condition and Corollary 5.31, the suprema of |p,(z)| and |g,(z)| over M are
less than or equal to the corresponding suprema over L. Hence it suffices to prove
the uniform boundedness of both sums on the set L.

Suppose that z € L. Then we derive

1,2~ L@ Y PP
=D 1@ + L@pa(2) = (@) + L, Ep)
<2 ) 14x@ + L@pa@IF +2 ) 9. + L@PE
<27 ' (Im I, (2) + Im 1,(2)) < 267 (1L, 2)| + L)),
where the inequality before last follows from inequality (5.39) in Proposition 5.37.
Since the function |,(z)—I,(z)| has a positive infimum on L (because L has a
positive distance from the set Z) and /,,(z) and /, (z) are bounded on L, the preceding

inequality implies that the sum ), |p,(z) |? is finite and uniformly bounded on L.
Using once more (5.39) and proceeding in a similar manner we derive

Do n@F <23 an@) + L@pa@F + 201 Y 1@

< 271 + 2L Y 1P

for z € L. Hence the boundedness of the sum ), |p.(z)|*> on L implies the
boundedness of Y, |g,(z)|* on L. O

Lemma 7.2 For any sequence ¢ = (c,) € [>(INy) the equations

f@) =) epn(@ and g() =) cugn2) (7.1)
n=0 n=0

define entire functions f(z) and g(z) on the complex plane.

Proof We carry out the proof for f(z). Since (p,(z)) € [2(INg) by Lemma 7.1 and
(cn) € I>(INp), the series f(z) converges for all z € C. We have

2 e} (o]
(X 10f)(Zimer)
n=k+1 n=0

o0

>

n=k+1

2

k
‘f(z) =Y e
n=0
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for k € IN and z € C. Therefore, since (c,) € *(INg) and the sum Y, |p.(2)|? is
bounded on compact sets (by Lemma 7.1), it follows that Zﬁ:o cenpn(z) = f(2)
as k — oo uniformly on compact subsets of C. Hence f(z) is holomorphic on the
whole complex plane. O

From Lemmas 7.1 and 7.2 we conclude that

Az w) = @=W) Y gu@Daw), Bz, w) := =1+ (z=w) D pu(2)ga(w),

n=0 n=0

Clzw) =1+ @=w) Y gu(@pa(w), D(zw) 1= (z=w) Y pa(2)pa(w)

n=0 n=0

are entire functions in each of the complex variables z and w. They are the limits
of the polynomials A(z, w), Br(z, w), Ck(z, w), Di(z, w), respectively, which have
been defined in Proposition 5.24. By passing to the limit n — oo in formula (5.57)
of Corollary 5.27 we obtain the important identity

A(z, w)D(z, w) — B(z, w)C(z,w) = 1. (7.2)
From the above formulas it is obvious that

Az, w) = —A(w,z), B(z,w) = —C(w,z), D(z,w) = —D(w,z), z,w e C.
(1.3)

Definition 7.3 The four functions A(z, w), B(z, w), C(z, w), D(z, w) are called the
Nevanlinna functions associated with the indeterminate moment sequence s.

These four functions are a fundamental tool in the study of the indeterminate
moment problem. It should be emphasized that they depend only on the indetermi-
nate moment sequence s.

We shall see by Theorems 7.6 and 7.13 below that the entire functions

A(z) :== A(z,0), B(z) := B(z,0), C(z) := C(z,0),D(z) := D(z,0)

will enter in the parametrization of solutions. Often these four entire functions A(z),
B(z), C(z), D(z) are called the Nevanlinna functions associated with s.

A number of facts on these functions are collected in the next proposition. Scalar
products and norms refer always to the Hilbert space />(IN).

Proposition 7.4 Suppose that z,w € C. Then we have:

(i) D(z,0)B(w,0) — B(z,0)D(w,0) = —D(z,w).
(i) A(z,w) = (2= w){dz, qw). D(z.w) = (2—w)(pz, pu).
B(Zv W) +1= (Z - W)(]JZ, qw>v C(Zv W) —-1= (Z - W)(st pw)
(i) Im (B(z)D(z) ) = Im z |[p_||*.
(iv) D(z) # 0and D(2)t + B(z) # O0forz € C\Randt € R.
(v) D(z)¢ + B(z) # 0 forallz,{ € C,Imz > 0andIm ¢ > 0.
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Proof

(i) follows from the formula (5.58) by passing to the limit n — co.
(ii) Since p, and g, have real coefficients, p,(w) = p,(w) and g,(w) = g,(w).
Hence the formulas follow at once from the definitions of A, B, C, D and p_, q,,.
(iii) Using (i) and the second equality from (ii) we compute

B(z)D(z) — B(2)D(z) = D(z,2) = (z—2)|Ip.|*.

(iv) Letz € C\R. Since py(z) # 0, Im z ||p||? # 0 and hence D(z) # 0 by (iii).
Assume to the contrary that D(z)t + B(z) = 0 for some z € C\R and 7 € R.
Then we have —t = B(z)D(z)~' and hence

0 =Im (B(z)D(2)"'ID@)I*) = Im (B()D(2)) = Im z [|p,||?

by (iii), which is a contradiction.
(v) follows in a similar manner as the last assertion of (iv). O

Proposition 7.5 If u € M is a von Neumann solution, then

A(z,w) +I,(w)C(z, w)

1@ = - B(z,w) + I,(w)D(z, w)

for z,w € C\R. (7.4)

Formula (7.4) determines all values of 1,(z) on C\R provided one fixed value
1,,(w) is given.

Proof Since j is a von Neumann solution, H, 2 L*(R, ). Hence {p, : n € N} is
an orthonormal basis of L?(IR, 1), so by (5.38) for all z, w € C\R we have

£= @@ + L@pa@)pns fo =Y (@u(w) + L (w)pa(w))pa.

n=0 n=0

Using these formulas, the Parseval identity and Lemma 5.24 we derive
1 1
1u(2) = 1u(w) = (2= w) dp(x) = (z=w) (£ fidu
X—ZX—WwW

= (2=W) ) (@) + L DPa(@) (@u (W) + L (W)pa(w) )

n=0

= (2= W) Y _(ga(@) + Li@)Pa(2)(@n(w) + L (w)pa(w))

n=0

=A(z,w) + 1,(2)(B(z.w)+1) + [, (W)(C(z, w)—1) + 1,,(2)],,(w)D(z, w).

Eliminating /,,(z) in the last equation we obtain (7.4). O
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7.2  Von Neumann Solutions

Recall that the self-adjoint extensions of the Jacobi operator T on the Hilbert space
‘H, are the operators 7y, t € R U {oo}, from Theorem 6.23. If E; denotes the spectral
measure of T;, we set

[Lt() =950 (Et(-)E(), Eo). (75)

Theorem 7.6 The measures (i;, where t € RU{oo}, are precisely the von Neumann
solutions for the indeterminate moment sequence s. For z € C\R, we have

_ 1 A(z) +1tC(2)
sol(T—zD)"Leg, e0) = 1 E/ du(x) = — , 7.6
o{(Ti—zl)""eq, e0) = 1,,,(2) x—z i (x) B(2) + 1D(2) (7.6)
where for t = oo the fraction on the right-hand side has to be set equal to —38

Proof The measures u, are indeed the von Neumann solutions, since the operators
T, exhaust the set of all self-adjoint extensions of 7 on H, by Theorem 6.23.

The first equality of (7.6) follows at once from the definition of u, and the
functional calculus for the resolvent of the self-adjoint operator 7.

The main assertion of Theorem 7.6 is the last equality of (7.6). For this we
apply formula (7.4) to u = u,, w = yi and pass to the limit y — 0. Then the
holomorphic function A(z, w) in w tends to A(z,0) = A(z). Similarly the limits of
B(z,w), C(z,w), D(z, w) are B(z), C(z), D(z), respectively.

Let t € R. Then limy ¢/, (yi) = ¢ by Lemma 6.24 and D(z)t+B(z) # 0 on
C\R by Proposition 7.4(iv), so the right-hand side of (7.4) tends to —‘;E;;i;gg;;

Now let t = oco. Since limy_¢ |1, (¥1)| = +00 by Lemma 6.24 and D(z) # 0

for z € C\R by Proposition 7.4(iv), in this case the limit of (7.4) is —128 O

Since A(z), B(z), C(z), D(z) are entire functions, it follows from Eq. (7.6) that the
Stieltjes transform 1,,(z), t € R U {oo}, is a meromorphic function.

Further, the numerator and denominator in (7.6) have no common zero. Indeed,
if t € R and z were a zero of A + ¢tC and B + D, then

A(2)D(z) — B(2)C(z) = (—1C(2))D(z) — (=1D(2))C(z) = 0,
which contradicts (7.2). Similarly, for ¢t = oo, C and D have no common zero.
The following theorem describes the structure of von Neumann solutions.

Theorem 7.7 Suppose that s is an indeterminate Hamburger moment sequence.

(i) Each von Neumann solution |, of s has a discrete unbounded support. The
numbers in supp U, are precisely the zeros of the entire function B(z) + tD(z)
fort € R resp. D(2) for t = oco. The set supp i, is the spectrum of the self-
adjoint operator T;.
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For each number x € R, there is a unique t, € RU {co} such that x € supp ;.
If 1,1 € R U {oo} andt # 1, then the supports of |1, and ; are disjoint.

(iil) If x € supp W, then x is a simple eigenvalue of the operator T; and
) -1
() = o] = (Z |pn(x)|2) | a7
n=0
Proof
(i) By Proposition A.15, a closed subset K of R belongs to supp u, if and only

(i)

(iii)

if the Stieltjes transform I, (z) has a holomorphic extension to C\K. Hence
supp /4, is the set of poles of the meromorphic function /,,,. Since the numerator
and denominator in (7.6) have no common zero, these are precisely the zeros
of the denominator. Being the zero set of an entire function, supp u, is discrete.

Since u, is a von Neumann solution, ¢ is a cyclic vector for 7;. Hence T;
acts as the multiplication operator by the variable x in L?(IR, 1,) and supp u, is
the spectrum of 73, see [Sm9, Section 5.4]. The operator T; is unbounded and
S0 is its spectrum supp ;.

If D(x) # 0, then x is a pole of I, fort = —B(x)D(x)~", so that x € supp 1,
by (i). Similarly, if D(x) = 0, then x is a pole of /,,_ and hence x € supp oo
by (i).

To prove the uniqueness assertion, assume that x € supp i, and x € supp u;

fort,7 € RU {c0}.If t € Rand 7 € R, then B(x) + tD(x) = B(x) + iD(x) =
0. Hence D(x) # 0 (otherwise AD — BC = 0, which contradicts (7.2)) and
thereforet = 7. If t € R and 7 = oo, then B(x) + tD(x) = 0 and D(x) = 0, so
that B(x) = 0. Again this contradicts (7.2). Thus, t = 7.
Let x € suppu,. Then x is in the spectrum of 7; by (i). Because this
set is discrete, x is an eigenvalue of T,. Since 7, C T*, it follows from
Proposition 6.6(i) that all corresponding eigenvectors are multiples of p, =
(Pn(*X)nen,- Thus ||p.||~'py is a normalized simple eigenvector and the spectral
projection E;({x}) of T, is the rank one projection E,({x}) = |lp.|| 72 (-, px) px-
Since (eg, px) = po(x) = sal/z, we obtain

1 ({x}) = s (Ei({x})eo eo) = so [l 7> (eo, pa) (s €0) = [1pell 72,

which proves (7.7). O

Definition 7.8 A von Neumann solution of an indeterminate Hamburger moment
sequence is called Nevanlinna extremal, or briefly, N-extremal.

By Theorem 7.7 (i) and (iii), each N-extremal solution w is the form

00
n = Z mkgxks
k=1
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where my, > 0, the points x; € R are pairwise distinct, and limy_c |xx| = c0.
Further, {x; : k € IN} is the zero set of an entire function specified in Theorem 7.7(i).

7.3 Weyl Circles

An instructive tool in the theory of indeterminate moment problems is provided by
the Weyl circles.

Definition 7.9 For z € C\R the Wey! circle K, is the closed circle in the complex
plane with radius p, and center C, given by

1 oz 1 C. = _(Z_Z)_l + gz, p2)s _ C(z.2)

0. 1= , C.: =— )
T =2 b2 =2l Dz T llp-1I? D(z,2)

The two equalities in this definition follow easily from Proposition 7.4(iii).
The proof of the next proposition shows that in the indeterminate case the
inequality (5.39) means that the number /,,(z) belongs to the Weyl circle K.

Proposition 7.10 Suppose that @ € M. Then the number 1,(2) lies in the Weyl
circle K, for each z € C\R. The measure i is a von Neumann solution if and only
if 1,(z) belongs to the boundary 0K for one (hence for all) z € C\R.

Proof We fix z € C\RR and abbreviate { = ,,(z). The inequality (5.39) says that

Jacl? + € (0P, + € (0 pds + PR = e+ Gl < 0 ()

The inequality in (7.8) can be rewritten as

ISP 10:l3 + & ({es P2 H(@z=2) 1) + ¢ (A2 pe)s+ (@2 7") +llacll} < 0.

The latter inequality is equivalent to

||13z||§ |§ + ||pz||s_2((% pz>s+(z_z)_l)|2 = ||Pz||s_2|(% po)s + (Z_Z)_l|2 - ||Qz||§

and hence to

€+ b2l 240 post =)D < bl (1080 b + =2~ P=lIp: 219 12).

This shows that ¢ lies in a circle with center C, given above and radius

p: = IIlels_z\/l(qz,pz)s + @) P = lIp:lE a3 (7.9)
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provided the expression under the square root is nonnegative. Using Proposi-
tion 7.4(iii), the relation C(z, z) = —B(z, z), and (7.2) we compute

. -z \/IC(z, 2)|? _ A(z.29)D(z,2)

P = D(z,z) \ |z—zI? (z—2z)?
_ 272 |[Ck9B2) A DE2)
D(z,72) lz—z|? |z —z|?
I o 1
D(z.2) |z=z|  |Ip:lI? |z—2|

Thus p, is equal to the radius p, of the Weyl circle and we have proved that ¢ € K.

The preceding proof shows that /,,(z) = { € 9K if and only if we have equality
in the inequality (7.8) and hence in (5.39). The latter is equivalent to the relation
[ € H, by Proposition 5.21 and so to the fact that x is a von Neumann solution by
Proposition 6.13. This holds for fixed and hence for all z € C\R. O

Let z,w € C. Since A(z, w)D(z,w) — B(z, w)C(z,w) = 1 by (7.2), the fractional
linear transformation H_,, defined by

_A(z, w) 4+ ¢C(z,w)

§=H.,(0) = B(z,w) + {D(z, w)

(7.10)

is a bijection of the extended complex plane C = C U {oo} with inverse given by

_A(z, w) + EB(z,w)

—_ g1 —
é‘ - Hz,w(‘%‘) - C(Z, W) + SD(Z, W) .

(7.11)
Some properties of these transformations H,,, can be found in Exercises 7.5 and
7.6. Here we will use only the transformations H, := H, . Set R := R U {oco} and
recall that C; = {z € C : Im z > 0}. The next lemma is illustrated in Fig.7.1.

A, oK.

Fig. 7.1 The transformation H, and the Weyl circle K,
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Lemma 7.11

(i) H; is a bijection of R onto the boundary 0K, = {1,,(z) : t € R} of the Weyl
circle K, forz € C\ R.

(ii) H, is a bijection of Cy onto the interior I%Z of the Weyl circle K, for z € C.
(iii) K, € Cy forz e Cy.

Proof

(i) By Theorem 7.6, H; maps R on the set {I,,(z) : t € R}. Since I,,,(z) € 0K,
by Proposition 7.10, H, maps R into dK,. But fractional linear transformations
map generalized circles bijectively onto generalized circles. Hence H, maps R
onto 0K;.

(i) From (i) it follows that H, is a bijection of either the upper half-plane or the
lower half-plane on the interior of K. It therefore suffices to find one point

£ €K for which HZ1(£) € €. Since I, (2). ... (2) € 0K by (i),
£ = (I4(2) + 1,0, (2)/2 = (-A(9)BR) "' = C())D(x) ") /2 ek .

Here the second equality follows from Theorem 7.6. Inserting this expression
into (7.11) we easily compute

H:'(§) = B()D(2)"' = ID(2)| *B(2)D(z) .

Hence HZ_I(S) € C+ by Proposition 7.4(iii), since z € C+.
(iii) Since z € C4, we have I, (z) € C+ N 9K, by (i). Hence K, € C. O

7.4 Nevanlinna Parametrization

First we prove a classical result due to Hamburger and Nevanlinna which is of
interest in itself. It characterizes solutions of the moment problem in terms of the
asympotic behaviour of their Stieltjes transforms.

Proposition 7.12

(1) If s = (Sn)nen, is an arbitrary (!) Hamburger moment sequence and |1 € Mj,
then for each n € Ny,

3 n+1 . - Sk _
yenggoo y (I,L(uy) + ; i)t +1) =0, (7.12)

where for fixed n the convergence is uniform on the set M.
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(ii) Let s = (Sy)new, be a real sequence and I(z) a Pick function. If (7.12) is
satisfied (with 1, replaced by I) for all n € Ny, then s is Hamburger moment

sequence and there exists a unique measure (1 € M such that I(z) = 1,(z) for
z € C\R.

Proof
(i) First we rewrite the sum in Eq. (7.12) as

n n

S o =X O [ = L [t au
k1 T k+1 Tyt
= () e R N e
. 1 (_ix)n+1 _yn+1 1 (—ix)"+1 _yn+l
— i = e,
y R —X—=y y R x—=1y

(7.13)

Therefore, since |x —iy|~! < |y|~! forx,y € R, y # 0, we obtain
n+1 . . Sk

I E

y ( w(y) + Z (iy)ct )‘
n+1 iyt __n+1
y (=)™ —y

= ‘ / _dp(x) + / : dp(x)

RX—Iy R X —

1y
_intl
=| [ e
R X

where c,:=s,+1 if n is odd and c,:=s, + s,42 if n is even. Since ¢, does not
depend on the measure i, we conclude that (7.12) holds uniformly on the set
M.

(ii) Condition (7.12) for n = 0 implies that limy .o yZ(iy) = iso. Therefore,
by Theorem A.14, the Pick function Z is the Stieltjes transform /,, of a finite
positive Radon measure ¢ on R and p is uniquely determined. Since u(R) <
o0, Lebesgue’s dominated convergence theorem applies and yields

sm*/W“mmﬂww,
R

so = lim —yZ(iy) = lim —iyl,(iy) = lim / v
y—>00 y—>00 y—>0 Jrp X

P = [ auc.

The main part of the proof is to show that the n-th moment of w exists and
is equal to s, for all n € INg. We proceed by induction on . For n = 0, this was
just proved. Let n € IN and assume that p has the moments sy, . . . , $2,—>. Then,
by the preceding proof of (i), formula (7.13) is valid with n replaced by 2n—2.
We use this formula in the case 2n—2 to derive the second equality below and
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compute

2n
i)+ ( > et Miy))
k=0

2n—2

) 2 — Sk —17
= Sop + iysou—1 + 1 +1y2(y2 'y (i)t +y llu(l)’))
k=0
—ix 2n—1__,2n—1 2n—1
= Sop + 1yS20—1 + i2”+1y2(/ =) . Y dp(x) +/ Y . d,u(x))
R x—iy R X—iy
n—1
= Sop + iySon—1 — yz/ du(x)
R X1y

x2n ‘ x2n—l
= Son —/]R (/v + 1 dp(x) + iy (Szn—l —/R (/v + 1 du(x)) .

By assumption (7.12) the term in the first line converges to zero as y—oo.
Considering the real part and using Lebesgue’s monotone convergence theorem
we get

x2n
. = lim du(x) = | ¥*"du(x) < oo. 7.14
520 = lim, /R w1 A /}R () < oo (7.14)

The imaginary part, hence the imaginary part divided by y, also converges to
zero as'y — 00. Since

|x|2n—1
(x/y)* +

. < |x|2n—l < 1 +x2n

and 14x" is u-integrable by (7.14), the dominated convergence theorem yields

2n—1

X
w1 = i d = 21 (x). 7.15
samr = Hm p(x) /}Rx p(x) (7.15)

By (7.14) and (7.15) the induction proof is complete. |

Let B denote the Pick functions (see Appendix A.2). We identify ¢ € R with the
constant function #; then R becomes a subset of B. Set P := P U {oo}.

The main result in this section is the following theorem of R. Nevanlinna. It
expresses the Stieltjes transforms of representing measures of s by a fractional
transformation of functions from the parameter space ‘3.
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Theorem 7.13 Suppose s is an indeterminate moment sequence. There is a one-to-
one correspondence between functions ¢ € 3 and measures u € My given by

_ 1 _ AR +9¢(@C@ _
@=L =0 T O < @@, s a1

Proof Suppose that © € M;. If v is a von Neumann solution, then by Theorem 7.6
there exists a t € R such that /,,(z) = H,(¢) forallz € C.
Assume that y is not a von Neumann solution and define ¢ (z) := H_ Y(1,(2)).

Let z € C4. Then 1,(z) €K by Proposition 7.10 and hence ¢(z) = H, ' (I,(z)) €
C4 by Lemma 7.11(ii). That is, ¢ (C4) € C. We show that C(z)+1,,(z2)D(z) # 0.
Indeed, otherwise 1,(z) = —C(z)D(z)™' = H,(c0) € 0K, by Lemma 7.11(i)

which contradicts the fact that /,,(z) €K.. Thus, ¢(z) is the quotient of two
holomorphic functions on C4 with nonvanishing denominator function. Therefore,
¢ is holomorphic on C. This proves that ¢ € B. By the definition of ¢ we have
H.(¢(z)) = I,.(z) on C4, that s, (7.16) holds.

Conversely, suppose that ¢ € B. If ¢ = ¢ € R, then by Theorem 7.6 there is a
von Neumann solution p; € M, such that /,,,(z) = H,(f).

Suppose now that ¢ is not in R. Let z € C+ and define Z(z) = H,(¢(z)). Then

¢(z) € C4 and hence Z(z) = H,(¢(2)) EI%ZE C+ by Lemma 7.11 (ii) and (iii).
From Proposition 7.4(v) it follows that B(z) + ¢(z)D(z) # 0. Therefore, 7 is a
holomorphic function on C4+ with values in C, thatis, Z € ‘B.

To prove that Z = I, for some 1 € M, we want to apply Proposition 7.12(ii).
For this we have to check that condition (7.12) is fulfilled. Indeed, by Proposi-
tion 7.12(i), given ¢ > O there exists a Y, > 0 such that

n . - S
it (I,L(ly) + ; (iy)l’zH)

and for all u € M. (Here it is crucial that Y, does not depend on x and that (7.17)
is valid for all measures u € M,!) Fix ay > Y;. Since Z(iy) = H,(¢(iy)) is in the
interior of the Weyl circle Kj, by Lemma 7.11(ii), Z(iy) is a convex combination of
two points from the boundary 0Kj,. By Lemma 7.11(i), all points of 0K, are of the
form I, (iy) for some ¢ € R. Since (7.17) holds for all 7, (iy) and Z(iy) is a convex
combination of values 1, (iy), (7.17) remains valid if /,, (iy) is replaced by Z(iy). This
shows that Z(z) fulfills the assumptions of Proposition 7.12(ii), so that Z = I, for
some measure @ € M.

By Theorem A.13, the positive measure 14 is uniquely determined by the values
of its Stieltjes transform I,,, on C . Therefore, since /,,, and ¢ € P correspond to
each other uniquely by the relation /,,(z) = H,;(¢(z)) on C4, (7.16) gives a one-to-
one correspondence between u € M; and ¢ € L. O

<e¢ forall y>Y, (7.17)

Let us briefly discuss and summarize some of the results obtained so far.
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Theorem 7.13 provides a complete parametrization of the solution set M in the
indeterminate case in terms of the set J3. However, the one-to-one correspondence
¢ < 11y between P and M given by (7.16) is highly nonlinear and very implicit.
From Eq. (7.16) we derive that ¢ (z) is obtained from /,,,(z) by

A(2) + 1, (2)B(2)

P9 =" 00 11, DG

S C+.

The subset R U {oo} of 8 is in one-to-one correspondence to the von Neumann
solutions, or equivalently, to the self-adjoint extensions of 7" on the Hilbert space
H, = >(INy). The nonconstant Pick functions correspond to self-adjoint extension
on a strictly larger Hilbert space (see Theorem 6.1).

Fix z € Cy. The values I, (z) for all von Neumann solutions ;1 € M; fill the
boundary dK; of the Weyl circle, while the numbers /,(z) for all other solutions

o
W € M; lie in the interior K. By taking convex combinations of von Neumann

solutions it follows that each number of I% - is of the form I, (z) for some u € M.

By Theorem 1.19, the solution set M, is compact in the vague topology. For
each indeterminate moment sequence the set M; is “very large". We illustrate this
by stating two results without proofs from [BC1, Theorem 1]:

The subset of measures L € Mg of the form du = f(x)dx for some nonnegative
function f € C*°(R) is dense in M with respect to the vague topology. The set of
measures of finite order (as defined in Sect. 7.7 below) is also dense in M.

All solutions of finite order are extreme points of M (see Exercise 7.9). Hence
M is a convex compact set (in the vague topology) with dense set of extreme
points! Recall from Theorem 1.21 that a measure u € M is an extreme point of
M if and only C[x] is dense in L' (R, 1t).

Remark 7.14 Tt is easily seen that the map ¥ — ¢ := —y ! is a bijection of the
set 3. Inserting this into (7.16) we obtain

_AQ-YETICE) _ ARV - CE)
B(z2) = ¥ (29)7'D(z) B2y (x) —D()’
The fraction on the right-hand side of (7.18) is another equivalent form of

parametrization of solutions which often occurs in the literature (for instance, in
Akhiezer’s book [Ak]). Our convention (7.16) follows [Sim1]. o

1,,(2) = ¥ € P. (7.18)

7.5 Maximal Point Masses

The following theorem and its subsequent corollary contain a remarkable property
of von Neumann solutions concerning maximal point masses.
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Theorem 7.15 Let 1 be a representing measure of the indeterminate moment
sequence s. Suppose that | is not a von Neumann solution. Then, for any x € R
there is a von Neumann solution u, of s such that u,({x}) > u({x}).

The following lemma is used in the proof of Theorem 7.15.

Lemma 7.16 Suppose that ¢ € P and ¢ ¢ R. Let x € R and t € R. If the limit

L(x, 1) := limgs 49 ¢(Hi'£i£)_t exists and is a real number, then L(x,t) > 0.

Proof We use the canonical representation (A.4) of the Pick function

¢(z) =a+ bz + /R lttf dv (1),

where a,b € R, b > 0, and v is a finite positive Radon measure on R. Since L(x, t)
is real by assumption, we derive

L(X, t) = lim ¢(X+ IE) = lim Re ¢(X+ IS) — lim m(,b(x + |8)
eH0 i€ e=>+0 ie £—+0 e

147 147
= 1 b dv(t) | =b dv (1),
1, (4 [ g m ) =0 [ L0

where the last equality holds by Lebesgue’s monotone convergence theorem. The
right-hand side is obviously non-negative. If it were zero, then we would have b = 0
and v = 0, so that ¢ € R, which contradicts the assumption. Thus L(x,7) > 0. O

Proof of Theorem 7.15 First assume that D(x) # 0. Put t = —B(x)D(x)~". Then we
have x € supp i, and p,({x}) > 0 by Theorem 7.7. Therefore the assertion is trivial
if ({x}) = 0, so we can assume that @& ({x}) > 0.

Since A(x)D(x) — B(x)C(x) = 1, we have

D(x)™' = D(x) ' (A(x)D(x) — B(x)C(x)) = A(x) + 1C(x). (7.19)

By Theorem 7.13 there is a unique ¢ € ‘P such that 4 = pg. Since p is not a
von Neumann solution, ¢ ¢ R U {oo}. From the Stieltjes—Perron formula (A.8) and
Eq. (7.16) we obtain

. ) N A(x+ie) + ¢(x +ie)C(x + ie)
i) = al—lﬂlo (—ie)u(x +e) = SBEO ! B(x +ig) + ¢ (x + ie)D(x + ig)
(7.20)

Therefore, since p({x}) > 0, we have lim, 1o |/, (x 4 i¢)| = +o0o and hence
. . _ . —1 .
i, #05+19) = Jim, HeLo s +19)

i A(x+ie) + I, (x +ie)B(x +ie)  B(x) _
eot0 | Cr+ie) + L(x+ie)D(x+ie) | DE)
(7.21)
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Now we compute the limits of the numerator and denominator of the fraction
in the right-hand side of Eq.(7.20), where the factor ie is included into the
denominator. By (7.19) and (7.21) we obtain for the numerator

Enlo (A(x +ie) + ¢ (x +ie) C(x + ie)) = A(x) + tC(x) = D(x) . (7.22)

For the denominator we derive

. B(x+ig) + ¢(x+ie)D(x + ie)
lim ]
e—~>+0 1€
_ lim B(x +ie) — B(x) + t{(D(x + ie) — D(x)) 4+ D(x + ie)(¢(x + ie) — 1)
e—>+0 ie
¢(x+ig) —1t

. (7.23)
ie

= B'(x) + tD' (x) + D(x) liril0

By (7.22), the limit of the numerator in the right-hand side of (7.20) exists and is
real. Therefore, since p({x}) > 0, the limit of the denominator exists as well. Since
D(x) # 0, it follows from (7.23) that the limit L(x, 1) := limy—po @797 exists.

ie

Since the limits in (7.20) and (7.22) are real, L(x, ) is real. Hence L(x,1) > 0 by
Lemma 7.16. Inserting the numerator and denominator limits into (7.20) we get

1

px}) = D(x)(B'(x) + tD'(x)) + D(x)2L(x, 1)

(7.24)

On the other hand, we compute the mass u,({x}) by applying again formula
(7.20) with u replaced by w, and ¢ by t. Then, by (7.19), we obtain

A(x +ig) + tC(x + ig)

B(x +ie) + tD(x + ig)
. ie

= A +1CE) lim b ey - B(x) + t(D(x + ig) — D(x))

A +1C(x) 1

B +1D'(x)  DE)(B(x) + D)

ui(lx}) = lim - (—ie)ly, (x +ie) = lim i

(7.25)

Recall that D(x) # 0 and L(x,t) > 0. Therefore, comparing (7.24) and (7.25) it
follows that p,({x}) > p({x}). This proves the assertion in the case when D(x) # 0.

If D(x) = 0, then B(x) # 0 and the same proof goes through verbatim by using
the second parametrization (7.18) of solutions. O

The following corollary combines some assertions of Theorems 7.7 and 7.15.

Corollary 7.17 Let s be an indeterminate Hamburger moment sequence. For each
x € R there exists a unique von Neumann solution W, of s such that u,({x}) > 0.
For any solution . # [, of the moment problem for s we have u({x}) < u.({x}).
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Proof The existence assertion on y, is contained in Theorem 7.7. Let u # W,

be another solution. If w is a von Neumann solution, then u({x}) = 0 by
Theorem 7.7(ii). If w is not a von Neumann solution, then u({x}) < wu,({x}) by
Theorem 7.15. O

Corollary 7.18 Let u = Y oo, m8y, be an N-extremal solution of an indetermi-
nate moment sequence, where all m; > 0 and the points x; € R are pairwise
distinct. Then, the measure [iy := L —mySy, is determinate for k € IN. In particular,
W is the sum of the two determinate measures i and my0y,.

Proof Assume to the contrary that p; is indeterminate. By Corollary 7.17, there is
a von Neumann solution v of the moment sequence of ;. such that vi({x;}) > 0.
Clearly, v := v + m0y, has the same moment sequence as p and v({xx}) > my =
1w ({xx}). This is impossible by the last assertion of Corollary 7.17. O

Remark 7.19 Retain the assumptions of Corollary 7.18 and assume (upon trans-
lation) that x; = 0. Then s,(u) = [x"dpu = [x"du; = su(u1) for n €
IN. Thus, except for the first moment, the indeterminate measure p and the
determinate measure (1| have the same moments and so the same growth of moment
sequences! That is, there is no characterization of determinacy by growth conditions
of the moment sequence. The determinate moment sequence of | cannot satisfy
Carleman’s condition (4.2), since otherwise ; would be determinate by Carleman’s
theorem 4.3. o

For an indeterminate moment sequence s we define a function

00 -1
P = Ipl? = (L neF) . zec
n=0

This function plays an important role in the study of the moment problem for s.

By Definition 7.9, p, = |z — z|~!p°(z) is the radius of the Weyl circle K, for
z € C\R. By Corollary 7.17 and Theorem 7.7(iii), for x € R the number p*(x)
is the maximal mass of the one point set {x} among all solutions of the moment
problem for s. This maximum is attained at a unique solution: the von Neumann
solution j, for which x € supp j,, thatis, t = —B(x)D(x) "' if D(x) # 0 and t = 00
if D(x) = 0.

7.6 Nevanlinna-Pick Interpolation
Recall that each Pick function @ € ‘3 has a representation

t—z 142

@(z)=a+bz+/

R

( ! ! )dv(t), Ze C\R, (7.26)

where a,b € R, b > 0, and v is a positive measure such that f(l +2)7ldv(f) < o0.



7.6 Nevanlinna—Pick Interpolation 161

Given a function n : Z — C defined on a subset Z of the upper half-plane
C+ = {z € C: 3z > 0}, the Nevanlinna—Pick interpolation problem asks:

When does there exist a function @ € B such that ®(z) = n(z) forall z € Z?
As in the case of moment problems, some appropriate positivity condition is
necessary and sufficient for the existence of a solution.

Theorem 7.20 Let Z be a subset of C+ and n : Z — C+ a function on Z. There
exists a Pick function @ such that ®(z) = n(z) for all z € Z if and only if for each

finite set Z of pairwise distinct elements zy, . . .,z, € Z the matrix
K(Z) = (U(Zi) —n(z) ) (7.27)
=% ij=0

is positive semidefinite. If the set Z is finite, @ can be chosen rational.

Proof Assume first that there is a function @ € 8 such that @(z) = n(z) forz € Z.
Then using the canonical representation (7.26) we derive

) _ @06y, [ B .
% — 3 zi—7% R (x—2)(x —z)
Hence for &, ..., &, € C we obtain
L@ -G ] / S
2 oy =D ;g + ) ;X_Zi dv(x) =0, (729

which proves that the matrix /C(Z) is positive semidefinite.

Now we prove the converse implication. Upon a linear transformation z — az+b
and a shift n — n — c with real a, b, ¢ we can assume thati € Z and 9in(i) = 0. For
z € C\R, let ¢, denote the function

1
0.(x) = +XZ, x € R.

X—2Z

Next we verify that the functions {¢, : z € C\R,z # —i} are linearly
independent over C. Indeed, suppose that Ay, +Z]I.‘=1 Ay = 0, wherezy, ...,z €
C\R are distinct, z; # —i,i, and A; € C. Note that ¢;(x) = i for x € R. Then we
obtain

k k
le(l + ij)(x - Zj)_l + ZAij +Ai=0, xeR.
j=1 j=1

Since z; # —i,iand hence 1 — zj2 # 0 for j # 0, the preceding equality implies that
Aj=0forj=1,..., kandhence also A = 0.
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Since limy 400 ¢.(X) = 2z, @, is a continuous function on the one point
compactification R = R U {oo} of R by setting ¢(co) = z. Let E be the set of
functions

f(-x) = iloﬁl)i + Z (Aj(pzj’ + Aj(;ozj')s (730)

j=1

where g € R,A1,...,4, € Cand z1,...,z, € Z\i are distinct. Since ¢, = ¢,
each function f is real-valued and E is a real subspace C(R;R). Since Z < Cy,
it follows from the linear independence of the functions ¢, shown above that the
numbers A; in (7.30) are uniquely determined by f. Hence there is a well-defined ()
linear functional L : E — IR defined by

L(f) = Aoin() + D (An(z) + Ain(z) ). (7.31)

j=1

Note that 1 (i) is defined, because i € Z, and in(i) is real, since N n(i) = 0. Further,
since 7(i) € C4, the constant function g(x) := —in(i) = In(i) > 0isin E.

Let L¢ : E¢c — C be the extension of L to a linear functional on the complex
vector space E¢ = E + iE. Clearly, ¢, ¢, € E¢ for z € Z and (7.31) implies that

Le(e,) = n(z) and Le(p,) = n(z) for z € Z. (7.32)

The crucial step of this proof is to show that L(f) > 0 for f € E. This is where
the positivity assumption comes in. Suppose that the function f from (7.30) is in
E. Recall that ¢; = i. Hence we can write f as

f@) ==z =z p()

for some polynomial p. Since f(x) > 0 on R, p(x) > 0 on R. Therefore, by
Proposition 3.1, p = ¢% + g3 for q1,q> € R[x]. Setting ¢ := g1 + ig» € C[x],
we have p(x) = g(x)g(x). Put

h(x) = (x=2z1) 7 . (= 2) 7 ().

Since f is bounded on R, deg(p) < 2n, so that deg(q) < n. Therefore, since the
numbers z; are distinct, A(x) is a linear combination of some constant and partial
fractions (x — z;)~'. Setting zp = i and using that (x — z)) ™' = (zj — i)_l(;__;j -1
forj =1,...,k, it follows that 4(x) can be written as

n

hoy =Y g (1.33)

-z
=0 YT Y
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with £ € C. Then, inserting the corresponding functions, we compute

. x2 . Zi — ¥z
1+ b, = Z @z (xX) — ¢ (x)

= |h(0))* = £ 7.34
=IO =2, (o S= L g BE O3

Therefore, by (7.32),
Lp =ten =3 " 1@ ge 135)

=0 4T
Since the matrix /C(Z2) is positive semidefinite by (7.27), L(f) > 0 by (7.35).

Thus L and E satisfy the assumptions of Proposition 1.9, so there exists a (finite)
measure v € M4 (R) such that L(f) = ffdf) for f € E. Define v(M) = v(M) for
a Borel subset M of R and b = 7({oo}). Then v is a finite measure of M4 (R) and

L(f) = bf (c0) + /]Rf(x) dv(x), fe€E. (7.36)
Clearly, (7.36) extends to L¢(f) and f € E¢. By (7.32), Le¢(¢;) = n(z) and hence
1) = Le(g:) = bz + / PR ), for ze 2, (7.37)
R X—Z

The right-hand side of (7.37) defines a function @ € ‘3. This completes the proof
of the converse implication.

If the set Z is finite, the vector space E is finite-dimensional. Then Proposi-
tion 1.26 applies instead of Proposition 1.9 and yields a finitely atomic measure v.
Then (7.37) gives a rational function @ € ‘B. O

Corollary 7.21 Let zp,...,2, € Cy+ be pairwise distinct and wy, ..., w, € Ci.
There exists a function @ € P such that @(z;) = wj forj = 0,...,n if and only if
the matrix

Wi — Wj

K= (Kii):'l,':o’ where K; = iz (7.38)
i %

is positive semidefinite. In this case the function @ can be chosen rational.

Proof We apply Theorem 7.20 with Z = {zp,...,z,} and n(z) = w;, j =
0,...,n. Then the necessity of the positive semidefiniteness of K is stated in
Theorem 7.20 and its sufficiency follows from the preceding proof. Indeed, by the
definition of Z all functions f of E are of the form (7.30), so by the above proof it
suffices that the single matrix /C is positive semidefinite. O
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_ p@@

The degree of a rational function ¢(z) = o)

zero, is defined by

where p, g € C[z] have no common

deg(¢) := max(deg(p), deg(q)). (7.39)

Theorem 7.22 Let zy,...,z, € C4 be pairwise distinct and wy, ...,w, € Ci.
Suppose that there exists a @ € B such that @(z;) = w; forj = 0,...,n. Then the
following are equivalent:

(i) The matrix (7.38) has the eigenvalue 0.
(i) @ is real rational function with degree at most n.
(iii) The interpolating function @ € P is uniquely determined.

Proof For &, ..., &, € C we compute (see (7.29))

. O(z) — @ 2
ZKL'/ 68 = Z (zi) — (z,) tE = b ().

ij=0 ij=0 &~

=0~
(7.40)

(1)—(ii) Let (&, ..., &,) be an eigenvector of K for the eigenvalue 0. Then the
expression in (7.40) is zero. Set p(x) = ]_[7 o(x — z;). Then there is a polynomial

q(X)

g of degree at most n such that > . = . Since (7.40) vanishes, we

i=0 x—z;
obtain [ |q(")| dv(x) = 0. Therefore, v is supported on the zero set Z(gq) by
Proposition 1.23. This has at most n points. If b # 0, we have in addition
Yo & = 0 by (7.40). This implies that deg(q) < n — 1, so that v is supported
at at most n — 1 points. In both cases b = 0 and b # 0 it follows from the canonical
representation (7.26) that @ is a real rational function of degree at most .

(i1))—(i) Suppose that @ is rational and deg(®) < n. Since @ is holomorphic
outside the support of v, it follows at once from (7.26) that v is supported at k points
X1,..., X, wherek <nifb=0andk <n—1ifb # 0. Putm = kif b = 0 and
m =k + 1if b # 0. In either case m < n. For § = (&,...,&,) € C"! we define
h(E) = (@), ... hn(€)) € C", where

hy(®) = Z 5otk

o X -z

and h,(§) = Y& if b # 0. Since m < n, the mapping i : C"*' — C™ has a
nontrivial kernel. If & # 0 is in this kernel, then Y~} K;&&; = 0 by (7.40). Since
the matrix (7.38) is positive semidefinite by Corollary 7.21, we conclude that £ is an
eigenvector for the eigenvalue 0.

(i)—(iii) Let @ be a solution of the interpolation problem. Then @ is a real
rational function of degree at most n by (i)—(ii). Since & is real on R, we have

@ (z) = @(2) for z € C\R by Schwarz’ reflection principle. Hence qS(Zj) = wj and
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@(zj) = w;forj = 0,...,n. Hence @ is uniquely determined, because a rational
function of degree at most n is determined by 2n + 1 distinct points. (Indeed, if
Zi (vy) = Zi (vy) for distinct vy ... . , Va1, then g1 (v;)p2(v;)—g2(v;)p1(v;) = 0. Since
deg(q1p> — q2p1) < 2n, this implies g;p> — gop1 = 0, so that Zi = qi )

(iii))— (i) Assume to the contrary that O is not an eigenvalue of the matrix (7.38).
We use the setup of the proof of Theorem 7.20. Let E € C(R; R) be the real vector
space of functions (7.30) with n fixed. Suppose that f € E; and L(f) = 0. Since
0 is not an eigenvalue, the matrix (7.38) is positive definite. Therefore, by (7.35),
L(f) = 0 implies that all numbers &; in (7.33) are zero, so that # = 0 and hence
f = 0. Thus, L is strictly E-positive. Hence, by Theorem 1.30(ii), L has different
representing measures v and these measures give different interpolating functions @
by the right-hand side of (7.37). This contradicts (iii) and completes the proof. O

There is an alternative proof of the last implication (iii)—(i). One can replace
Theorem 1.30(ii) by Theorem 9.7 (proved in Sect.9.1 below) on the truncated
moment problem. Let us sketch the necessary modifications. First we note that
dim E = 2n+1. (To see this it suffices to recall that the complex space E¢ is spanned
by the linearly independent functions 1, @zis Pz j = 1,...,n, so it has dimension
2n+1.) For each f € E there exists a unique polynomial p; € R[x]», such that

f@) = |x—z|7 .. x — 2| Ppr(x).

Since dim R[x]», = dimE = 2n+1, the map f + py is a linear bijection of E onto
R[x]2,. Hence there exists a linear functional on R[x],, defined by L( prr) = L(f),
f € E.Letq € R[x],, g # 0. Then ¢*> = py for some f € E. Since g # 0, we have
f # 0andf € E4, so that L(f) > 0 as shown in the preceding proof of (iii)—(i).
Thus, L(¢%) = L( pr) = L(f) > 0. Therefore, by Theorem 9.7, there exists a one-
parameter family p, of finitely atomic representing measures for the functional L.
Hence, setting dv; = |x — z1|*. .. |x — z,|>d;, we obtain a one-parameter family of
representing measures for L and so of interpolating functions @ by (7.37).

7.7 Solutions of Finite Order

Throughout this section we assume that p is a measure in My (R). This means
that all moments of p are finite. Let s denote its moment sequence. Recall from
Proposition 6.2 that the canonical Hilbert space H, is a closed subspace of L*(R, ().

Definition 7.23 For a measure yt € M4 (RR) the order of p is defined by
ord(p) = dim (L*(R, p) © H,y). (7.41)

Here dim means the cardinality of an orthonormal basis of the Hilbert space.
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Comparing Definitions 6.4 and 7.23 we see that the von Neumann solutions are
precisely the solutions of order 0. Thus, u € M4 (R) has order O if and only if
either its moment sequence is determinate (by Theorem 6.10) or it is an N-extremal
solution (Definition 7.8) of an indeterminate moment sequence. Therefore, for each
measure of nonzero order the corresponding moment sequence is indeterminate.

Measures of finite order are, after N-extremal measures, the simplest solutions of
indeterminate moment problems. In this section we derive a number of characteri-
zations of such measures.

We begin with some preliminaries. A crucial role is played by the functions

1
f(x) = , where ze€C\R, xe€R.
xX—z

For ny,...,n, € Ny and pairwise distinct z1,...,zx € C\RR we define a closed
linear subspace of L?(R, ) by

H@iozing,.om) i=He+Lin{f] cj=1....n0l=1,... k. (742

(If n; = 0 for some [, the corresponding term in (7.42) will be set zero.) Further, we
shall use the bounded operator V(z, w) of L?(IR, i) with bounded inverse defined by

V(z,w) = (A, —2) (A, — wh™ ' =T+ (w-— (A — wh™!, zowe C\R,

where A, is the multiplication operator by the variable x on L*(R, 1), see (6.2).
Lemma 7.24

(i) A, —z2)'"H, S Hy+ C-f. forz € C\R.
(i) fofm e Lin{fl.f] :j=1,... .k I=1,...,m} forz,w € C\R,z # w,k,n € IN.

(iii) Suppose that 7, ...,z € C\R are pairwise distinct and ny, . ..,n; € Wy. If
+1
fg’ eH(zi, .. kN1, .5 HE), thenfzﬁe?l(zl, ey Tk N, ... ) fork € IN.

Proof

(i) Letp € C[x]. Then ¢.(x) := " (x)):z’ © is a polynomial in x and

(A =2D)7'P)0) = (=27 'px) = +p@)x—2)"

= q.(x) + pR)fu(x) e Hs + C-f..

p(x) —p(2)
X—2Z

Thus (A, —zI) "' C[x] € H,+ C-f;. Since H,+ C-f; is closed in L*(R, 1), C[x]
is dense in H, and (A, — zI)™! is bounded, it follows that (A, — zI)~'H, C
Hs+C-f..

(i1) The assertion follows by induction on j 4 [ easily from the identity

A= = D)@ —w)™ jileN.
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(iii) For notational simplicity letj = 1 and write z = z;,n = ny.
First let n > 1. By the assumption we can write {1 = Y"1_ yf! + g,
where y; € Cand g € H(z,... 22, ..., ng). Applying (A, — zI)~" we
obtain

n

="y Ay -2 (7.43)
=1

From (i) and (ii) it follows that (A, — D) g e H(z 2o, ..z Lona, oo ).

Since "' € H(z....,zn,...,m) by assumption, Y, yfit! €
H(z,...,z;0,...,n). Thus, if n > 1, both summands in (7.43) are in
H(z,....z:n,...,n) and so is f72,

Let n = 0. Then f, € H(z,...,z;n2,...,n) by assumption, so by (i)
and (ii),

fz2 eC-fi+H(z....zn, ... ) SH(Z 22, ..., 230,10, ... ).

This completes the proof of the assertion for k = n + 1. Proceeding in a

similar manner by induction it follows that fzk € H(z,...,z;n, ..., n) for all
k € IN. O
Lemma 7.25 Let w,z1,...,z € C\R be pairwise distinct and ny, ...,n; € INy.

Then, forl =1, ...,k we have

@) V@awH@,....zgon,...om+ 1,000 ,m) =H(z, .oz, wing, .. i, 1),

() Vw,z2)H(@1, - zowing, .o, 1) = H(ze, oz n, .. om+ 1,000 ).

Proof From Lemma 7.24(ii) we conclude that V(w,z) and V(z;,w) map the
corresponding subspaces info the spaces on the right. Therefore, the composition
I = V(z,w)V(w,z) maps H(z1,...,2 W;n1,...,n, 1) into, hence onto, itself.
This implies that we have equality in (ii) and similarly in (i). O

Proposition 7.26 Suppose u € M (R) and ord(u) = n € IN. Let z1,...,2 €
C\R be pairwise distinct and ny, . .. ,n, € N such thatn = ny + - - - + ng.. Then

L*(R.p) =He+Lin{f] :j=1,....n.0=1,...k}.

Proof Let A = Lin{f* : z € C\R,k € IN}. By Lemma 7.24(ii), A is closed
under multiplication, so A is a *-subalgebra of the C*-algebra Cy(IR) of continuous
functions on R vanishing at infinity. Obviously, A separates the points of R.
Hence, by the Stone—Weierstrass theorem [Cw, Corollary 8.3], A is norm dense
in Co(RR). Since the measure  is finite, this implies that A is dense in L*(R, ).
Since ord(i) = n, there exists a finite-dimensional subspace B of A such that
L*(R, u) = H, + B. The latter implies that L2(R, u) = H, + A.
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Let {v,...,v,} be a maximal subset of C\R such that F; := {f,,,....f,,} is
linearly independent modulo H,, where maximality means that f, € H; + Lin F}
for any v € C\R distinct from all v;. It is clear that such a set always exists, since
ord() = n and LZ(IR, ) = Hy + A. Further, there exist numbers m, ..., m, € IN
suchthat F = {f, :j=1,...,m,l = 1,...,r} is a maximal set which is linearly
independent modulo . Here the maximality means that f'" *1 € H; + LinF for
alll =1,...,r. Then, it follows from the definition (7.42) that

G:=HWi,...,vsmy,...,m) =H;+ LinF.

If z € C\R, z # v for all j, then f; € G and hence fzk € Gforall k € IN
by Lemma 7.24(iii). Likewise, f;;' ' € ¢ implies f¢ € G for k € N, again by
Lemma 7.24¢(iii). This proves that A € G. Since L*>(R, ) = H, + A as shown in

the preceding paragraph, we get L>(R, t) = G. Because F is linearly independent
modulo H;,

n = ord(u) = dim L*(R, u)/H; = dimLin F = m; + --- + m,.
Thus, by the preceding we have shown that
PR.p) =H1,....vimy,..om) =Ho+Lin{fl cj=1,...om,l=1...r}

This equality is of the required form except for the fact that we have to take our
given functions f;, and numbers n; instead of f,, and my, respectively. To remedy this
we now use Lemma 7.25.

First let us choose wy,...,w, € C\R such that both wy,...,w,,vy...,v, and
Wi, .. sWn, 21, ..., 2 are pairwise distinct. Then, by Lemma 7.25(i), we can find
a products of operators V(v;, w;) that maps L*(R, W) = Hy,...,v;my,...,m)
onto H(wy,...,wy; 1,..., 1). Further, by Lemma 7.25(ii), there is a product of oper-
ators V(w;, zj) which maps H(wi,...,wy;1,...,1) onto H(z1, ...,z 01, ..., m).
Since all operators V(v;, w;) and V(w;, z;) are isomorphisms of L?(IR, i), we obtain

PR, p) =H@r. .. zinn, ... m) = He + Lin{f s j=1,....n,0=1,... .k}. O

Proposition 7.26 says that {fg} cj = 1,....,m1 = 1,...,k} forms a
basis of the quotient space L*(R, u)/H, if ord(u) = nj+...+n; € IN and
Z1,...,2 € C\R are pairwise distinct. This is a crucial step for the following
theorem, which characterizes measures of finite order in terms of density and
determinacy conditions.

Theorem 7.27 Suppose that p € Mi(R). Let z1,...,z € C\R be pairwise
distinct numbers and z € C\R. Let ny,...,n; € N and setn = ny + --- + n.
Define measures i, and (41 of M+ (RR) by

k

dpn(x) = [Tl =2 ™"dp (o), dprr(x) = |x — 2| 2dpa().
=1
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Then the following statements are equivalent:

(1) ord(u) <n.
(i) PR, p) = H, +Lin{fJ :j=1,....m,1=1,... k}.
(iii) C[x] is dense in L*(R., i,).

(iv) Wn+1 is determinate.

Proof In this proof we abbreviate 7 = Lin{ g] j=1,...n,0=1,...k}.

(i)—>(ii) Assume that m := ord(u) < n.If m = 0, then L*(R, ) = H, and
the assertion trivially holds. Now let m € IN. We choose natural numbers i < k and
m;j < n;forj = 1,...,isuch that m = my + --- + m;. Then, by Proposition 7.26,
L*(R, ) = H, + Lin{ Zj[ 2j=1,....m,1 =1,...,i}. By adding further powers
fzj, if m < n this obviously implies L*>(R, ) = H, + F, which proves (ii).

(i1))—(i) is trivial, since dim F < ny + -+ 4+ ny = n.

(ii)<>(iii) From the definition of the measure u, we see that the mapping U
defined by (Uf)(x) = ]_[f=1(x — 7))"f(x) is a unitary operator of L*>(RR, i) onto
L*(R, 1t,). Decomposition into partial fractions yields an identity

k k n; )
Z]J(x —) =Y > « fl’mj : (7.44)

=1 j=1

where a; € C. Equation (7.44) implies that U maps C[x] + F into C[x]. From
Lemma 7.24(ii) it follows that U maps C[x] + F onto Cl[x]. Since Cl[x] is dense
in H,, (ii) is equivalent to the density of C[x] + F in L*(RR, ). Hence C[x] + F
is dense in L*>(R, u) if and only if U(C[x] + F) = C[x] is in L*(R, p,). Thus,
(ii)<>(iii).

(iii)<>(iv) By Theorem 6.13, C[x] is dense in L?*(R, u,) if and only if the
function f, = (x—z)~! is in the closure of C[x] in L?(R. ,). From Corollary 6.12
(or from Exercise 6.1) it follows that 1,4 is determinate if and only if 1 is in the
closure of (x — z)C[x] in L*>(RR., j,+1). But both conditions are equivalent, since

[ = 9™ — () Pelpin() = [ 11— (= P — 2 ~djan(x)
- [ 1= (= Dp@ g () for p e Cl]. o

Since statement (i) of Theorem 7.27 does not depend on the choice of z;, n;, this
holds for the assertions (ii)—(iv) as well. We elaborate on this in some corollaries.

Corollary 7.28 Let n € M4 (R), w; € C\R for j € IN. Define i € M (R) by

k

dpe:=[Jlx—w|dp. keN, po:=p. (7.45)
j=1
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Then the following statements are equivalent:

(i) ord(w) is finite.
(ii) There exists ak € IN such that C[x] is dense in L*(R, ux) for some, equivalently
for arbitrary, numbers wy, ..., w; € C\R.
(iii) There exists an m € N such that wu,, is determinate for some, equivalently for
arbitrary, numbers wy, ..., w, € C\R.

Further, ord(u) < k if (ii) holds and ord(u) < m — 1 if (iii) is satisfied.

Proof Let wy,...,w, € C\R be arbitrary. We denote by zj, ...,z the pairwise
distinct ones among them and by n; the multiplicity of w; in the sequence
{wi,...,wn}. Then we are in the setup of Theorem 7.27 and the equivalence of
statements (i), (iii), (iv) therein yields the assertions. |

The next corollary follows at once from the last statement in Corollary 7.28.

Corollary 7.29 Retain the assumptions and the notation of Corollary 7.28, that is,
w;j € C\R are arbitrary, and i is defined by (7.45). Let n € IN. Then:

(i) ord(u) = n if and only if C[x] is dense in L*(i1,,), but not in L*(t,—1).
(ii) ord(w) = n if and only if [+ is determinate, but W, is not determinate.

Corollary 7.30 For a measure u € ML (R) the following are equivalent:

(i) ord(w) is finite.
(i) L*(R, ) = Hy + Lin{fy,, ... .fu,} for some n € N and some, equivalently
for arbitrary, pairwise distinct numbers wy, ..., w, € C\R.
(iii) L*(R,p) = H, + Lin{f,.f2,....f"} for some n € N and some, equivalently
for arbitrary, w € C\R.

Proof We regroup {wj,...,w,} as in the proof of Corollary 7.28 and apply
Theorem 7.27 (i)<>(ii). ]

Corollary 7.31 If u € M4 (R) has order n € N, then the support of | is a discrete
unbounded set.

Proof We retain the notation (7.45). By Corollary 7.29 (i) and (ii), C[x] is dense
in L*(R, u,) and p,, is not determinate. Thus 4, is a von Neumann solution of an
indeterminate moment problem. Hence the support of ,, is discrete and unbounded
by Theorem 7.7. Since diu = ]_[j'.’=1 |x — w;|2d (%), so is the support of u. O

The next proposition relates measures of finite order to moment problems with
constraints on their Stieltjes transforms.
Letzi,...,z, € C4 be pairwise distinct and wy, ..., w, € C+. We abbreviate
2 2
r@) = lx—zl" =zl
For p € Cl[x] there is a decomposition of the rational function ’r’ as a sum of partial
fractions
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px) Ajp
oy = WO Z ( + Z]) (7.46)

xX—3z

where a;, b;, € C and g, € C[x]. The constants a; , b; , and the polynomial g, are
uniquely determined by p and z; . .., z,. Note that a;, = b;, and g, = g,.
For a linear functional L on C[x], we define a linear functional on C[x] by

AL) ..oz (P) = L(gp) + Y _(@jpwj + bjpw)). k € No. (7.47)
Jj=1

Because of (7.46) the functional L and the numbers w; can be recovered from the
functional A(L)(,....z.;w1.....w,) DY the formulas

L(p(x)) = A(L)(zl SZW] e wn)(p(x)r(x))7 (7.48)
= A(L) (..o ooy (1) (X — Z]) l) (7.49)

(The latter expression is well-defined, since r(x)(x — z;)~! is a polynomial.)

Proposition 7.32 Suppose that s is a moment sequence. Let 7,,...,z, € Cy be
pairwise distinct and wy, ...,w, € C4. There is a bijection between all solutions
W € M satisfying 1,(z;) = wj for j = 1,...,n and solutions w, € Mz where
5 = Gen, and 5 = ALy, comrom 05, k € No, is defined by (7.47) for
p = x*. (Note that both sets of solutions may be empty.) This bijection is given by

dp < dp, =[] 1x =g dp = r(x)dp. (7.50)
j=1

Proof First, let u € M, be such that I,,(z;)) = w;forj = 1,...,n. Let k € INo.
Then, using (7.50), (7.46), and finally (7.47), we derive

[ #dio = [

N / 4 (AP + 3 (“/,xk / iﬂ(x) + b / iﬂ(x?)
j=1

-z

that is, u, € M;.
Now suppose that u,, € Ms. Using the formulas (7.48) and (7.49) we obtain
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- / )0 —2) " dpn() = / (= 5) " du() = ,(3)

fork€e Noandj=1,...,n Thus, u € Myandl,(z)) =w;,j=1,...,n. O

The next theorem states that solutions of finite order are precisely those
corresponding to rational functions @ € P in the Nevanlinna parametrization of
Theorem 7.13. In the proof we use Theorem 7.22 on Nevanlinna—Pick interpolation.

Theorem 7.33 Suppose that s is an indeterminate Hamburger moment sequence. A
representing measure [Lp € M (given by (7.16) with @ € B) has a finite order if
and only if @ is a rational function. In this case, ord(jLep) = deg(®), where deg(P)
is defined by (7.39).

Proof We fix z1, ..., 2,41 € C4 pairwise distinct and abbreviate 4 := pg.
As in Theorem 7.27 and Proposition 7.32 we define u,+1 € M4 (R) by

n+1
dptnir1(0) = [ lx— 5 2dp(x).

Jj=1

Then v; := 1,(z;) and w; := H;l(vj) arein Cq forj=1,...,n+ 1. By (7.16) we
have H;(P(z)) = I,(z)) = v;j and hence @(z;) = H;l(vj) = wj. Thatis, @ is a
solution of the Nevanlinna—Pick interpolation problem

W) =wi.j=1,....n+1, for ¥ePp (7.51)

Suppose p has order n € IN. Let D e B be another solution of the interpolation
problem (7.51). Then i := pugz € M, (by Theorem 7.13) and @(zj) = wj, S0
that v; = H,(w;) = H,(®(z)) = I;(z) by (7.16) forj = 1,...,n + 1. Hence,
by Proposition 7.32, (fi),+1 and p,+; have the same moment sequence. But, since
ord (1) = n, the measure (i, is determinate by Corollary 7.29(ii). Therefore,
(fL)n+1 = Hn+1 Which in turn implies that g = ji = 0 = pe and hence =0
by Theorem 7.13. This shows that the interpolation problem (7.51) has a unique
solution. It follows from Theorem 7.22 (iii)—(ii) that @ is rational and deg(®) < n.

Now suppose that @ is rational and deg(®) < n. We proceed as in the preceding
paragraph but in reverse order. Let v be a solution of the moment problem for ;1
and define v € M (R) by dv = ]_[;:11 |x — zj|?dv. Then (9),4+1 = v. From
Proposition 7.32, applied in the converse direction, it follows that I5(zj) = 1,,(zj) =
vi,j =1,....,n4+ 1, and ¥ € M,. Therefore, V = ug for some d € B by
Theorem 7.13. Then we have v; = I5(zj) = sz(<15 (zj)) by (7.16), so that qS(Zj) =
HZ !(v;) = w;. Hence & solves the interpolation problem (7.51) as well. Since & is
rational and deg(®) < n, the interpolation problem (7.51) has a unique solution by
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Theorem 7.22 (ii)—(iii). Thus, & = & which implies ¥ = p and hence v = ;4.
This proves that i, is determinate. Therefore, ord(i) < n by Corollary 7.27.

In the paragraph before last it was shown that ord(ie) = n implies deg(®) < n.
If we had deg(®) < n—1, then ord(ug) < n— 1 by the preceding paragraph, which
is a contradiction. Thus we have proved that ord(ugs) = deg(®). O

7.8 Exercises

In this section, we assume that s is an indeterminate Hamburger moment
sequence.

1. Let M be a compact subset of C. Then ¢y := sup,ey, (Yoo, [Pa(2)[H)? < o0
by Lemma 7.1. Show that |p(z)| < cu||p|ls forp € C[x] and z € M.
2. Let zj,22,23,24 € C. Prove the following identities:
A(z1,22)D(z3,24) — B(z3,22)C(21, 24) + B(z3,21)C(22,24) = O,
A(z1,22)C(z3, 24) + A(z3,21)C(z2, 24) + A(22,23)C(z1,24) = 0,
D(z1,22)B(23,24) + D(23,21)B(22,24) + D(22,23)B(z1,24) = 0.
Hint: Verify the corresponding identities for Ag, B, Ci, Dx. Use Lemma 5.24.
3. Letz,w € C. Show that
A(z,w) = A(z)C(w) — C(2)A(w), B(z,w) = A(2)D(w) — C(2)B(w),
C(z,w) = B(z)C(w) — D(2)A(w), D(z,w) = B(z)D(w) — D(z)B(w).
4. (Reproducing kernel) Recall that py, k € Ny, are the orthonormal polynomi-
als.

a. Show that the series

K@zw) =) p@pw), (@w) e €,

k=0

converges uniformly on compact subsets of C? to a holomorphic function K,
called the reproducing kernel for s, such that D(z, w) = (z — w)K(z, w).
b. Show that for each representing measure i € M, and polynomial f € C[x],

/R KGf0du() =f@). zeC.

c. Show that the preceding equality remains valid for each holomorphic
function f(z) = Y oo, cxpi(z), where (c,) € 2(INp).
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Prove that the fractional linear transformation H. ,, defined by (7.10) maps

a. 0K, onto 0K, if Im z # 0 and Im w # O,
b. 0K, onto R if Imz = 0 and Im w # 0,
c. Ronto dK; if Imz # 0 and Imw = 0,
d. RontoR if Imz=Imw =0.

Let H_,, be the transformation defined by (7.10) and H, := H_. Prove that
HZ,WHW.U = HZ,U’ H(Z’ Z) =1, (Hz,w)_l = Hw,za Hz.w = Hz(Hw)_la z,w,v e C.
Hint: Use (7.4) and (7.3).

Show that for each n € IN there is a continuum of measures u € M, of order
n

. Suppose that u € M, has order n € IN. Let p € R[x] and define v € M4 (R)

by dv = (1 + p(x)?>)~'du. What is the order of v?

Show that each measure in M of finite order is an extreme point of the set M.
Hint: Use Proposition 1.21 and (for instance) Theorem 7.27 (iii).

Consider the Nevanlinna—Pick interpolation problem in Theorem 7.22 and
sharpen the equivalence of (i) and (ii) therein: Show that O is an eigenvalue
of multiplicity & if and only if the rational function @ has degree n + 1 — k.
Let ® = Z € B, where p, ¢ € R[x] have no common zeros. Suppose that the
support of the measure v in the representation (7.26) consists of n points.

a. Show that deg(®) = n and discuss the possible degrees of p and g.
b. Express the polynomials p and ¢ in terms of atoms and masses of v and of
the constant b in (7.26).

Collect characterizations of N-extremal solutions among all solutions (dense-
ness of C[x] in L?(RR, 1), orthonormal basis {p; : k € INo} of L*(RR, 1), values
of the Stieltjes transform /,,(z) for z € C, Nevanlinna parametrization, order).
Letu = Z,fil my 8y, be an N-extremal solution of s, with my > 0 and x; € R
pairwise distinct. (Proofs of the following results can be found in [BC1].)

a. Show that the measure v := p — Y, _, my8,, is determinate for each r € IN.

b. Let my > 0 and xp € R. Suppose that xy # x; for all k& € IN. Show
that the measure v = mg8y, + Y po, MiSy, is an N-extremal solution of
an indeterminate moment sequence.

7.9 Notes

Theorem 7.13 was proved in 1924 by R. Nevanlinna [Nv1]. Proposition 7.12 is due
to H. Hamburger [Hm] and R. Nevanlinna [Nv1]. The two-parameter Nevanlinna
functions and fractional transformations appeared in [BCa2]. It is difficult to
determine explicit examples of Nevanlinna functions A, B, C, D. The first such
examples were calculated in [Chil], [IM], [BV], [CI].
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The existence Theorem 7.20 on Nevanlinna—Pick interpolation is due to G. Pick
[Pi] for finite sets Z and due to R. Nevanlinna [Nv2] for countable sets, see also [Ak,
Theorem 3.3.3]. Operator-theoretic approaches to Nevanlinna—Pick interpolation
are given in [SK] and [AM]. Characterizations of solutions of finite order such as in
Theorem 7.27 were first obtained by H. Buchwalther and G. Cassier [BCal]; further
results are in [Sim1] and [Ge].

There are important results about growth properties of Nevanlinna functions.
Already M. Riesz [Rz2] had shown (see e.g. [Ak, p. 101]) that the entire functions
f =A,B, C,D are of minimal exponential type, that is, for each ¢ > 0 there exists a
K, > 0 such that |f(z)| < K.e¥¥l for z € C. C. Berg and H.L. Petersen [BP] proved
that the four functions have the same order and type, called the order and type of the
indeterminate moment sequence s. Further results are given in [BS2].



Chapter 8
The Operator-Theoretic Approach
to the Stieltjes Moment Problem

This chapter is devoted to a detailed study of Stieltjes moment problems by using
positive self-adjoint extensions of positive symmetric operators on Hilbert spaces.

In Sect. 8.2 we rederive the existence theorem for the Stieltjes moment problem
by operator-theoretic methods (Theorem 8.2). Since the Jacobi operator T for a
Stieltjes moment sequence s is positive, it has a largest positive self-adjoint exten-
sion on H, the Friedrichs extension, and a smallest positive self-adjoint extension,
the Krein extension. By the corresponding spectral measures this leads to two
distinguished solutions pr and g of the Stieltjes moment problem for s. In Sect. 8.3
we give an operator-theoretic characterization of Stieltjes determinacy by showing
that the Stieltjes moment problem is determinate if and only if the Jacobi operator T
has a unique positive self-adjoint extension on H, (Theorem 8.7). The relationship
between Hamburger determinacy and Stieltjes determinacy is discussed. In Sect. 8.4
we prove that for any other solution p of the Stieltjes moment problem the Stieltjes
transforms satisty 7, (x) < I,(x) < I, (x) for x < O (Theorem 8.18). Further,
an approximation theorem for the Stieltjes transforms /. (x) and I, (x) is obtained
(Theorem 8.16). Sections 8.5 and 8.6 develop the Nevanlinna parametrization of
solutions (Theorem 8.24) and the Weyl circle description, respectively, for an
indeterminate Stieltjes moment sequence.

8.1 Preliminaries on Quadratic Forms on Hilbert Spaces

In this short section we collect some facts on forms and positive self-adjoint
operators that will be used in this chapter; all of them can be found in the book
[SmI].

Suppose that H is a Hilbert space. A positive quadratic form s on a linear
subspace D[s] of H is a mapping s[,-] : D[s] x D[s] — C which is linear in
the first variable, antilinear in the second and satisfies s[g, ¢] > 0 for ¢ € DJs].

© Springer International Publishing AG 2017 177
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Such a form s is called closed if for each sequence (¢,)nen from DJs] such that
lim, t o0 S[@n—@k, @n—@r] = 0 and lim,_,» ¢, = ¢ in H for some ¢ € H we have
¢ € D[s] and limy,— 00 S[@n—¢, Yr—¢] = 0.

A symmetric operator 7 on H is said to be positive if (T, ¢) > 0 for ¢ € D(T).
For a positive symmetric operator 7 its greatest lower bound is the number

m(T) :=sup {A e R: (Tp,p) > A{p,¢) for ¢ € D(T)}. (8.1)

Let A be a positive self-adjoint operator. Then the spectral measure E, is
supported on [m(A), +00) € Ry and A has a unique positive square root A'/?
given by A!/2 = fooo A2 dE4(M). There exists a unique closed positive quadratic
form sy :

Dlsa] = D(A'?) and  sulp, ¥] = (AY2p,AV?y) for ¢, ¢ € D[s4].

Conversely, for each densely defined closed positive quadratic form s there exists a
unique positive self-adjoint operator A such that s = sy4, see [Sm9, Theorem 10.17].
Let sy, s be positive quadratic forms on H. We define s; < s; if D[sy] € DJsy]
and si[g, ¢] < s2[p, ¢] forall ¢ € D[s,].
Let G, and G, be closed linear subspaces of H and let A; and A, be positive
self-adjoint operators on G; and G, respectively. We write A| < Ay if s4, < sa,, Or

equivalently, D(AY?) € D(A}"?) and ||A[%¢| < [|AY | for ¢ € D(AY?).

Proposition 8.1 Let A; and A, be as above. Then A < A, if and only if
(A2 =AD~" < (A1 =AD"

for one (then for all) A < 0. Here (A; — AI)~" denotes the operator of B(H) which
is the inverse (Aj — AD"on G;j and 0 on gjl,j =1,2.

Proof [Sm9, Corollary 10.13] in the case G; = G, = H. The general case is easily
obtained by minor modifications. O

Now suppose that T is a densely defined positive symmetric operator on H. Then
T always has a positive self-ajoint extension on H. There is a largest positive self-
adjoint extension, called the Friedrichs extension and denoted by Tr, and a smallest
positive self-adjoint extension, called the Krein extension and denoted by Tk, with
respect to the order relation “<” [Sm9, Corollary 13.15]. That is, if A is an arbitrary
positive self-adjoint extension of 7 on H, then we have

Tr+AD"'< @+ A7 < (Tx +AD7Y for A > 0.

The Friedrichs extension is defined as follows. It can be shown that the positive
quadratic form s defined by s[p, V] = (Te,v¥), ¢, ¥ € D[s] := D(T), has a
smallest closed extension s. Since s is densely defined, closed, and positive, it is
the quadratic form of a unique positive self-adjoint operator. This operator is the
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Friedrichs extension T, see [Sm9, Theorem 10.17]. From this construction of T it
follows that 7" and T have the same lower bounds, that is,

my = m(T) = m(TF). (8.2)

The Krein extension Tk can be nicely described in the case when m(7T) > 0.
Then we have (see [Sm9, formulas (14.67-68)])

D(Tx) = D(T)+N(T*), Tx(p +¢) =Ty for ¢ € D(T), L e N(T*). (8.3)

If N(T*) # {0}, then O is an eigenvector of Tk. Note that Tr is invariant under
translation, that is, (T — AI)F = Tr — A, but Tk is not in general.

8.2 Existence of Solutions of the Stieltjes Moment Problem

In this short section we apply Hilbert space operator theory to solve the Stieltjes
moment problem. More precisely, we use the Friedrichs extension of a positive
symmetric operator and the spectral theorem for self-adjoint operators [Sm9]. The
following theorem is the counterpart of Theorem 6.1 for the Stieltjes moment
problem.

Theorem 8.2 Suppose that s = (s,)nen, is a positive definite real sequence such
that the sequence Es = (S,+1)nen, IS positive semidefinite. Then the Stieltjes
moment problem for s is solvable.

If A is a positive self-adjoint extension of the symmetric operator X on a possibly
larger Hilbert space G (that is, Hy € G and X C A) and E} is the spectral measure
of A, then ua(-)=(Ea(-)1,1)g is a solution of the Stieltjes moment problem for s.
Each solution of the Stieltjes moment problem for s is of this form.

Proof The proof follows the lines of the proof of Theorem 6.1 and we explain only
the necessary modifications.

Let p(x) = Y7y ¢ € C[x]. Then xp()p(x) = Y=}, _ cjex ¥ 7. Therefore,
since the sequence Es is positive semidefinite, we obtain

(Xp,p)s = L(xpp) = Z cjck Sj+k+1 = 0. (8.4)
k=0

This shows that the symmetric operator X is positive. The Friedrichs extension of
the densely defined positive operator X is a positive self-adjoint extension. Hence X
has at least one positive self-adjoint extension on H.

For any positive self-adjoint extension A of X, the spectral measure E, is
supported on [0, +00), S0 114 is a solution of the Stieltjes moment problem for s.
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Conversely, if p is a solution of the Stieltjes moment problem for s, the self-
adjoint operator A, from Proposition 6.2 is a positive self-adjoint extension of X
acting on the (possibly larger) Hilbert space L?([0, +00), ). O

Recall that the Jacobi operator T on [>(INy) is unitarily equivalent to X. Thus
Theorem 8.2 yields at once the following counterpart of Corollary 6.3.

Corollary 8.3 If s is as in Theorem 8.2, then the solutions of the Stieltjes moment
problem for s are precisely the measures of the form ug(:) = so{Eg(-)eo,eo)r,
where B is a positive (!) self-adjoint extension of T on a possibly larger Hilbert
space F.

Suppose that s is a positive definite Stieltjes moment sequence. Then, by (8.4),
the symmetric operator X =~ 7 on H, = P(INy) is positive. Let m; denote the
greatest lower bound m(T) of the operator 7, see (8.1). From the extension theory of
positive symmetric operators (see Sect. 8.1) it is known that 7 has a largest positive
self-adjoint extension on Hy, the Friedrichs extension Tr, and a smallest positive
self-adjoint extension on Hy, the Krein extension Tx. By (8.2), we have

my = m(T) = m(Tr) > 0. (8.5)

By Corollary 8.3, the spectral measures E7, and E7, give rise to solutions pr and
Ik, respectively, of the Stieltjes moment problem for s.

Definition 8.4 1r(-) := so(Er,(-)eo, eo) is the Friedrichs solution and ug(:) :=
so(ET, (-)eo, eo) is the Krein solution of the Stieltjes moment problem for s.

These two distinguished solutions pur and pg will play a crucial role in this
chapter. Both solutions come from self-adjoint extensions of T on the Hilbert space
H, = I*(INp), so they are von Neumann solutions according to Definition 6.4.

8.3 Determinacy of the Stieltjes Moment Problem

Suppose that s is a Stieltjes moment sequence and p is a solution of the Stieltjes
moment problem for s. If p is the only representing measure of s supported
on [0,+00), then we say that s, and likewise u, is determinate or Stieltjes
determinate if confusion can arise. But s may be indeterminate as a Hamburger
moment sequence, that is, s may have different representing measures on R (see
Example 8.11 below). Then the Stieltjes moment sequence s is called Ham-
burger indeterminate. In order to distinguish these cases unambiguously we will
speak about Stieltjes determinacy and Hamburger determinacy of Stieltjes moment
sequences in what follows. Obviously, if s is Hamburger determinate, it is also
Stieltjes determinate.
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If 5 is Hamburger indeterminate, then ur and pg are N-extremal solutions of the
Hamburger moment problem for s according to Definition 7.8.
Let us begin with Hamburger indeterminate Stieltjes moment sequences.

Proposition 8.5 Suppose that s is a Stieltjes moment sequence which is Hamburger
indeterminate. Then the following are equivalent:

(i) X 2 T has a unique positive self-adjoint extension on Hy 2= I*(INy).
(ii) O is an eigenvalue of the Friedrichs extension Tr of T.
(iii)) my = 0.

Proof

(1)—(ii1) The operator T, from Theorem 6.23 is a positive self-adjoint extension
of T satisfying Toopo = T*po = 0, that is, 0 is an eigenvalue of To,. Since T has a
unique positive self-adjoint extension by (i), we have To, = Tr. This proves (ii).

(i1)—(iii) is trivial.

(iii)— (i) Let A be an arbitrary positive self-adjoint extension of T on /*(INy). The
Friedrichs extension TF is the largest positive self-adjoint extension of 7', so that
A < Tr. Hence, by Proposition 8.1,

Tr+D'<@A+D7' <1, (8.6)

where the second inequality holds because A is positive. By (iii) and (8.5) we have
ms = m(Tr) = 0. Therefore, ||(Tr+1)""|| = 1 and hence ||[(A+1)~!| = 1 by (8.6).
Since A > 0 and A has a discrete spectrum by Theorem 7.7(i), it follows from the
equality ||(A + I)~!|| = 1 that 0 is an eigenvalue of A. But 0 is also in the spectrum
of Tr, because m(Tr) = 0. Therefore, from Theorem 7.7(ii) it follows that A = TF.
This shows that T is the unique self-adjoint extension of T on /(INp). O

Corollary 8.6 Let s be a Stielties moment sequence which is Hamburger indeter-
minate. Then the operator Teo from Theorem 6.23 is the Krein extension Tx of T
and

D(Tx) = D(Too) = D(T) + C - po = D(T) + N(T"), (8.7)
Tx(p + Apo) =T for ¢ € D(T), A € C. (8.8)

Proof Because s is Hamburger indeterminate, we have py € [*(INg) by Theo-
rem 6.16 and hence N'(T*) = C - po by Proposition 6.6(i).

First let m; = 0. Then, by Proposition 8.5, T has only one positive self-adjoint
extension on 2(INy). Since Tk (by definition) and T, (by Theorem 6.23) are such
extensions, T, = Tk and (6.16) implies (8.7) and (8.8).

Now suppose that m, # 0. Then m, > 0 and hence D(Tx) = D(T) + N (T*) by
(8.3). Therefore, since N (T*) = C - py, we obtain D(Ts,) = D(Tk). But Too and
Tx are restrictions of T*, so that To, = Tk and (6.16) yields (8.7) and (8.8). ]
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The main result in this section is the following operator-theoretic characterization
of Stieltjes determinacy. It is the counterpart of the corresponding result (Theo-
rem 6.10) for the Hamburger moment problem.

Theorem 8.7 Suppose that s is a positive definite Stieltjes moment sequence. Then
s is Stieltjes determinate if and only if the symmetric operator X, or equivalently the
Jacobi operator T, has a unique positive self-adjoint extension on the Hilbert space
H, == >(IN).

Proof First we assume that X has two different positive self-adjoint extensions, say
A and B, on H,. We repeat the reasoning from the proof of Theorem 6.10. Then
pa(-)=(Es(-)1,1) and pp(-)=(Eg(-)1, 1) are representing measures for s. They are
supported on [0, +-00), because A and B are positive. If 14 were equal to g, then
we would have ((A—zl)"'1,1) = ((B—zl)"'1,1) for z € C\R by the functional
calculus of self-adjoint operators. This contradicts Lemma 6.8. Hence uy # g, so
s is Stieltjes indeterminate.

Now we assume that X has a unique positive self-adjoint extension on H. If s is
Hamburger determinate, it is Stieltjes determinate and we are finished. Suppose now
that s is Hamburger indeterminate. Then ur is N-extremal and O is an eigenvalue
of Tr by Proposition 8.5. Since the multiplication operator X on #; and the Jacobi
operator T on [>(INy) are unitarily equivalent, so are their Friedrichs extensions X
and Tr, and we have pup(-) = (Ex.(-)1,1)s. Then O is an eigenvalue of Xp. Let
f € H, be a corresponding unit eigenvector. From the definition of the Friedrichs
extension it follows that there exists a sequence (f,,),en from D(X) = C[x] such
that lim, f, = f in Hy 2= L>(Ry, ur) and lim, (Xf,.f.)s = (X&f.f)s = O.

Let p be an arbitrary solution of the Stieltjes moment problem for s. Since we
have f, — fin H,, (f,)nen is a Cauchy sequence in (C[x], ||-||;) and so in L*(R, )
by Proposition 6.2. Hence f, — g in L>(R, u1) for some g € L*>(R4, ). Clearly,
I8lz2y = 1, since | fullzm g = Ifulls = /]l = 1. Then

/0 |\/xfn|2d:u = /0 xfnfn d“ = Ls(-xfnfn) = (ansfn>s - (XFfsf)s =0.

Therefore, for each function ¢ € C.(R+;R) we obtain
o0 o o
/ x/)?ﬁlf/’dl/v:/ fnx/xfpdu—>0=/ g/xpdu.
0 0 0

This implies that g(x) = 0 p-a.e. on (0, 4+00). Since f, — f in L>(R, iur), we
have in particular f(x) = 0 pp-a.e. on (0, +00). (This also follows from the fact
that Xzf = 0.) Thus, since g € L*(R+, 1) and f € L>(R+, j4r) are unit vectors, we
get

©({0})g(0)* = nr({0})|f(0)* = 1. (8.9)
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Further, we have

/0 " hdu = L(f) = /0 " fdur — /0 " gdu = /0 " fdur.

Since g(x) = 0 p-a.e.and f(x) = 0 pp-a.e. on (0, +00), the latter equality yields

n({0)g(0) = ur({03)f (0). (8.10)

Combining (8.9) and (8.10) we obtain u({0}) = ur({0}) > 0. Because ur isa von
Neumann solution of the indeterminate Hamburger moment sequence s, it follows
from Corollary 7.17 that & = pp. This proves that s is Stieltjes determinate. O

We close this section by deriving three useful corollaries. An immediate conse-
quence of Theorem 8.7 and Proposition 8.5 is the following.

Corollary 8.8 Let s be a Stieltjes moment sequence which is Hamburger indeter-
minate. The following are equivalent:

(1) s is Stieltjes determinate.
(1) O is an eigenvalue of the Friedrichs extension Tr of T.
(iii) my; = 0.

Corollary 8.9 Let s be a determinate Stieltjes moment sequence with representing
measure (. If w({0}) = 0, then s is Hamburger determinate.

Proof Since s is Stieltjes determinate, i = pp. The multiplication operator A, by
the variable x on L?([0, +00), 1) and the Friedrichs extension T are positive self-
adjoint extensions of X 2 T on H, = L*([0, +00), ) = L*([0, +00), jur). Hence
A, = Tr by Theorem 8.7. Since £({0}) = 0, 0 is not an eigenvalue of A, = Tr.
Hence s cannot be Hamburger indeterminate by Corollary 8.8. O

Corollary 8.10 Suppose that s is an indeterminate Stieltjes moment sequence. Then
m(Tr) > 0, supp ur < [m(TF), +00), and 0 is in the resolvent set of the Friedrichs
extension Tr, that is, (Tr)~' € B(H,).

Proof Since s is Stieltjes indeterminate, it is Hamburger indeterminate and 7 has
at least two different positive self-adjoint extensions on /2(INp) by Theorem 8.7.
Therefore, m; = m(Tr) > 0 by Proposition 8.5 and (8.5). From the theory of self-
adjoint operators it follows that the spectrum of T, hence the support of the measure
WF, is contained in [m(TF), +00), so that 0 is in the resolvent set of 7. O

Example 8.11 (A determinate Stieltjes moment sequence that is Hamburger inde-
terminate) Let s be an indeterminate Stieltjes moment sequence. Then m; =
m(Tr) > 0 by Corollary 8.10. Let § = (5,)nen, denote the shifted sequence of s
by —my, that is, 5, = Y_j—, (}) (—=my) s, for n € Ny, see Exercise 6.5. Then § is
Hamburger indeterminate (because s is Hamburger indeterminate) and m; = 0. By
Corollary 8.8, my = 0 implies that 5 is Stieltjes determinate. o
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8.4 Friedrichs and Krein Approximants

In this section we suppose that s is a positive definite Stieltjes moment sequence.
We develop two sequences of matrices and two related sequences of quotients of
polynomials as approximants for the Friedrichs and Krein extensions and as useful
tools in the proofs of our main results (Theorems 8.16 and 8.18).
The truncated Jacobi matrix (6.21) is called the Friedrichs approximant and
denoted by AE?] , that is, we set
b() ap 0 ...0 0 0
ap bl ap ... 0 0 0

A= = 0 ab...0 0 0 . nel. 8.11)

0 0 O .o ap—3 bn_z an—>
0 00 .0 ap by

The Krein approximant A%] is defined by

b() a()O O 0
ao b1 ay ...

A |0 ar by . nen, (8.12)

oS O
oS O

0 0 O ...bn_z any—2
0 0 O . ap—2 bn—l — Op—1

where «,—; is chosen according to the following lemma.

Lemma 8.12 There is a unique positive number a,— such that AE?] has the
eigenvalue zero. A corresponding eigenvector is (po(0),...,pn—1(0)). The matrix
A[K"] is positive semidefinite, p,—(0) # 0, and we have

(bn—l - an—l)pn—l(o) + an—an—Z(O) = Oa (813)
Pn(0)
Op—1 = — adp— s (8.14)
Pn—1 (0)
(b — @)ty —d>_, = 0. (8.15)

Proof The assertion is obvious for n = 1, so we assume that n > 2. Fix o,—; and
y = (Y0,-..,¥n—1) € C" with yp := po(0). Let us consider the equation A[K"]y =0.
For the first n — 1 components of y this is equivalent to the recurrence relations (5.9)
for x = 0 with the same intial data. Therefore, y; = px(0) fork =0,...,n — 1. For
the n-th component this is precisely equation (8.13).
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The sequence s is positive definite, hence is Ag‘]. Therefore, p,,—1(0) # 0, because
otherwise AE:’] would have the eigenvalue zero. Since p,—1(0) # 0, (8.13) has a
unique solution «,—;. Let C, denote the matrix with entry one at the right lower
corner and zero otherwise. Then Al[';] = AE?] + o,—1C, by definition. If «,—; < 0,

then 0 < AE;’] < AE?] and hence AE;’] would not be positive definite. Hence a,— > 0.

The recurrence relation (5.9) gives a,—1p,(0) + b,—1pn—1(0) + ay,—2pn—2(0) = 0.
Combined with (8.13) this yields (8.14). Replacing now n — 1 by n in Eq. (8.13) and
comparing this with (8.14) we obtain (8.15). O

Lemma 8.13 Forn € INy we define

M@ =P = ) 0 P N = 0,0 - ) 0.

Then

Nau(2)

_ b
Mo iC p(A). (8.16)

(AY — 2 leg, e) =

Proof In this proof we use Lemmas 6.27 and 6.28. Let BE?] be the matrix obtained

from AE?] by removing the first row and the first column. By developing the
determinant and using Lemma 6.27(i) we get

det (I — APy = det (2 — AW — @,y det (2 — AV = Po(2) — @01 P (2).

Since the matrix A[K"] has the eigenvalue 0 by Lemma 8.12, we have det A[K"] = 0.
Hence P, (0) = a;,—1 P,—1(0) and

det (2 — AYY)) = P(2) = Pa(0)P,—1(0) ' P (2) = M, (2). (8.17)
Similarly, applying Lemma 6.28(i) we derive

det (ZI—B[KH]) = det (z/ — BE?]) — ot det (I — Bgl—l])
= 04(2) = t-104-1(2) = Q1 (2) = Pa(O)Pot (0 Q1 (2) = Na(@)-

As in the proof of Lemma 6.28 we use Cramer’s rule and obtain

_detBy —z)  det(l—BY) N2

(AY — 21y eg, e0) = = —
K det(A” —zn)  det@—Al) T M)

for z in the resolvent set p(AE?]). This completes the proof of Lemma 8.13. O
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Lemma 8.14 For x < my; and n € Ny, we have

(A — x1) ey, o) < (AT — x1) ey, eq), (8.18)
lim (A — xD)7Teq, e0) = (Tr — xI) e, eo) . (8.19)
n—>-+00

Proof In this proof we use some facts on forms and self-adjoint operators, see
Sect. 8.1. Let s,, denote the positive quadratic form defined by

si(f.8) = (AW, 8), f.g € Dls,) = {(fo,-- - fu—1,0,0,...) : f; € C}.

Then D[s,] € D[s,+1] and s,(f.f) = su+1(f.f) forf € D[s,]. By the definition of
the order relation of forms this means that s, < s,. Therefore, by Proposition 8.1,

@A —xn™h < @t ! (8.20)

(By the convention in Proposition 8.1 the resolvents are defined to be 0 on the
orthogonal complements of DI[s,] and D[s,+] in 1*(INp).) Clearly, (8.20) implies
(8.18).

Since m; > x, the sequence ((A; — xD)™D),ew of bounded positive self-adjoint
operators on />(INy) is monotonically increasing by (8.20) and bounded from above
by (my—x)~'1 (since Al > myl). Hence it converges strongly to a bounded positive
self-adjoint operator S such that § < (m,—x)~'I.

Let f € N(S). Then 0 = (Sf.f) > ((A™ —x1)~'f.f) > 0. Since A > my1,
this implies (A" — xI)~!f = 0 for all n € IN. Hence f € N, D[s,]* = {0}, so that
f = 0. Thus, § has a trivial kernel. Therefore, since S < (ms—x)_ll , it follows that
A := S~ + x1 is a positive self-adjoint operator on />(INy) and

(7]
F

@' <s=@A—-xn"", neN. 8.21)
We prove that A = Tr. Let s4 denote the positive quadratic form associated with

A. By definition the Friedrichs extension T of T is the positive self-adjoint operator
associated with the closure sy, of the quadratic form defined by

Seo(f.8) = (If.g), f.8 € Dlsac] =d.

By (8.21) and Proposition 8.1, s4 < s,. Therefore, DJs,] C DJ[s4] for all n € IN and
hence D[sso] = U,D[s,] S DIsal. Further, s,(f,f) = seo(f.f) forf € D[s,] and

sa(f.f) =lims,(f.f) = soo(f.f) for f € Dlsco].
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The preceding facts show that s4 < sec < s,,. Since s, is closable, s4 < S < Sj.
Applying again Proposition 8.1 we conclude that

AT < (T - < (A—xD)7 =S,

But S is the strong limit of the sequence ((AE’J] —xI)™1),ew. Hence the latter implies
that (Tr — xI)~! = (A —xI)~' = S. Therefore, Tr = A. Thus, for f € >(INy),

(T —xI)"'f = (A—xD)"'f = §f =lim (A} —x1)7'F,

which in turn yields (8.19). O

Now we treat the Krein approximants. We extend AE?] to a positive self-adjoint
finite rank operator T,[é’] on 2(INg) by filling up the matrix with zeros, that is,

T .= AZ 0 .
K 0 0

(TY — 2D eo.e0) = (A — 2D ep. e0), z€ p(TY) = p(AY).  (8.22)

Then it is obvious that

The following Eq. (8.24) says that the self-adjoint operator Tk is the strong resolvent
limit of the sequence (TI[?])”G]N.

Lemma 8.15 Forx < 0,n € Ny, andf € lz(]NO),

(T — xD)eg, eo) < (T = x1) ey, eo), (8.23)
lim (TV —xI)™'f = (Tx —xD)7Vf. (8.24)
n—>—+o0o

Proof The nonzero part of the matrix TI[? 1 TI[?] is the block matrix

Dn — (an—l an—1 )
ap—1 bn — Oy

By (8.15), detD,, = op— (b, — oty) — aﬁ_l = 0. In particular, o,—;(b, — ®,) > 0.
Hence b,—«,, > 0, since o,—; > 0 by Lemma8.12,and Tr D, = b,—a,,+a,—1 > 0,
since a,—; > 0. Since det D, = 0 and Tr D,, > 0, it follows that D,, > 0 and hence
T 7l > 0. Therefore (T — x1)=! < (T — x1)~", which implies (8.23).

Now we prove (8.24). Since ||(T1[?] —xI)7'| < |x|7! for all n € NN, it is easily
shown that the set of f € lz(lNo) for which (8.24) holds is closed. Further, (8.24) is
valid for f € (T — xI)D(T). Indeed, then TL'f = Tf = Txf for some n € IN and

hence (T,[é’] —xD)7f = (Tx —xD)7'f.
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First assume that s is Hamburger determinate. Then T is essentially self-adjoint
by Theorem 6.10. Hence T = Tk. Since T > 0 and x < 0, (T — xI)D(T) is dense in
2(INy) by Proposition A.42(iv). Thus (8.24) holds on /?(INy) as noted above.

Now suppose s is Hamburger indeterminate. Then we have D(Tx)=D(T)+ C-po
and Txpo = 0 by (8.7). From (Tx — xI)pog = —xpo we get (Tx —xI) "' po = —x"'po.
Put p([)"] = (po(0),...,pn(0),0,...). Since T,[?]p([)"] 0 by Lemma 8.12, we have
(TI[?] —xI)_lp[O"] x_lp["] Then, as n — 00,

1T — x1)"po — (T — xD) " poll = I(TE = x1)""po — x~"pol|
= (T = XD (po — pg) + 7 pY = po) | < 2IxI 7 (g — po)l| — .

This proves (8.24) for f = po. Because Tx > 0 is self-adjoint and x < 0, it follows
from Proposition A.42(iv) and (8.7) that

(Tx —xI)D(Tx) = (T —xI)D(T) + C - po = (T —x)D(T) + C - po = P (INy).

Therefore, since (8.24) is valid for f € (T — xI)D(T) and f = p, as shown above,
(8.24) holds for all f € 1>(INy). O

The zeros of P,(x) are contained in [m,, +00) by Proposition 5.28 (or by
Lemma 6.27(i)). Hence P,(x) # 0 for x < m,. Moreover, M, (x) # 0 for x < 0 by
(8.17).

Putting the preceding together we obtain our main approximation result.

Theorem 8.16 Suppose that s is a positive definite Stieltjes moment sequence.

For any x < my the sequence ( - IQ,”((;) )n €Ny is bounded increasing and

o0
n d
s lim &® / wr(y) (8.25)
n>oo Py(x) Jo o y—x
For x < 0 the sequence ( - 1‘121’:’,(();)) )nE]N0 is bounded decreasing and
N, *d
s lim M® / He () (8.26)
n>oo My(x)  Joo y—x

Proof Recall that AE;’] acting as an operator on C" is just the operator J, in

(6.24). Combining (6.24), (8.18), and (8.19) it follows that (_IQJZ((g)nelNo is a

bounded increasing sequence converging to ((Tr — xI)"'eq, eo). Since ur() =
so(Er, (-)eo. €o) by Definition 8.4, we have so((Tr — xI)'ep, e9) = [;° d’;’_(x” by
the functional calculus, whence (8.25) follows.

Similarly, we conclude from (8.16), (8.22), (8.23), and (8.24) that the sequence

(— A]\;”((i))) is bounded, decreasing, and that it converges to ((Tx — xI)"'eq. ep).

Combined with so((Tx — xI)"eq, e0) = [i° ¥ this yields (8.26). O

y—x
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Remark 8.17 The assertion of Theorem 8.16 also holds for a determinate positive
definite Stieltjes moment sequence s. In this case u := wgx = wup is the unique
solution of the Stieltjes moment problem for s and it follows from Theorem 8.16
that (—so g:(()f)) ) peny, @nd (=so Z”((fc)))n <1y, &r¢ monotone sequences converging from
below resp. from above to the Stieltjes transform 7, (x) = fooo( y—x)""du(y) of
the representing measure p for x < 0. )

Our second main result in this section is the following theorem.

Theorem 8.18 Suppose that s is an indeterminate Stieltjes moment sequence. If |4
is an arbitrary solution of the Stieltjes moment problem for s, then

/°° dpr(y) _ /°° du(y) _ /°° dux <o, (8.27)

0 y—Xx 0o Yy—X 0 y—x

/°° dp(y) </°° dpk(y) if 1w g x <0, (8.28)
0o Yy—X o y—x

/°° dpr(y) _ /°° dp(y) if 1 e x <0, (8.29)
o y—x o Yy—X

Remark 8.19 1Tt should be emphasized that both inequalities (8.28) and (8.29) are
strict and that (8.29) also holds for x = 0. In this case the integral fooo ytdu(y)
in (8.29) can be infinite, while fooo vy 'dur(y) is always finite, since supp ur <
[m(TF), +00) and m(Tr) > 0 by Corollary 8.10. o

Proof The proofs of the two strict inequalities (8.28) and (8.29) will be given at the
end of the proof of Theorem 8.24 below. Here we only prove the inequalities (8.27).

Since an indeterminate Stieltjes moment sequence is obviously positive definite,
Theorem 8.16 applies and by (8.25) and (8.26) it suffices to show that

,, O /°° dn(y) _ N o (8.30)
0

‘P " Jy y—x T M)

Recall that H, is a subspace of L?>(RR, i) by Proposition 6.2. Now we derive

o0 Pn 2
05/0 ) du(y)

y—x
=/ P()P(y) "0y (y>+P(x)/ " g
0 — X
<1>P()/ n(y)d 0 ()

:Pn(x)/ Py(y) — Pu(x) du(y)+Pn(x)2/OO dp(y)
0 y—X 0

y—x
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‘i’P()LU(P (yy) P(x))+Pn(x)21M(x)

D p,(x) 500a() + Py ()1 (3).

Dividing this inequality by P,(x)? leads to the left inequality of (8.30).

Let us explain why the three equalities (1)—(3) of the preceding derivation hold.
Since (P,(y) — Pn(x))/(y — x) is a polynomial in y of degree less than deg P, = n,
it is orthogonal to P,(y) in H, and so in L?(R+, it). Thus,

/OP()P(y) Pux) di(y) = 0.

This has been used in (1). Because u is a solution of the Stieltjes moment problem
for s, equality (2) holds. Finally, (3) follows from (5.34).

Now we turn to the right inequality of (8.30). Since M,,(0) = 0 by the definition
of M,,, M,,(y)y~" is a polynomial of degree n — 1 in y. Hence

Mn()’)y_l - Mn(x)x_l
y—x
is a polynomial of degree at most n — 2 in y. Therefore, it is orthogonal to P,—;(y)

and P,(y) and hence to M,(y) in H, and so in L?(R, it). This gives the equality
(4) below. Further, from the definitions of N, and M,, (see Lemma 8.13) and the

equation 500, (x) = Ly, (P "7 ”(X’) by (5.34) it follows that

© My(y) — My(x) _
[T ) = 1

(Mn(y) — M, (x)
5.y

y—x

) = S50 Nn(x)

This relation is inserted in equality (5) below. Using the preceding facts we derive

= [T M)
o_/o o

00 —1 _ —1
_ / M, (y)Mn(y)y _Mn(X)x
0 y—x

Do [ duc

= M,(x)x™" /oo Mi(y) = Ma(x) du(y) + M, (x)*x7! /oo di(y)
0 y—x o yY—Xx

% M.
any + Mo [T aucy)

D M, ()" 50 Nu (1) + M2 1 ().

Dividing now by M, (x)?x~! < 0 yields the right inequality of (8.30). O
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On(x) )
Py (x) /n€lNg

is monotonically decreasing for x < 0. Letting x — —0 it

follows that (— 1%1((8;) is also monotonically increasing and (Z’}((g))

decreasing. (Note that P,(0) # 0 by Lemma 8.12 and lim,—_, ﬁjg; = AIZ'Z((%)) , since

M,,(0) = 0.) Hence the limits y, and S, of these sequences exist. They enter into the
following corollary.

By Theorem 8.16, the sequence ( -

Ny (x) )
M, (x) /nelNy

is monotonically increasing and
the sequence (x

) is monotonically

Corollary 8.20 For each positive definite Stieltjes moment sequence s we have

00 _ [Cdur(y) L N0 _
pim s tim D= [T g i S = o).
(8.31)

Proof From Theorem 8.16 we obtain

_ Qn(x) % dur(y) % dur(y)
CPyx) /0 y—x 5/0 y

for x < 0. Letting x — —0 and then n — oo we get y, < fy_ld,up(y).
We prove the converse inequality. Recall that J, = Ap b by (8.11). Hence, by

Lemma 6.28 we have ((Agl] —xI)"eg, e0) = 1Q>”((j3 for x < 0. Since A["] > 0, the

left-hand side increases as x — —0 and we obtain

Qn(X) 0,(0)
P(x) < —sp P,(0) <v, x<0.

Letting n — oo and using (8.25) this yields [(y—x)"'dur(y) < y;. Passing to the
limit x — —0 by using Lebesgue’s monotone convergence theorem we conclude
that [ y~'dur(y) < ys. This completes the proof of the first equality in (8.31).

By Theorem 8.16, the sequence (—sg AA;”” ((’)?)) convergesto [(y—x)~! duk(y) from

above for x < 0. Therefore, multiplying by —x > 0, we obtain

% (_3)d ;
ptiop = [ COMEE) <5 W,

Passing to the limits x — —0 and then n — oo yields ug({0}) < B;.

Conversely, the expression ((—x)(AE?] —xN7 ey, ep) = ’;{,IV”((;) (by Lemma 8.13)

decreases as x — —0, since A%] > 0. Therefore, for x < 0,

, €9) - N, (0)
P M) T M 0)
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Now we take the limit n — oco. Because of (8.26) we then obtain

/ © (=x)dpk(y)
0 y—x

> B, x<0. (8.32)

Since |}:’; | < 1fory > 0and limx_,_o(;; ) is the characteristic function of the
point 0, Lebesgue’s dominated convergence theorem applies for the limit x — —0
in (8.32) and yields ug({0}) > B;. This proves the second equality in (8.31). O

Note that y, can be infinite if the Stieltjes moment sequence s is determinate.
However, if s is indeterminate, then y; is finite (by Corollary 8.21). In this case the
number y; enters into the Nevanlinna parametrization given in Theorem 8.24 below.

Corollary 8.21 Let s be a positive definite Stielties moment sequence. Then s is
Stieltjes indeterminate if and only if y, < oo and By # 0.

Proof Let s be Stieltjes indeterminate. Then m(7r) > 0 by Corollary 8.10 and
supp ur S [m(TF), +00), so that y, = fooo y'dur(y) < oco. Obviously, s is also
Hamburger indeterminate. Hence py € D(Tx) by Corollary 8.6. Since Txpy =
T*po = 0, 0 is an eigenvalue of Tk and hence B, = g ({0}) = [pol|™> # 0 by
formula (7.7).

Conversely, assume that y;, < oo and s # 0. Since then fooo yldur(y) < oo
and ug({0}) # 0, we have ur # k. Hence s is Stieltjes indeterminate. O

The next corollary uses the inquality (8.29) which will be proved only in the next
section. It can be used to construct determinate moment sequences of “fast growth”.

Corollary 8.22 Suppose that s = (sy)nenN, IS an indeterminate Stieltjes moment
sequence. Set ¢ := fooo v ldur(y), 5o = 1, and 5, = ¢ 's,—1 for n € IN. Then
5 = (Sn)nen, is a Stieltjes moment sequence which is Hamburger determinate.

Proof First note that ¢ € (0, +00), since supp ur S [m(Tr), +00) and m(Tr) > 0
by Corollary 8.10. Clearly, the measure vy given by dvy = ¢ 'y~ !dur is supported
on R+ and has the moments 5,. Hence s is a Stieltjes moment sequence.

Let v be a solution of the Stieltjes moment problem for 5. Then the measure p
given by du(y) := cydv(y) has the moment sequence s, is supported on R+, and

/0 yldu(y) = C/o dv(y) =cSo=c= /0 y ' dpr(y).

Therefore, it follows from statement (8.29) in Theorem 8.18, applied with x = 0,
that 4 = pp. This implies v = vy. Hence § is a determinate Stieltjes moment
sequence with representing measure vg. Since vo({0}) = 0, 5 is also Hamburger
determinate by Corollary 8.9. O
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8.5 Nevanlinna Parametrization for the Indeterminate
Stieltjes Moment Problem

For y € R let B, denote the set of Pick functions @ € 33 which are holomorphic
on C\R+ and map (—o0, 0) into [y, co). Note that all constant functions equal to a
number 7 € [y, 00) are contained in B,,. Set B, := P, U {oo}.

Proposition 8.23 A function @ belongs to the class B, if and only if

*® dr(x
D) =a+ / ) . z€C\[y,00), (8.33)
0o X—Z
where « > y and t is a positive Borel measure on R4 satisfying fooo if_ﬁ) < 0.

Proof Clearly, any function @ of the form (8.33) is holomorphic on C\R+. Since
a > vy and fooo(x —z)dt(x) > 0 for z < 0, @ maps (—o0,0) into [y, 00), so that

P cB,.
Conversely, let @ € 3,. Then @ € ‘B, so by formula (A.5) it has a representation

D(z) = a+bz+/ ( ! * )d‘[(x), ze C\R, (8.34)
R

x—z 14

wherea, b € R, b > 0, and  is a positive measure such that [ (1+x*)~!dzt(x) < occ.
Since @ is holomorphic on C\R 4, Proposition A.15 implies that suppt € R.
We consider the limit z— — 0o in (8.34). The integrand converges monotonically
decreasing on R4 to the function —, foz. If b > 0, it follows from Lebesgue’s
monotone convergence theorem that @(z) — —oo as z — —oo. This contradicts
® € B,. Thus b = 0. Applying the limit z — —oo in (8.34) once more, @ € ‘B,
implies that ¢ := fooo x(1 4+ x*)7'dz(x) < oo and ®(z) — a — c. This yields
Joo(1+x)7'dr(x) < coand @ := a — ¢ > y, since @ € P,. Then (8.34) gives
(8.33). O

Suppose that s is an indeterminate Stieltjes moment sequence. Let y; denote the
positive real number (see Corollary 8.21) defined by (8.31). Recall that m(TF) > 0,
supp ur C [m(TF), +00), and (Tr)~' € B(H,) by Corollary 8.10. If E7, denotes
the spectral measure of the self-adjoint operator T, the functional calculus yields

o0 o
p= [ i) =0 [ 37 dEn (v o) = 50 (T e,
0 0
(8.35)
The positive number y; is called the Friedrichs parameter of s.

The following theorem is the counterpart of Nevanlinna’s Theorem 7.13 for the
Stieltjes moment problem.
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Theorem 8.24 Suppose that s is an indeterminate Stieltjes moment sequence. Then
there is a one-to-one correspondence between functions ¢ € *B,, and solutions . of
the Stieltjes moment problem for s given by

A(z) + ¢(2)C(z)

B + pp() — HPE 2E

(8.36)

© 1]
@=L duat =

Proof Since s is Stieltjes indeterminate, it is Hamburger indeterminate. Thus
Theorem 7.13 applies and gives a one-to-one correspondence g < P between
solutions (e of the Hamburger moment problem for s and functions @ € ‘B.
Therefore, it suffices to show that supp ue € Ry if and only if @ € 3, .

Recall that the solutions pu, for t € R < ‘P correspond to the self-adjoint
operators 7; from Theorem 6.23. Since Tx = T, by Corollary 8.6, the assertion
holds for u = pug and @ = oo. Further, so (T, 'eg,e0) = t fort € R by
Lemma 6.24. Hence Eq.(8.35) implies that Tr = T,,, so that the assertion is also
valid for @ = y;.

Let us fix x € R and consider the fractional linear transformation (see (7.10))

HA(1) = _A(x) + tC(x)‘
B(x) + tD(x)

Since A(x), B(x), C(x), D(x) € R and A(x)D(x) — B(x)C(x) = 1, H, is a bijection

of R on R, where R := R U {oco}. From the relation H(f) = (B(x) + tD(x))"2 > 0

it follows that H, is strictly increasing on R outside the pole t = —g(&;. Therefore,

since H,(ys) = I, (x) and H,(00) = I,,(x) as shown in the preceding paragraph,

H, is a bijection of [y,, 0o] on the interval [I7, (x), I7, (x)].

Now suppose that @ € B, . Then I,,,(z) = H,(®(z)) is holomorphic on C\R.
Let x < 0. Then @(x) € [y;,00) and hence H,(¢(x)) € [Ir;(x), I, (x)]. Hence
the denominator of H,(®(x)) does not vanish, because otherwise H,(P(x)) = oo.
Therefore, since the functions A, B, C, D are entire and @(z) is holomorphic on
C\Ry, 1,,(z) = H.(®(z)) is holomorphic on C\RR. Hence supp ue < Ry by
Proposition A.15. This proves one direction of Theorem 8.24.

To prove the converse direction we assume that 4 # g is a solution of the
Stieltjes moment problem for s. Then, by formula (8.27) in Theorem 8.18,

Ly (x) < 1,(x) < I,(x) for x<O. (8.37)

Since g = [Loo, by Theorem 7.13 there is a unique @ € 3 such that u = pg. We
have to show that @ € ‘B, .

First we verify that @(z) # 0 forz € C4 = {z € C : Imz > 0}. Indeed, assume
to the contrary that @(z9) = 0 for some zo € C4. Then, since @ € B,,, @(Cy ) is
not open. Therefore @ is constant, so that ® = 0 € R. Lemma 6.24 implies that
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(Ty leg, eg) = 0. From the functional calculus of self-adjoint operators we obtain

o0
0 = 50 (Ty €0 e0) = 50 / VA Eny ()eo. eo) = / ydpa(y) < oo.
R 0

Hence pp = 0, which is a contradiction, since (e solves an indeterminate Stieltjes
moment problem. This proves that @(z) # 0 forz € C4.
Hence ¥ := 1/® is a holomorphic function on C+ and we have

11 CO+LEDE)
YO= 00 T B 1@) ~ AQ +L,@BG) s

Assume that A(xo) + I,(x0)B(xo) = O for some xo < 0. Then, since the
numerator and denominator of the fractional linear transformation do not vanish
simultaneously, C(xo) + 1, (x0)D(xo) # 0 and hence

() = lim D) =— AQ +1.B@) _ (8.39)

2€C4.2>x0 €Ct=>x0 C(2) + 1,(2)D(2)
Since ®(z) = H;'(1,(z)), this implies that @(xp) = H;)l(lu(xo)). By (8.37) we
have H| '(1.(x0)) € [ys, 00). Since @(xy) = 0 and y; > 0, this is a contradiction.
Thus we have proved that A(x) 4 1,,(x)B(x) # 0 forall x < 0.

Therefore, since p solves the Stieltjes moment problem and hence 1, is
continuous on C\R, it follows from (8.38) that ¥ has a continuous extension
to C+ U (—o0,0) with real values on (—o0,0). Hence, by Schwarz’ reflection
principle, ¥ has a holomorphic extension to C\R+. From (8.37) we conclude that
@ (x) = H;'(1,(x)) € [ys, 00] and therefore ¥(x) € [0, y; '] for x < 0.

Next we show that ¥ (x) # 0 on (—o0, 0). Assume to the contrary that ¥ (xp) = 0
for some xo < 0. Since ¥(z) = 1/®(z) # 0 on C\Ry and ¥ (x) € [0, y;"!] for all
x < 0, we have (—o0,0) N ¥(C\R+) = @. Hence ¥ (C\R+) is not open, so ¥ is
constant. Since ¥ (xp) = 0, ¥(z) = 0. But ¥ = 1/® with @ € B, so we have a
contradiction.

Putting the preceding together we have shown that @ = 1/¥ has a holomorphic
extension to C\IR4 and @(x) € [y, 00) for x € (=00, 0). That is, @ € ,,. This
proves the converse direction and completes the proof of Theorem 8.24.

Finally, we prove the two inequalities (8.28) and (8.29) from Theorem 8§.18.

Since ¥ (x) # 0 as shown in the paragraph before last, @(x) # oo and therefore
1,(x) = Hi(®P(x)) # Hi(00) = I, (x). Since I,,(x) < I, (x) by (8.37), this yields
1,,(x) < I,,(x). This proves the first inequality (8.28).

Now we turn to the proof of (8.29). Let u # wr be a solution of the Stieltjes
moment problem for s. Then u = pg, where @(z) := HZ_I(IM (z)) forz € Cs.

First we assume to the contrary that /,,(x) = 1,,(x) for some x < 0. Then we
have @ (x) = H; ' (1,(x)) = H;'(1,,,(x)) = ys, 50 ¥ (x) = y; ! is the right end point
of the interval [0, ¥ !]. Arguing as above, ¥ (C\IR4 ) is not open, so ¥ and hence @
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are constant. Thus @(z) = @(x) = y, and therefore I,,(z) = H,(®(2)) = H.(y;) =
1, (z) for all z € C\RR. Hence &t = up, which is the desired contradiction.

Now letx = 0. Since u solves the Stieltjes moment problem, @ € 13, , so @ is of
the form (8.33). This implies that @(z) € [ys, 00) and @(z) is monotone increasing
on the interval (—oo, 0). Hence the limit ¢y := lim,—._o @(z) € [y,, +00] exists.
We have ¢y # y,. (Indeed, otherwise @(z) > y, and the mononiticity of @(z) on
(—00,0) imply that ¢ = y; and ¢ = 0; then @ = y; and hence u = o = Ur,
which is a contradiction.) Since A(0) = D(0) = 0 and C(0) = —B(0) = 1, we have
Hy(t) = tfort € R. Clearly, I,,(z) < fooo y~'du for z < 0. Then, by the preceding,

/0 Ve () = 1, (0) = Ho(yo) = 7, < o

= lim H(®(z)) = lim I,(z) < / y~ldu(y).
z—>—0 z=>—0 0

This proves (8.29) for x = 0 and it completes the proofs of (8.28) and (8.29). O

We briefly repeat some facts from the preceding proof. In the parametrization
(8.36) the Friedrichs solution pr corresponds to the Friedrichs parameter @ = y;,
while the Krein solution g is obtained for @ = oo. The von Neumann solutions of
the Stieltjes moment problem for s (that is, the solutions u for which C[x] is dense
in L?>(RR, 1)) are precisely the measures i, for constants @ = ¢ with ¢ € [y,, +00].

Remark 8.25 The parametrization (7.18) is related to our Nevanlinna parametriza-
tion (7.16) by taking —®~! instead of @. Hence in this parametrization (7.18)
Friedrichs and Krein solutions correspond to the parameters —y;~! and 0, respec-
tively. o

8.6 Weyl Circles for the Indeterminate Stieltjes
Moment Problem

In this section we suppose that s is an indeterminate Stieltjes moment sequence
and z € C4. Fort € R, let W(z, ) denote the cone in the complex plane given by

W(z,t) :={we C:0 <arg(w—1) <m —arg(z)}.
One easily verifies that
weW(z,t) <= Im(w)>0 and Im(z(w—1)) > 0. (8.40)

Note that W(z,1) =t + W(z,0) and W(z,1) C W(z,7) if ¥ <1t.
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Proposition 8.26

(i) If @ €°By,, then @(z) € W(z, ys).
(ii) For each w € W(z, y;) there exists a @ € B, such thatw = @(z).
(iii) Suppose that w € W(z,y;) and Im(z(w — y5)) = 0. Then there is a unique
Sfunction @ € B, such that P(z) = w. This function is

¢(Z/) =y — Z()/SZ/_ W) , Z/ e C+

Proof
(i) By Proposition 8.23, @ € 3, is of the form (8.33) with « > y;. Since

o0 d o0
Im(z/ t(x)) :/ Im( ¢ )dt(x) >0
0o X—2Z 0 X—=2
and Im( [;°(x — 2)7'dt(x)) > 0, (8.40) implies that [;°(x — z)~'dt(x) €
W(z, 0). Therefore, since o > y;, we deduce that
> dt(x)
¥ —

P(z) =« +/ , €@ + W(z,0) = W(z,a) € W(z, ys).

0

(i) Letz = a+iband w = u +iv € W(z,y;), where a,b,u,v € R. Since
z € C4, b > 0. Further, since w € W(z, yy), it follows from (8.40) that v > 0
and

Im(z(w — y5)) = Im((a + ib)(u — ys + iv)) = b(u — y5) + av > 0.
(8.41)

First let v = 0. Then u > y,. Hence @ := u € ‘B, and @(z) = w. Now
suppose v > 0. Then xo := v~ '(b(u — y;) + av) > 0 by (8.41). Define
a measure T = ,|xo — z|%8,,. By Proposition 8.23, @(7') := y, + fooo(x -
Z)7'dr(x) € B,,. We compute

v v
P@) =yt - -2 =p+ G—atib)=ut+iv=w

(iii) Suppose that @ € B, and @(z) = w. By Proposition 8.23, @ is of the form
(8.33). Inserting @(z) = w therein we derive

0= G = ) = mete =y + [ * Yt

=mwm—m+mwl e,



198 8 The Operator-Theoretic Approach to the Stieltjes Moment Problem

Fig. 8.1 The transformation H, and the set K3'

Since Im(z) > 0 and o > y,, we deduce that @ = y; and t = ¢§y, ¢ > 0. But
thenw = @(z) = y,—cz ', so that ¢ = z(y;—w). Hence ®() = y,— z(y“z/_W)‘

Let @ be this function. Clearly, @(z) = w. Since Im(z(w — y5)) = 0, we
derive from (8.41) that ¢ = z(y; — w) = v(a’b~! + b) > 0. This implies that

D eP,. a

By Theorem 8.24, the values of Stieltjes transforms of all solutions of the
Stieltjes moment problem for s are /,,,(z) = H (¢(z)), where ¢ € B, . From
Proposition 8.26 we deduce that these are precisely the numbers of the set

KS = H.(W(z.,) U {o0})

which is the right gray shaded area with boundary in Fig. 8.1.
Let us consider the boundary of the set KZS‘. Recall that K, denotes the Weyl circle
defined in Sect. 7.3. Then the boundary E)KZS't is the disjoint union of the sets

I_KS' := 9K>' N 0K, = H,([ys, +00) U {oo}),
34+ K> = 0KS\OK. = {H.(w) : w € dW(z. 7)), Im(w) > 0}.

From the discussion after Theorem 7.13 we know that for each w € 3_KZS‘ C 0K,
there exists a unique solution p of the Hamburger moment problem for s satisfying
1,(z) = w. Since w € 9K5', u is also the unique Stieltjes solution such that 1,,(z) =
w. Further, u is a von Neumann solution, that is, ord(x) = 0.

Now let w € 8+KZS‘. One easily verifies (see (8.40)) that Im(z(w — y5)) = 0.
Therefore, by Proposition 8.26(iii), there is a unique function @ € 3, such that
®(z) = w. Hence it follows from Theorem 8.24 that there exists a unique solution p
of the Stieltjes moment problem for s satisfying /,,(z) = w. In this case, ord(u) = 1.
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8.7 Exercises

1. Show s = (sj)jen, is a Stieltjes moment sequence if and only if the sequence
(50,0, 51,0, 52, ...) is positive semidefinite.

2. Let s = (s5j)jen, be a Hamburger moment sequence. Show that (s2))jen, is a
Stieltjes moment sequence.

3. Let s = (s)jen, be a Stieltjes moment sequence. Show that 5%, < scs; for all
m,n,k,l € Ngsuchthatk + [ = 2(m + n).

4. Let s be a Stieltjes moment sequence. Show that mg; = inf{A : A € supp ur}.

5. (A determinate sequence t growing faster than an indeterminate sequence s.)
Find Stieltjes moment sequences s = (,)zen, and ¢t = (t,),en, such that s is
Stieltjes indeterminate, 7 is Hamburger determinate, and lim,,— oo ZI =0.

Hint: Use Corollary 8.22 and Examples 4.18 for o = i and 4.23.

6. Let (an)new, and (Bn)nen, be positive sequences. Prove that there exists a
Stieltjes moment sequence s = (s,)nen, such that s, > o, and s,41 > Bus,
for n € INy.

7. Letze C4,te R,andw € C.

Re(z)
Im(z)
Re(z)
Im(z) <

8. Suppose thatz € C+ andu € Cy.Letn € Nand y,y € R,y # 0,y # 0.

a. Show thatw € W(z,t) if and only if Im(w) > 0 and Im(w)+Re(w) > 1.

Re(w—t)

b. Show that if w is an interior point of W(z, f), then Tm(w—r)*

a. Show that there are numbers ¢; > 0 and pairwise distinct points x; € R such
that ¢j(xj —2) = :l(u—Zyj) forj=1,...,n.

b. Define @y(7) := —y(n + 1) + Z};l x_:z” 7 € C4. Show that ¢, € Pisa
rational function of degree n satisfying @, (z) = u.

c. Show that @, # &; fory # y.

9. Suppose that s is an indeterminate Stieltjes moment sequence and z € C4. Let v
be an interior point of W(z, y;), w an interior point of Kf‘, andn € IN.

a. Show that there are infinitely many rational functions @ € ‘B, of degree n
such that @(z) = v.

b. Show that there are infinitely many solutions p of the Stieltjes moment
problem for s such that ord(i) = nand 1,(z) = w.

Hint for b: Use the construction sketched in Exercise 8. Show that the numbers
x; can be chosen positive for small y > 0; details can be found in [Ge].

8.8 Notes

The theory of the Stieltjes moment problem goes back to T. Stieltjes’ famous
memoir [Stj], which contains many basic results.
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The Friedrichs parameter has been identified in [Pd1]. Since these papers use
the parametrization in the form (7.18), their number is our —y,~ !, The Nevanlinna
parametrization for indeterminate Stieljtes moment sequences was first given by
H.L. Pedersen [Pd1]; it is also contained in [Sim1].

The use of the operators Ty and Tk and the corresponding approximants is due
to B. Simon [Sim1]. Our operator-theoretic approach is based on [Sim1] and [Ge].



Part 11
The One-Dimensional Truncated
Moment Problem



Chapter 9
The One-Dimensional Truncated Hamburger
and Stieltjes Moment Problems

In this chapter we are concerned with the following problem:

Let s = (sj)]'-”:0 be a real m-sequence, where m € Wy. When does there exist a
Radon measure p on R such that s; = fIR ¥ du(x) forallj=0,...,m?

This is the truncated Hamburger moment problem and in the affirmative case s is
called a truncated Hamburger moment sequence. If we require in addition that the
measure /4 is supported on R4, we get the truncated Stieltjes moment problem.

In Sects.9.1 and 9.3 the special case of a positive definite 2n-sequence is
studied in detail. Using quasi-orthogonal polynomials Gauss’ quadrature formulas
are derived (Theorems 9.4 and 9.6) and a one-parameter family of (n + 1)-atomic
solutions is constructed (Theorem 9.7). The associated reproducing kernel space
and the Christoffel function are investigated in Sect.9.3. In the short Sect. 9.2 we
apply some result from Sect. 9.1 to reprove Hamburger’s and Markov’s theorem in
the positive definite case.

The remaining part of the chapter deals with positive semidefinite finite
sequences. In Sect. 9.4 such sequences are characterized by integral representations
(Theorems 9.15 and 9.19). In Sect. 9.5 the Hankel rank of a positive semidefinite 2n-
sequence is introduced. The integral representation and the Hankel rank enter into
the treatment of truncated moment problems in Sect.9.6. Here basic existence
theorems for the truncated Hamburger and Stieltjes moment problems in the
even case m = 2n (Theorems 9.27 and 9.36) and in the odd case m = 2n + 1
(Theorems 9.32 and 9.35) are obtained. Further, neccesary and sufficient conditions
for the uniqueness of the representing measures are given.

Let us recall some standard notations. The real polynomials of degree at most n
are denoted by R|[x],. For a sequence s = (sj)j~y and 2n < m, the Hankel matrix
H,(s) is defined by H,(s) = (s;+j)2i=0, the corresponding Hankel determinant is
D, (s) := detH,(s), and L, is the Riesz functional on R[x],, defined by Li(+) = s.
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9.1 Quadrature Formulas and the Truncated Moment
Problem for Positive Definite 2n-Sequences

Throughout this section, we assume that n € IN and s = (Sj);zio is a real positive
definite 2n-sequence. That s is positive definite means that

n

> serir > 0 forall (&.... &) € R (E.....E)" #0. 9.1)

k=0
In terms of the Riesz functional L; on R[x],,, condition (9.1) is equivalent to the
requirement Ly(p?) > 0 for all p € R[x],, p # 0.

Lemma 9.1 Let 55511, j > n, be given real numbers. There exist real numbers s;
forie N, i>n+ 1, such that s = (si)ken, is a positive definite sequence.

Proof Since (sj)]zio is positive definite, the Hankel matrix H,(s) is positive definite.
Hence the Hankel determinant D,,(s) of s is positive. Let 55,4, be a real number.

The Hankel determinant D, 4 for the sequence (sj)fﬂ)'z is of the form

Dyy1 = Son+2Dn(8) + p(s0, . . . $20, S20+1)-

Here p is a real polynomial p in s, ..., $2,, $2,+1 that does not depend on s7,4>.
Since D,(s) > 0, we have D,4+; > O for sufficiently large s,,4,. Proceeding by
induction this extension procedure leads to a positive definite sequence s. O

Combining Lemma 9.1 with Hamburger’s Theorem 3.8 we obtain the following

Corollary 9.2 The truncated Hamburger moment problem for each positive definite
real 2n-sequence is solvable.

As in Chap. 5 we define a scalar product (-, -); on R[x],+1 by

(p.q)s = Ly(pq), p.q € Rix]u+t1. 9.2)

For this scalar product on R[x],+ and at a few other places we need an extension of
s to a positive definite (2n 4+ 2)-sequence. Such an extension exists by Lemma 9.1.
We fix this extension. Note that (9.2) also depends on the numbers s2,,+1, S2,+2-

Definition 9.3 A polynomial P € R[x],+1,P # 0, is called quasi-orthogonal of
rank n 4 1 if
LS(ij)=0 for j=0,...,n—1. 9.3)

(Since deg(Px/) < 2n, (9.3) does not require an extension of the 2n-sequence s.)

Proceeding as in Sect. 5.1 we obtain a unique sequence py, . . . , p,+1 of orthonor-
mal polynomials of the unitary space (R,+i[x], (-, )s) such that degp; = k and the
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leading coefficient of py is positive for k = 0,...,n + 1. Since then Ly(p;¥) = 0
forj < k, p, and p, 4+ are quasi-orthogonal of rank n 4 1. Therefore, for any ¢ € R,

P(x) = pnt1(x) + 1pa(x) 9.4

is quasi-orthogonal of rank n + 1 and degree n 4 1. Up to constant multiples all
quasi-orthogonal polynomials of rank n + 1 and degree n + 1 are of this form.

In what follows we fix a quasi-orthogonal polynomial P of rank n + 1 and degree
n + 1. By Proposition 5.28, P has n + 1 real zeros A; < A, < -+ < A,41. Let us
introduce the quantities

P(x) .
mi(x) = (= AP’ (Ay) and mj; = Ls(njz) >0, j=1,...,n+1, 9.5)
0() = LX,X(P()?C - f(z) ) 9.6)

and define an (n + 1)-atomic measure yp by

n+1
we =) md;,. 0.7)
j=1
Since 7P @ isa polynomial in x of degree at most n, the functional L, applies

to this polynomial and Q(z) is a polynomial of degree at most n. Clearly,

(x—=A1) .. (x= A=) = A1) oo (X = Apgr)
=21 o A = Aim) Ry = A1) o (A = Ag)
wi(h) =8; for ij=1.....n+1. 9.8)

]Tj(x) =

Now can can state and prove the first main theorem of this section.

Theorem 9.4 For each polynomial f € R[x],, we have

n+1
L = Y mfO) = [ 169 dupto) 9.9)
j=1
Further, forj=1,...,n+ landz € C\{A,...,, Apt1},
0k 0@ " my dpp(x)
my = Pi(A) = Ly(my) and P(2) Z A—z / ez (9.10)
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Proof For each p € R[x], we have the Lagrange interpolation formula

n+1

PO =D 7(x) p(d)). (9.11)

j=1

(To prove (9.11) it suffices to note the the difference of both sides is a polynomial
of degree at most n that vanishes at n + 1 points A;, so it is identically zero.)

Now fix f € R[x]»,. Since deg(P) = n + 1, there are polynomials gy € R[x],—1
and py € R[x], such that

f(x) = P(x)gr(x) + pr(x). (9.12)

The defining relation (9.3) for the quasi-orthogonal polynomial P yields Ly(Pgy) =
0, so that L,(f) = Ls(py). Further, since P(A;) = 0 and hence ps(4;) = f(4;) by
(9.12), combining the relations L,(f) = Ls(py) and (9.11) we obtain

n+1

L(f) = Y _ L(m)f (). (9.13)

j=1
Applying this formula to f = 7 by using (9.5) and 7;(Ax) = i by (9.8) we get

n+1
me = L(n}) = Y Li(m)m(A)® = Li(m) . k=1.....n+1. (9.14)

j=1

Inserting (9.14) into (9.13) we obtain (9.9).
Combining (9.14) with (9.5) and (9.6) we get

P(x) ) o’ (P(X) —P(lk)) _ 0

e = L) = LS((x_xk)P'uk) TR0 xmk )T PG

This yields the first half of (9.10).
Finally, we prove the second half of (9.10). Since degP = n + 1, Phas n + 1
simple real zeros, and deg Q < n, there exists a partial fraction decomposition

n+1

0(2) M
_ = 9.15
P(Z) ; Aj —Z ( )

with p; € R. Here the coefficients u; are

e G=A0E _ 0y _
A= A ) Py
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by the first part of (9.10). Inserting u; = m; into (9.15) gives the second half of
(9.10). O

Formula (9.9) is usually called a Gaussian quadrature formula. If the functional
L, is of the form Ly(f) = [ f(x)d(x) for some measure j, then (9.9) reads as

n+1

[ 10dueo = 3 mr. 9.16)

j=1

The numbers A; are called nodes and the numbers m; weights of the quadrature
formula. For general functions f the sum on the right of (9.16) can be considered as
an approximation of the integral on the left.

Theorem 9.4 says that the identity (9.16) holds for all polynomials f € R[x],,.
But (9.16) does not hold for f € R[x]z,+2. For instance, if f(x) = ]_[/’.’;Lll (x — A2,
then the right-hand side of (9.16) vanishes, but Ly(f) = [fdu > 0, because s is
positive definite.

Before we continue we derive a nice application of formula (9.9).

Corollary 9.5 Let P and P be two quasi-orthogonal polynomials of rank n + 1 and
degree n + 1 with zeros Ay < +++ < Apy1 and Ay < --- < Apyy, respectively. Then
either P is a multiple of P or the sequences (Ai,--+,Any1) and (A1 Ant1)
are stricly interlacing, that is, for any k there is a j such that Ay < A; < Agy1. In
particular, if 1,1 € R and t # 1, then the zeros of the quasi-orthogonal polynomials
Py and P defined by (9.4) are strictly interlacing.

Proof Fix k € {1,...,n} and put

n+1

i) = (= A (x = A1) jl:!( v

Then fi € Rlx]ou, so (9.9) applies and yields Ly(fy) = 0, since fi(;) = 0 for
j=1,...,n+ 1. Applying the same formula with P replaced by P we get

n+1

L(f) = Y _mifi(A;) = 0. 9.17)

j=1

The zeros of f; are precisely the numbers A; and we have f;.(x) < 0 forx € (Ag, Ary1)
and fi(x) > 0 for x < Ay and x > Ay41. Therefore, if there were no j such that
Ak < Aj < Ag41, then all (!) numbers A; would have to be contained in the zero set

of f. This implies that A, = A for all &, so P is a constant multiple of P. O

As in Sect.5.2 the orthonormal polynomials pi, k < n, satisfy the recurrence
relation (5.9); let a, be the corresponding Jacobi coefficient from (5.9).
In the case P = p,+; we have the following stronger result than Theorem 9.4.
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Theorem 9.6 If P = p,41, then formula (9.9) holds for all f € R[x]2,+1 and

m = apaQp ) = Y pe)? j=1.....n+ 1 (9.18)
k=0
Conversely, zfthere are real numbers A and positive numbersmj, j = 1...,n+1,

such that)&l < e < ln+1 and

n+1

L(f) =) mfQu) for all f€R[xo1, 9.19)

k=1

then ij = Aj and m; = mj for j=1,...,n + 1 and formula (9.19) coincides with
(9.9).

Proof Let f € R[x]2,+1. Then the polynomial g; in (9.12) belongs to R[x],.
Therefore, since P = p,41, we have L;(Pgy) = 0. Proceeding now as in the proof
of Theorem 9.4 it follows that formula (9.9) holds for f as well.

Next we prove (9.18). Since py, ..., p,+1 are orthonormal polynomials for the
extended sequence (by Lemma 9.1), the formulas (5.47) and (5.51) proved in
Sect. 5.5 are valid. We set z = A; in the Christoffel formula (5.47) and remember
that p,+1(A;) = 0. Inserting the definition (9.5) of 7j(x) for P = p, 4 we derive

Prtr1(X)pa(A))
X

> ppe) =a, T
J

k=0

= anT; (X)P;H (A)pn(A)).

1/2

Applying the functional L, by using that pg = s, '~ and m; = L,(m;) we get

1= 55" Ly(1) = Ly(po)po(A)) = ZL (POPEA) = aupu(A))p) 1 (Ap)m;
k=0

which yields the first equality of (9.18). The second equality follows from the first
by setting x = A; in formula (5.51) and using once again that p,11(4;) = 0.
Finally, we prove the uniqueness assertion. We set

P(x) = (x = A1) ... (x = Aptr)

and define 7; and m; by (9.8) with P replaced by P and A; by A i

By deg; = nand P = p,41, we have Ly(P7;) = 0. Since deg(P7j) < 2n + 1,
formula (9.19) applies to P7; as well. Using the relation fr](ik) = 8 (by 9.8))
we obtain 0 = Ly(P7j) = ij(k) Thus, P()L/) = 0, since m; > 0. That is, the
numbers )L are the zeros of P. Therefore, )k = Ajforj=1,....,n+ 1and Pisa
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constant multiple of P = p,41. Hence ; = m;, so that m; = Ly(7j) = Ly(7;) = m;
by (9.10)forj=1,...,n+ 1. O

The next theorem summarizes and restates some of the preceding results on the
quadrature formula (9.9) in terms of the truncated Hamburger moment problem.

Theorem 9.7 Suppose that s = (Sj)jzio is a real positive definite 2n-sequence. Let
Wy denote the (n+1)-atomic measure jip, for the quasi-orthogonal polynomial P
defined by (9.4) and (9.7), respectively.

(i) Each measure |1;, t € R, is a solution of the truncated Hamburger moment

problem for s, that is, we have s; = fxf dus(x) forj=0,...,2n.

(ii) For 1,1 € R, t # i, the atoms of W, and ; are strictly interlacing, so p, and
Wi have disjoint supports.

(iii) For any ¢ € R that is not a zero of p,(x), there exists a unique t € R such that
¢ is an atom of ;.

(iv) For each real number sy,+1 there is a unique (n + 1)-atomic measure v such
that so, . .., Sop+1 are the moment of v. In fact, v is the measure (Lo when the
sequence (sj)f:(')'l is extended to a positive definite (2n+-2)-sequence (sj)f:(')'z.

Proof (i) and (ii) follow from formula (9.9) and Corollary 9.5, respectively.

(iii) Setting ¢ := —p, ()" p,u+1(¢), the number ¢ is a zero of the quasi-orthogonal
polynomial

Py (x) = pus1(x) = pu(D) " Pt 1 (O)pa(x)

and hence an atom of w,. (ii) yields the uniqueness assertion.

(iv) We extend (sj)jzg)'l to a positive definite real sequence (s,)nen, (by Lemma9.1)

and put P := Py = pp+1. Then, by Theorem 9.6, (9.9) holds for the

polynomials x°, . .., x***! which means that the measure 11y has the moments
S0, - - - »S2n41. The uniqueness of v = o follows from the second part of
Theorem 9.6. O

We restate assertion (iv) of the preceding theorem separately as

Corollary 9.8 For each positive definite real sequence (sj)izio and each real
number § there exists a unique (n + 1)-atomic measure vg such that

5= /xjdVE(x) forj=0,...,2n and & = /xz"Hdv;(x).

9.2 Hamburger’s Theorem and Markov’s Theorem Revisited

In this section, we assume that s = (s,)nen, 1S a real positive definite sequence.
Recall that p,, and g,, are the orthogonal polynomials of the first and the second kind,
respectively, associated with s.
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We apply Theorem 9.4 with P = p,4+1,k = n + 1, and set py := wp. Then
gr = Q by (9.6). Let A(I") < -+ < A" denote the zeros of py and ml(.k) the
corresponding weights. From (9.9), applied with f = ¥/, and (9.10) we obtain

sj = /]in dug(x), j=0,....,k—1, (9.20)
k (k)
q(z) n; / dpui(x) ®) ®
_ — = , z€ C\{A), ... A L (9.21)
Pr(z) ;/\;k) —z R X—2Z ‘

Since i (R) = so for all k, (sy!/)ren, is a sequence of probability measures.
Hence it follows from Theorem A.9 that there exists a subsequence (i, )ren, Which
converges vaguely to some measure i € M (R).

Let L be the linear functional on R[x],—; defined by L**(f) = [ f dju. Then,
by (9.20), (L) e is a directed sequence of linear functionals on R[x] according to
Definition 1.17. Hence lim,,_, oo L*» = L* by Lemma 1.18 (or Theorem 1.20) and

LA(Y) = DM (W) = / ¥ dp, = s; for k, > j
R

by (9.20). Therefore, u is a representing measure for s, that is, u solves the

Hamburger moment problem for s. Thus we have given a third proof of the main

implication (ii)— (i) of Hamburger’s theorem 3.8 for positive definite sequences.
By formula (5.60) the sequence ()L(lk))ke]N is decreasing and the sequence

()k,((k) )ken is increasing. Therefore, the limits
T (k) _ T (k)
o= lim A}’ e {—oco}jUR and pB,:= lim A;” € RU {400}
k—o00 k—o00

exist, see Corollary 5.33. Let J; denote the smallest closed interval which contains
(o, Bs). That is, J; is the smallest closed interval which contains all zeros of the
orthonormal polynomials p;, k € IN. Note that oy, 5, and J; depend only on the
sequence s, but not on any representing measure. Since supp i < [A gk) , )k,(ck)] c Js
for k € IN by (9.21), it follows that supp & < J;. In the literature [Chil] a solution
of the moment problem with support contained in J; is called a natural solution.

Now we use formula (9.21) to develop a second approach to Markov’s theo-
rem 6.29.

Theorem 9.9 Suppose that s is a determinate positive definite sequence s. If i and
Js are as above, then

fim 9@ _ / R (9.22)
Ts

N k=00 pi(2) X—2z

where the convergence is uniform on compact subsets of C\J..
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Proof By Theorem 1.20, (14x)rew converges vaguely to u. Let z € C\J;. Then the
function f;(x) = lz is in Cy(J;). Therefore, since supp px € Js and supp u < J,
Proposition A.9 implies that

Then (9.22) is obtained by inserting (9.21) on the left-hand side of (9.23).

Now we prove the assertion concerning the uniform convergence. Let K be a
compact subset of C\J;. Then ¢ := dist (K, J;) > 0. By (9.21), the convergence in
(9.22) is uniform on K provided this holds for the convergence in (9.23). Let ¢ > 0
be given. Since K is compact, there are finitely many numbers z, ..., zx such that
the open discs centered at z; with radius & cover K. Given z € K we choose j such
that |z — z;| < ¢. Therefore, we have

dpu(x)

X—Z ’

dpn(x)

X—2Z

lim (9.23)
k—o00 T

1 1 |z — 2] e
— = < for x e J;.
x—z x—z| |x=2x—z)| "
Let k € IN. Then, using that supp ux € Js, supp 4 € Js, and ux(R) = u(R) = so,
we derive
d d
/ m@_/#@) 024)
xX—z xX—z
/ dp(x) duk(x) n / dp(x) / dp(x) / dp(x) du(x)
X—2Z X—Z X—Z X—Z X—Z X—Z
g du(x dug(x
5s02+/ “()—/ “"()+s02 (9.25)
C X — Zj X — Zj C
Foreachj = 1,...,k, the middle term in (9.25) converges to zero by (9.23). Hence
for sufficiently large k the expression in (9.24) is less than 3esoc™2. This proves that
the convergence in (9.23) is uniform on K. O

9.3 The Reproducing Kernel and the Christoffel Function

Throughout this section, s = (sj)]zio is again a real positive definite 2n-sequence.
Let (Clx],, (-, -)s) be the complex Hilbert space with scalar product defined by
(p.q)s = L(pq), p. q € Clx],, where g(x) := Y, a;¥’ for g(x) = 3, ap/ € C[],.
As above, py, . .., p, denote the corresponding orthonormal polynomials. Recall
that p; € R[x] and hence p;(y) = p;(y) fory € C. Then

Ka(x,y) ==Y pe@pe(y), xyeC, (9.26)

k=0
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is a reproducing kernel on the Hilbert space (C[x],, (-, -)s), that is, we have

p(y) = (p(x), Ku(x,y))s and (K,(x,y),p(x))s = p(y), p € Clx],, y € C.
(9.27)

As a sample we prove the second equality; the proof of the first equality is similar.
We write p = ', ¢;p;(x) and derive

n n

(Ka (6 3), 005 = D pe) ¢ (). pi@))s = D eipr() 8 = p(y).

Jj.k=0 J:k=0

Note that K,,(z,2) = Y 1o [Pc(2)|*> > 0 forall z € C, since py(z) > 0.
Definition 9.10 The n-th Christoffel function is

n -1
(@) = Ku(z,2) ™' = (Z ka(Z)IZ) , zeC. (9.28)
k=0

The following proposition expresses the kernel K, (x,y) and the Christoffel
function p,(z) = K,(z.z)~! in terms of determinants involving the moments.

Proposition 9.11 Forx,y € C and n € INy we have

0 1 x Loox!
1 so 51 Sn
_ S1 S5 ...S
K.(x,y) = -D;' |7, °1 %2 mH (9.29)
Yo 82 83 ... 842
V' Sn Sut1 S$2n

Proof Let G(x,y) denote the determinant on the right. Fix y € C andj € {0, ..., n}.
We compute L (¥ G(x,y)). That is, we multiply the first row in the determinant by
¥ and then apply the functional Ly, by using the multilinearity of determinants. As a
result, the first row of G(x, y) is replaced by (0, s, Sj+1, - - ., Sa4;). Then we subtract
the (j + 2)-th row (¥, s}, Sj+1, - - - , Su+;)- This does not change the determinant and
yields the first row (—/,0,...,0). Finally, we develop the resulting determinant
after the first row and get L, (G(x,y)¥) = —y/D,.
Set H(x,y) := —D; 'G(x,y). Since G(x,y) € R[x,y], we have

(xj,H(x, y))x,x = _Dn_lLs,x(xj G(x,y)) = _Drjl(_y/Dn) = yl
This implies that { p(x), H(x, y))sx = p(y) for all p € Clx],. In particular,

(Kn(x,2), H(x,y))sx = Ky (v,2) for y,z € C. (9.30)
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On the other hand, it follows from the definition of G that G(z,y) = G(y,z).
This implies that H(z,y) = H(y, z). Therefore, by the second equality of (9.27),

(Ku(x,2),H(x,y))sx = H(z,y) = H(y,z) for y,z € C. (9.31)

Comparing (9.30) and (9.31) we get K, (v,z) = H(y, z), which is the assertion. O
The next proposition characterizes the function p, by an extremal property.

Proposition 9.12 For any z € C we have

min{L,(pp) : p € Clxl,. p(2) = 1} = Ku(z.2)™" = pul2) (9.32)

and the minimum is attained at p if and only if p(x) = K, (x, 2) pn(2).

The proof will be derived below from Proposition 9.14. Since the latter result is
used in Sect. 10.7 in the real setting, we formulate it in the real and complex cases.
It is based on the following fact from elementary Hilbert space theory.

Lemma 9.13 Let f # 0 be an element of a real or complex unitary space H. Then

min{llg|*: g € H. (¢.f) =1} = /17 (9.33)

and the minimum (9.33) is attained at g if and only if g = f|| f|| 2.

Proof Put go = fI|fI7>. If {g.f) = 1, then (g — go.f) = (g.f) = I/ *(f.f) = 0.
Thus g — go-Lgo. Therefore, by Pythagoras’ theorem,

Igl* = llgo + & — goll* = llgoll* + llg — goll*-

Hence the minimum is attained at g if and only if g = go. O

Proposition 9.14 Ler K = C or K = R. Suppose that s = (sj)izio is a
positive definite real sequence and let py, . .., p, be the corresponding orthonormal
polynomials. Then, for any z € IK we have

n —1
min{L(pp) : p € Klx]u, p(z) =1} = (Z ij(Z)IZ) (9.34)

J=0

and the minimum is attained at p if and only if

n n —1
P = pix)p) (Z |pi(z)|2) : (9.35)
j=0 i=0
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Proof Let p € K[x],. We develop p with respect to the orthonormal basis { p;} of
the unitary space (IK[x],, (-, -}s) and obtain

n

n
p=_ ¢pj. where ¢; = (p.p). and Li(pp) = [pI2 =Y lgjI.
Jj=0 Jj=0

Then p(z) = }_; ¢jpj(z). Hence, the problem in (9.34) is to minimize }; |cj| for
g = (co,--.,¢,)" € K"*! under the constraint } ¢;p;(z) = 1. This is solved by
Lemma 9.13, applied to the unitary space IK"™! and f := (po(2).....p.(z))7. The
minimum is || f|| 72 and it is attained if and only if ¢; = p;(z) || f|| 7> forj =0,...,n.
Inserting these facts yields the asserted formulas (9.34) and (9.35). ]

Proof of Proposition 9.12 We apply Proposition 9.14 in the case K = C. By (9.28)
the minimum in (9.34) is p,(z). Comparing (9.35) and (9.26) we conclude that the
minimum is attained if and only if p(x) = K, (x, 2) p,(2). O

9.4 Positive Semidefinite 2n-Sequences

In the rest of this chapter we investigate positive semidefinite finite sequences.
The following theorem characterizes the positive semidefiniteness of a 2n-
sequence in terms of an integral representation (9.36).

Theorem 9.15 For any real sequence s = (sj)jzio the following five statements are
equivalent:

(i) s is positive semidefinite, that is,

n
Z skricker = 0 for (co.....cp) € RMTL
k=0

(i) Hy(s) = 0.

(iii) Lg(p*) = 0 forall p € Rfx],.

(iv) There exists a Radon measure p on R and a real number a > 0 such that
R[X]Zn g El(Rv M),

5j = / ¥du(x) for j=0,....2n—1, and s, =a+/x2"d,u(x).
R R
(9.36)

(v) There exists a k-atomic measure i on R, where k < 2n + 1, and a constant
a > 0 such that (9.36) holds.
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Proof The equivalence of (i), (ii), and (iii) is easily verified by the same reasoning
used in the proof of Hamburger’ theorem 3.8; we do not repeat it here.

(iii)—(v) The proof is based on Proposition 1.26. Let X’ := R U {oo} denote the
one point compactification of R. Then the functions

wix) =X+ j=0,....2n,

extend to continuous functions on X’ by setting uj(co) = 0 forj =0,...,2n—1
and u,,(00) = 1. Let E be the span of these functions in C(X; R).

We define a linear functional L on E by Z,(uj) = Ly(x¥),j = 0,...,2n. Let
f € E4. Then g := (1 + x*")f € R[x]», is nonnegative on R. Therefore, by
Proposition 3.1, we have g = p?> + ¢* with polynomials p,g € R[x],. Thus we
obtain f = (p* + ¢*)(1 + x¥)~! and hence L(f) = Ly(p* + ¢*) by the definition
of L. Since Ly(p?) > 0 and Ly(¢?) > 0 by (iii), L(f) > 0. Thus, Proposition 1.26
applies with g = uy, and there is a k-atomic positive measure ft on X, k < 2n + 1,
such that L(f) = [fdf forf € E.

Set a = fi({oo}). We define atomic measures ft and u on R by (M) := (M)
forM € Rand du := (1 + x*")"'dji. Forj = 0, ..., 2n we compute

s; = Ly(¥) = L(uj) = /X u;(x) dji = auj(co)

X .
+ dA:a&n—}—/x/d,
/IRI+_X2” /"L ],2 R H

which proves (v).
(v)—(iv) is trivial.
(iv)—(ii) Let (co, . .., c,)T € R"T!. Using (9.36) we derive

n n n 2
Z Sk+ICKC] = aci + Z / ckcle‘HdpL = aci + / (chxl‘) du >0,
R R

k=0 k,1=0 k=0
(9.37)

since a > 0. This proves (ii). ]

The positive semidefiniteness of s is not sufficient for representing all numbers s;
as moments s; = [ ¥dp, see Example 9.17 below. It implies only a representation
(9.36) with 5,5, > f x*"du. Some authors consider (9.36) as the “right version”
of the Hamburger truncated moment problem. We require that s, is the (2n)-th
moment of p as well, that is, sy, = f x2n du. To obtain the latter equality
additional conditions are needed; they depend on whether or not we are dealing
with the Hamburger or Stieltjes truncated moment problem and in the even or odd
case.



216 9 The One-Dimensional Truncated Hamburger and Stieltjes Moment Problems

Our main existence results on the Hamburger truncated moment problem are
derived from the following corollary.

Corollary 9.16 Lets = (sj)jzio be a real sequence and suppose that Hy,(s) > 0.

(1) There is a k-atomic positive measure |4 on R, k < 2n + 1, such that
L(p = [ peodu for pe Rl 9.38)
R

If Ly(f?) = 0 for some f € R[x],, then supp u S Z(f).

(ii) Suppose that there exists a polynomial f € R[x] of degree n such that Ly(f*) =
0. Then s is a truncated Hamburger moment sequence and supp i < Z(f) for
each representing measure [L of s.

Proof
(i) Letf(x) = > j_ocnx". Using (9.36) and (9.37) we get

0=Ly(f = Z Skpicke = act + / f(x)?dpu. (9.39)
R

k,1=0

Since deg(f) = n, ¢, # 0.Hence a = 0, so that s is truncated moment sequence
by (9.36). Inserting a = 0 into (9.39), Proposition 1.23 implies that suppu <
Z(f).

(i) The first assertion is only a reformulation of Theorem 9.15 (i)—(v).
If deg(f) = n, the second assertion follows from (ii). If deg(f) < n,
then Ly(f?) = ff2 du = 0 by (9.38), so that suppu S Z(f) again by

Proposition 1.23. O
Example 9.17 Let s = (0,0,1). Then H;(s) > 0. Since s9 = 0, s cannot be
given by a Radon measure on R, but s has a representation (9.36) with © = 0
anda = 1. o

Example 9.18 Let s = (16,0,4,0,4). Then the sequence s has a representation
(9.36) with u = 88_; + 88% and a = 3. Since det H(s) > 0, s is positive definite,
so it also has representing measures on R by Corollary 9.2; one such measure is
V=261 + 1280 + 26;. o
The next theorem is the counterpart of Theorem 9.15 for the positive half-line.

Theorem 9.19 Let s = (sj)]'-”:0 be a real sequence and set Es := (s1,...,Sn). The
following are equivalent:

(i) m = 2n: H,(s) > 0 and H,—(Es) > 0, that is,

n n—1

Z Sk+ickc; > 0 and Z Skpiicke; =0 for (cor... )l € RV
k=0 k=0
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m=2n+ 1: H,(s) > 0 and H,(Es) > 0, that is,

n n

Z Sk+icke; > 0 and Z Skpiicke; =0 for (cor... )’ € RV
k=0 k=0

(i) m=2n: Ly(p*) >0 and Ly(xq*) > 0 forp € Rx],.q € R[x],—1.
m=2n+1:Ly(p?) >0 and Ly(xg*) > 0 for p,q € R[x],.
(iii) There exists a Radon measure p on R4 and a real number a > 0 such that

Rix]m € ﬁl(R+a ),

o0 o0
sj:/ XYdux) for j=0,....m—1, and sm:a—i—/ X" du(x).
0 0
(9.40)
(iv) There exists a k-atomic measure L on R4, where k < m + 1, and a constant

a > 0 such that (9.40) holds.

Proof The proof follows the same reasoning as the proof of Theorem 9.15. We
sketch only the proof of the main implication (ii))—(iv). Let X = R4 U {400}
denote the one point compactification of R+ and E the span of continuous functions

uj(x) = Y14+ j=0,...,m,

on X, where uj(+o00) :=0ifj =0,...,m— 1 and u,,(+00) := 1.

We define a linear functional L on E by Z,(Mj) = Ly(xj). Let f € Ey. Then
g = (1 +xX™)f € Rjx],, is nonnegative on R. Therefore, by Proposition 3.2, the
polynomial g is of the form ¢ = p + xq, where p € 2,21, qE€ Zﬁ_l if m = 2n and
p,q € 2,21 if m = 2n + 1. Because of these formulas the conditions in (ii) imply
that Z(f) > 0. Therefore, by Proposition 1.26, L is given by some k-atomic positive
measure i on X, where k < m + 1. Continuing as in the proof of Theorem 9.15 the
formulas in (9.40) are derived. O

9.5 The Hankel Rank of a Positive Semidefinite 2n-Sequence
Lets = (sj)fio be a real sequence. We define the kernel vector space of s by
N :={p € Rlx]s : Li(pq) = 0 for q € R[x], }.

The first assertion of the following lemma gives another description of A,
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Lemma 9.20

(i) Forp = Y _gax’ € R[x],, setp := (ao. ....a,)" € R""'. Then the map

p = P is a bijection of N on ker H,(s). In particular,
dim N; = dim ker H,(s) and rankH,(s) =n+ 1 — dimN. (9.41)
(ii) Ifs is positive semidefinite, then Ny = {p € R[x], : Ly(p*) = 0}.

Proof
(i) Forp =37 yaw € Rlx], and g = 377_; b¥' € R[x],, we compute

2n 2n
L(pg) = Y L aiby = Y sivjaib; = §" Hy(s)p.
ij=0 ij=0

Therefore, p € N if and only if p € ker H,(s). Hence p — p is a bijection of
N; on ker H,,(s). Obviously, this implies (9.41).
(i) The left-hand side is contained in the right-hand side by setting p = g.
Since s is positive semidefinite, Ly(f>) > 0 for f € R[x],. Hence the
Cauchy—Schwarz inequality (2.7) holds, that is, Ly(pg)> < Ly(p?)Ls(¢*) for
p.q € R[x],. Therefore, L;(p*) = 0 implies L;(pg) = 0. O

Clearly, M is a linear subspace of R[x],. Therefore, if Ny # {0}, there exists a
unique monic polynomial f € R[x],, f; # 0, of lowest degree in .

Definition 9.21 If N # {0}, we call f; the minimal polynomial associated with s
and the number rk(s) = deg(f;) the Hankel rank of s. In the case N = {0} we set
rk(s) =n+ 1.

The Hankel rank plays a crucial role in the truncated moment problem.

Clearly, rk (s) = 0 if and only if f; = 1, or equivalently, sy = --- = s, = 0.
Further, by definition and Lemma 9.20(i), we have rk (s) = n + 1 if and only if
N; = {0}, or equivalently, rank H,(s) = n + 1.

Let us write the Hankel matrix H, (s) as

H,(s) = [vo, ..., vnl,

where v; = (sj, ... ,sj+,,)T,j =0,...,n, are the column vectors of H,(s).
The second assertion of the following lemma is usually called Frobenius’ lemma
in the literature, see e.g. [Gn, Lemma X.10.1].

Lemma 9.22 Suppose that 1 < rk (s) < n.
(1) rk (s) is the smallest integer r, 1 < r < n, such that the column vector v, is in

the span of vy, ..., v,—1, or equivalently, there are reals Ay, . . ., A,—1 such that

Sjtr = /\r—lsj—i-r—l + -+ A()Sj for j=0,...,n. (9.42)
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If this is true, then we have

i) =x =A™ = = ix = Ao
(11) Drk(s)—l(s) 75 0 and Drk(s)(s) =0.
Proof
(1) Since 1 < rk(s) < n, the minimal polynomial f; is defined and we have

(i)

deg(f,) > 1, as noted above. Let f(x) = x" — A, x ! — .. — A1x — Ao,
where r € {1,...,n}and A¢,...,A,—; € R. Then

Li(¥f) = Sjqr — Ap—1Sj4r—1 — =+ — A1sj41 — Aosjy j=0,...,n. (9.43)

Hence f € N if and only if (9.42) holds, or equivalently, v, = Aovp + --- +
Ar—1V,—1. Thus the smallest r such that v, € span{vy, ..., v,—1} is obtained if
and only if the monic polynomial f has the lowest possible degree in Nj, that
is, if f = fi.

Let Ay = |[vo,...,Vk—1] denote the matrix with columns vy, ..., vi—;. By
(1), rk (s) is the smallest index r such that v, belongs to the linear span of
V0yevey Up—1.

Since v, is in the span of vy, ..., v,—, we have rankA,;; < r + 1. Thus
D,(s) = 0.

Because r is the smallest such number, vy . .., v,—; are linearly independent
and hence rank A, = r. Further, by (i) there are real numbers A, ..., A,—; such
that the equations (9.42) hold. It follows from (9.42) that each row of A, is a
linear combination of the » preceding rows. Therefore, each row of A, is in the
span of the first 7 rows of A,. Since rank A, = r is also the maximal number of
linearly independent rows, the first r rows of A, are linearly independent. This
implies D,_;(s) # 0. O

Example 9.23 Letn = 4and s = (1,1,1,1,0,0,0,0,0). Since Ds(s) = 0, we
easily derive from Proposition 9.25(i) that vk (s) = 4. Then f; = x* Dy(s) =
D;(s) = 1, and D (s) = D,(s) = 0. Since Ly((1 — x?)?) = —1, s is not positive
semidefinite! o

In the rest of this section, the sequence s is positive semidefinite. Then we have

H,(s) = 0and Ly(p?) > 0 for p € R[x],. From formula (9.41) and some elementary
linear algebra we obtain the following lemma; we omit its simple proof.

Lemma 9.24 [fs is positive semidefinite, then the following are equivalent:

(i) s is positive definite.
(i) H,(s) > 0.
(iii) Dy(s) # 0.

@iv

) rk(s) =n+ 1.

Some important properties of rk (s) are collected in the next proposition.
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Proposition 9.25 Suppose that s:(sj)%io is positive semidefinite and rk(s) < n.

(@)
(i)
(iii)
(iv)

If n—1—1k(s) >0, then pf; € N for p € Rlx]y—1—rk (s)-

rk (s) <rank H,(s) < rk(s) + 1.

rk (s) = rank H,,(s) if and only if X" O)f, € N.

rk (s) is the smallest number r € Ny such that D,(s) = 0. More precisely,

Do(s) > 0, ... Duye(5)-1(5) > 0, Dyyey(s) =0.,....Dy(s) =0.  (9.44)

(In the case rk (s) = 0, the set of inequalities should be omitted.)

Proof

@

(i)

(iii)

(iv)

Since f; € N, Corollary 9.16(i) applies, so there exists a Radon measure p
such that supp 0 € Z(f;) and Ly(¢) = [ qdp for g € R[x]p,—1. Therefore, if
P € R[x]p—1—rk (), then (pf)? € Rlx]pu— and pf; € N. since

L((pf)?) = / PO ) =0

(fs

First we note that the following set is a basis of the vector space R[x],, :
K Xf 10, € Np,0 < i < rk(s) — 1,0 <j < n—rk(s)). (9.45)

If rk(s) = n, then the assertion is obvious. Hence we can assume that
rk(s) < n. By (i) we have ¥f;, € N forj = 0,...,n — 1 — rk(s). Thus,
dimN; > n — rk(s).

Now we prove that dim Ny < n + 1 — rk(s). Assume the contrary, that
is, dim N, > n + 2 — rk(s). Since (9.45) is a vector space basis of R[x],, it
follows from (i) that there exists a polynomial f € R[x],,f # 0, with deg(f) <
rk(s) = deg(f;) in N;. This contradicts the choice of f;. Hence dim N <
n 4+ 1 — rk(s). Therefore, rk (s) < rank H,(s) < rk(s) + 1 by (9.41).

By (9.41), rk (s) = rank H,(s) if and only if dim A, = n + 1 — rk(s). Since
rk(s) is the lowest degree of nonzero polynomials in A and (9.45) is a basis
of R[x],, we conclude from (i) that the latter is equivalent to x"~*<©)f; € A/,
Setr:=rk(s). If r =0, thensy =--- = s, = 0, as noted above. Hence s; =
0 for all j, since c is positive semidefinite, so that Dy(s) = 0 fork =0,...,n.

Assume now that r > 1. Then, by Lemma 9.22(ii), D,—;(s) # 0 and
D,(s) = 0. Since H,(s) > 0 by assumption, D,_;(s) > 0. Hence the matrix
H,_(s) is positive definite and therefore Dy(s) > 0 fork = 0,...,r— 1. Since
D,(s) = 0, the sequence (sj)jz;o is not positive definite, hence neither is the
sequence (s;)7%, and so Di(s) = O for k = r 4 1,...,n. This completes the
proof of (9.44). O
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Let us illustrate the preceding in an important special case.

Example 9.26 Suppose s has a k-atomic representing measure yt = Z,]'(=1 m;d; with
k < n.Letf € R[x],. Thenf € A if and only if L,(f?) = Z;‘Zl mf (1))* = 0, or
equivalently, f(t;) = -+ = f(tx) = 0. Therefore, f,(x) = (x —t;)...(x — ;) and
rk(s) = k. By Theorem 9.27 (i)—(iii) below, we also have rank H,(s) = k. )

9.6 Truncated Hamburger and Stieltjes Moment Sequences

In this section, we settle the truncated Hamburger and Stieltjes moment problems
for real sequences s = (sj)]zio (even case) and s = (sj)jzfo'1 (odd case).

Theorem 9.27 (The Hamburger Truncated Moment Problem; Even Case) For
any real sequence s = (sj)jzio the following are equivalent:

(i) s is a truncated Hamburger moment sequence.
(ii) There exist reals syp+1, San+2 such that Hy,41(5) > 0, where 5 := (sj)jzigz.
(iii)) H,(s) > 0 and rank H,(s) = rk(s).

If rk(k) < n, or equivalently, if N # {0}, these conditions are equivalent to:

(iv) H,(s) > 0 and X" "7*Of, € N.
(V) H,(s) > 0 and there exists a polynomial of degree n in N.

Suppose that (i) is satisfied. Then s has an rk(s)-atomic representing measure.
Further, s has a unique representing measure | if and only if rk(s) < n, or
equivalently, D, (s) = 0. The atoms of this measure are the zeros of f; and

[supp 1| = [Z(fs)| = rk(s) = rank H,(s). (9.46)

Proof

(1)—(ii) From (i) and Corollary 1.25 it follows that s has a finitely atomic
representing measure 4. Hence p has all moments. Then, setting s, = [ x' du for
[ =2n+41,2n+ 2, 5 is a truncated moment sequence and hence H,+(5) > 0.
(i))—(i) Since H,,+1(5) > 0, Corollary 9.16(i) applies with s replaced by 5 and n by
n + 1. Then Eq. (9.38) therein implies that s; = fxf duforj=0,...,2n.

Next we treat the case rk(s) = n+ 1. Then N; = {0} and rank H,(s) = n+ 1 by
(9.41) and Definition 9.21. The implication (i)—(iii) is clear. We prove (iii)— ().
Since H,(s) > 0 and rank H,(s) = n + 1, the sequence s is positive definite.
Therefore, by Theorem 9.7, s has a one-parameter family of (n + 1)-atomic
representing measures. Thus in the case rk(s) = n+ 1 all assertions of the theorem
are proved.

In the rest of this proof we assume that rk(s) < n. Then N # {0} and the
minimal polynomial f; is defined.
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(i)—(iv) By (i), s has a representing measure . Hence H, (s) > 0. Since f; € N,
we have supp u € Z(f;) by Proposition 1.23 and therefore

L@ 0%)%) = / RO (02 4y = 0,

Z(f5)

That is, X" **Of, € N and (iv) is proved.

(iv)—(v) is trivial, since x"_rk(‘”fY belongs to N and has degree n.

(v)—(i) follows at once from Corollary 9.16(ii).

(iii)<«>(iv) is clear by Proposition 9.25(iii).

This completes the proof of the equivalence of statements (i)—(v).

Suppose that (i) holds. Let u be a representing measure for s. As noted above,
suppu € Z(f;), so u is k-atomic with k < deg(f;) = rk(s) = rank H,(s) by
(iii). By assumption, rk(s) < n. Thus, k < n. Hence, as noted in Example 9.26,
k = rk(s). The preceding proves all equalities of (9.46).

Let fi be another representing measure for s. Let Z(f;) = {t1,...,%}. Then
there are nonnegative numbers m;, n; such that = Z;(:l m;8; and i = Z]lle n;d.
Since k < n, there are interpolation polynomials p; € R[x], such that p;(#}) = §;
fori,j = 1,...,n. Then Ly(p;) = [pidp = m; and Ly(p;) = [pidit = n;, so
that m; = n; for all i. Hence u = fi. Thus s has a unique representing measure if
rk(s) <n. O

Remark 9.28 The proof of (i)—(iv) uses the same reasoning as the proof of
Proposition 9.25(i), now applied with p = x"7*¥¢)_ Such arguments and the
uniqueness proof based on interpolation polynomials often appear (for instance, in
the proofs of Theorem 10.7 and Proposition 17.18) and in slightly different settings
in this book. o

We illustrate Theorem 9.27 with two simple examples.

Example 9.29 Letn =2ands = (sj)]‘.‘zo, whereso = s1 = s, =853 =1,54 = ¢ >
1. Clearly, s has a representation (9.36) with & = §; anda = o« — 1 > 0. Hence

111
Hy(s)=(111]>0.
11«

Case 1: o > 1.

Then f, = x — 1, rk(s) = 1, and N; = R-f,. Since x*~'f; ¢ N, s is not a truncated
Hamburger moment sequence. Note that (x — 1) € A, but (x — 1)? ¢ A.
Case2:x = 1.

Thenf; = x — 1 and rk(s) = 1, but xf; € N, so s is a truncated moment sequence
with unique representing measure (& = §;. o
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Example 9.30 Set = &+ kin Oy for fixed k € IN and n > 2. Clearly, the moment
sequence s = (sj)jzio of u is given by

so=1+Kk2", NS K@) for 1 <j<2n, s =1

In the limit k — oo we obtain the positive semidefinite sequence s =

(1,0,...,0,1). It is not a moment sequence, since 5 = x € N(5) and
X' = x""'f; ¢ N'(5). This shows that the set of all truncated moment 2n-sequences
is not closed in R¥**1, o

The following lemma about positive block matrices is a special case of Theo-
rem A.24. We identify R with the column matrices M ; (R).

Lemma 9.31 Letk € N, A € M (R), b € RX, ¢ € R, and suppose that A > 0.
Consider the block matrix A € Mi+1(R) defined by

A= (/27 lc’) (9.47)

(i) A > 0ifand only if b = Au for some u € R* and ¢ > ulAu.
(ii) Let b = Au with u € R* and ¢ > u”Au. Then rankA = rank A if and only if
c = ulAu.

The three remaining existence theorems of this section use Lemma 9.31.

Theorem 9.32 (The Hamburger Truncated Moment Problem; Odd Case) For
a real sequence s = (sj)jzi'(’)'l the following three statements are equivalent:

(i) s is a truncated Hamburger moment sequence.
(ii) There exists a real number sy,4, such that H,1(5) > 0, where s := (sj)f:(')'z.
(iii) H,(s) = 0and (sp+1,..., 52n+l)T € range (H,(s)).

Suppose that (i) holds and set s := (sj)jzio. Then s has an rk(5)-atomic representing
measure. Further, s has a unique representing measure if and only if vk(s) < n, or
equivalently, D, (5) = 0; this unique measure is rk(S)-atomic and its set of atoms
is the zero set Z(f;) of fi.

Proof The proof of (i)<>(ii) is almost verbatim the same as for Theorem 9.27. In the
proof of (ii)— (i) we apply Corollary 9.16 with n replaced by n+ 1. Hence Eq. (9.38)
holds forj = 0, ..., 2n 4 1 which gives (i).

To prove (ii)<«>(iii) we consider H,+(5) as a block matrix (9.47) with

A=H,(s), b= (Spt1,--->5mt+1)", €= Sio. (9.48)

(ii)—(iii) Since H,+1(5) > 0, we have H,,(s) > 0 and b € range (H,(s)) by the
only if direction of Lemma 9.31(i).

(iii)—(ii) Then b € range (H,(s)), say b = H,(s)u with u € R"*!. Therefore,
choosing s3,4+2 > u” H,(s)u, we have H, 1 (5) > 0 by the if part of Lemma 9.31().
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This completes the proof of the equivalences (i)—(iii). Now suppose that (i) holds.

First we assume that rk(5) = n + 1. Then rank H,(5) = n + 1 by Proposi-
tion 9.25(ii). Hence, since H,(s) = H,(5), there exists a v € R"*! such that b =
H,(s)v. We fix v and choose s2,+2 > v H,(s)v. Then, applying Lemma 9.31(ii) to
the block matrix H,+(5) yields rank H,+(5) > rank H,(s) = rank H,(5) = n + 1.
Therefore, rank H,+1(5) = n + 2. Hence, by Corollary 9.2 (or by Theorem 9.27
(iii)—(i)), s is a truncated moment sequence. Obviously, any representing measure
for 5 is one for s. Since these measures have the moment s;,4,, they are different
as sp,4 varies. Thus s has a one-parameter family of representing measures.

Assume now that rk(5) < n. Any representing measure y for s is a representing
measure for 5. Therefore, by Theorem 9.27 applied to 5, u is uniquely determined
and has the properties stated above. O

The next proposition shows how Lemma 9.31 can be used to obtain additional
information about the structure of the extended sequence 5 in Theorem 9.27(ii).

Proposition 9.33 Ler s = (sj)jzio be a positive semidefinite real sequence such
that r := rk(s) < n. Suppose that there exist real numbers sy,+1, San+2 such that
H,+1(5) > 0, where 5 := (so, ..., S, Son+t1, Sau+2). Further, let Ay, ..., A,— be the
numbers from Eq. (9.42). Then

Sjitr = AoSj + -+ Am1Sjgr—1 for j=0,....2n+1—r, (9.49)

San42 = AoSanto—r + o0+ A 182041 (9.50)

There is equality in (9.50) if and only if rk(s) = rank H,(s) = rank H,+(5).

Proof We consider the Hankel matrix H,,+1(5) as a block matrix (9.47) with entries
(9.48). Since H,+1(5) > 0, we have H,(s) > 0 and Lemma 9.31(i) applies.
Therefore, we have b = Au with u € R"*! and ¢ > uTAu. Equation b = Au
means that

n

Sntk+1 = ZSkHMh k=0,...,n (9.51)
=0

We prove by induction that Eq.(9.49) holds forj = 0,...,2n + 1 —r. If j =
0,...,n, then (9.49) is just one of the equations (9.42). Assume that (9.49) is true
for all j, where n < j < 2n — r. Using (9.51) and the induction hypothesis (9.49) we
derive

n n r—l1
Sjtl4r = Zsj—i-r—n-i-lul = Z Zsj—n+z+i/\iul
1=0 1=0 i=0

r—1

r—1
= Z (Zsj—n+l+i“l)ki = Zsj+1+ixi,
i=0

n
1=0 i=0
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which is (9.49) for j + 1. This completes the induction proof of (9.49). (The
preceding computation is not valid for j = 2n 4 1—r, since (9.51) does not hold
fork=n+41.)

By Lemma 9.31(i), s2,42 = ¢ > ul Au. Using (9.51) and (9.49) we compute

n n r—l1 r—1
t t
Sspt2 > uAu = u'b = E Snt 141U = E E Spt1—riiAill] = E Sont2—rtitis
1=0 1=0 i=0 i=0

which is the inequality (9.50).

Theorem 9.27 (ii)—(iii) implies that rk(s) = rankH,(s). According to
Lemma 9.31(ii), we have rank H,(s) = rankH,4+(5) if and only if s5,4, =
¢ = u’ Au, or equivalently, if there is equality in (9.50). O
Remark 9.34

1. Let us retain the assumptions of Proposition 9.33. Equation (9.49) is a recursive
relation for the numbers s;,j < 2n + 1. In particular, 52,41 is determined by
(9.49) forj = 2n+ 1 — r. From Lemma 9.31(ii) it follows that each real number
Ss+2 satisfying (9.50) gives an extension § such that H,,1(5) > 0. In particular,
we can choose s2,+2 := AoSont2—r + -+ -+ Ar—152,+1; then we have rank H, (s) =
rank H,,4+1(5).

2. Let s = (s ]Zio be a positive definite real sequence. Then rank H,(s) =
n + 1. (This case is not covered by Proposition 9.33, since the assumptions
of Proposition 9.33 and Theorem 9.27 imply that s is a moment sequence and
rank H,(s) = rk(s) < n.) Since H,(s) is regular, the vector b from (9.48) is in
the range of A = H, (s), say b = H,(s)u. Hence, by Lemma 9.31(i), for arbitrary
reals $2,41, S2n42 such that sy,1» > u” H,(s)u, the extension § = (sj)jzfo'2 of s
satisfies H,+1(5) > 0, so s is a moment sequence by Theorem 9.27. If we choose
Sonta > u'H,(s)u, Lemma 9.31(ii) implies that rank H,(5) = n + 2, so 5 is
also positive definite. This recovers the extension procedure for positive definite
sequences from Lemma 9.1. )

Now we turn to the truncated Stieltjes moment problem and begin with the odd
case. Let Es = (sy, ..., s,) denote the shifted sequence of s = (s, 51, ..., Sp)-

Theorem 9.35 (The Stieltjes Truncated Moment Problem; Odd Case) A real

sequence s = (sj)jzigl is a truncated Stieltjes moment sequence if and only if

H,(s) >0, H,(Es) >0, and (sp+1,- .. ,s2n+1)T € range (H,(s)). (9.52)

Suppose s is a truncated Stieltjes moment sequence. Then s has an rk(5)-atomic
representing measure on R4. Moreover, the sequence s has a unique representing
measure on Ry if and only if tk(s) < nor rk(Es) < n, or equivalently, D,(s) = 0
or Dy(Es) = 0.

Proof By Theorem 9.32 (i)<>(ii), s is a truncated Hamburger moment sequence if
and only if H,(s) > 0 and (S,41.....52,+1) € range (H,(s)).
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Suppose s has a representing measure p supported on R. Then the positive (!)
measure v given by dv = xdu has the moment sequence Es, so that H,(Es) > 0.

Conversely, assume that H,(Es) > 0. By Theorem 9.32, s has an rk(§)-atomic
representing measure (L = ijgv) m;8;;. Since rk(S) < n + 1, there are Lagrange
interpolation polynomials p; € R[x], such that p;(t;) = &;, i,j=1, ..., rk(5). Then

rk(5)

Lop?) = [ a2 dia) = Y- myp?s) = it = 0,
=0

Since p is rk($)-atomic, we have m; > 0 and therefore #; > 0. Thus u is supported
on R4 and s is a truncated Stieltjes moment sequence.
We turn to the proof of the uniqueness assertions. Note that rk(s) < n (resp.
rk(Es) < n) if and only if D, (s) = O (resp. D,(Es) = 0) by Lemma 9.24 (iii)<>(v).
First, let us assume that

D,(s) # 0 and D,(Es) # 0. (9.53)

Lets = (sj)f:g3 with unknown s,,42, $2,+3. There are polynomials f, g such that

Dy, 1(5) = sopg2Dn () + f(s0, - - -5 S20+1)5 (9.54)
Dy 1(E5) = sop4+3Dn(Es) + g(s1, . -+, S2n42)- (9.55)

Since H,(s) > 0 and H,(Es) > 0, both determinants in (9.53) are positive. Hence
we can find s5,42 > 0 such that (9.54) is positive and there exists a ¢ > 0 such that
(9.55) is positive for sy,+3 > ¢. Then the sequence s fulfills (9.52) with n replaced
by n + 1. (Since D,4+1(5) > 0, H,+1(5) is positive definite and hence its range is
R"*2.) Therefore, by the existence assertion of Theorem 9.35 proved above, 5 is a
truncated Stieltjes moment sequence. Since s»,4+3 > ¢ was arbitrary, we obtain a
family of different measures on R+ which have the same moments s, .. ., $2,41-

Now suppose that D,(s) = 0. Then, by Theorem 9.32, s has a unique
representing measure on IR, so we have uniqueness on R as well.

Finally, we suppose that D, (Es) = 0. Let i, and p, be representing measures
for s. We will show that u; = pu,. Define measures v; by dv; = xdu;, j = 1,2.
Then Es is a truncated Hamburger sequence with representing measures v;. Since
D,(Es) = 0, Theorem 9.27 yields vi = v,. Since dv; = xdpu,, this implies that
w1 (N) = p2(N) for all Borel sets N € R\{0}. We have so = u;({0}) + 1;(R\{0}),
j = 1,2. Therefore, since u1(R\{0}) = u2(R\{0}), we obtain p;({0}) = u,({0}).
Thus @1 = po. This completes the proof of the uniqueness assertions. O

Theorem 9.36 (The Stieltjes Truncated Moment Problem; Even Case) A real
sequence s = (Sj)jzio is a truncated Stieltjes moment sequence if and only if

H,(s) >0, H,—(Es) >0, and (Sy+1,- .- ,szn)T € range (H,—(Es)).
(9.56)

In this case s has an rk(s)-atomic representing measure on Ry.
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Further, the truncated Stielties moment sequence s has a unique representing
measure supported on Ry if and only if vk(s) < n, or equivalently, if D,(s) = 0.
Proof First assume that the three conditions (9.56) are fulfilled. Our aim is to apply
Theorem 9.35 to the extended sequence § = (Si)?i*o'l for some real number 57,4 1.

Since b := (Sy41,...,5)" € range (H,_i(Es)) by (9.56), there exists a u €
R” such that b = H,_|(Es)u. Put ¢ = s3,41 := u'H,_{(Es)u and A := H,_(Es).
Since H,—(Es) > 0 by (9.56), the block matrix Ain (9.47) is positive semidefinite
by Lemma 9.31(1). But A is the Hankel matrix H,, (Es), where E5 = (s1,...,Sm+1)-
Thus, H,(Es) > 0.

We set w := (s, ...,S,—1)" and write H,(s) as block matrix
S0 51 P )
S1 852 e Spt1 _
He =0 = | = (),
ool - Sn

Sn Sp+1 -+ S2n

Applying H,(5) to the column vector (0, #)” € R"*! we obtain

- 0 _ Hn—l(ES)u — b = b
H,(3) (u) = ( T ) - (MTHn_l(Es)u) B (SZn-H),

that is, (Sy+1,-- -, 52, smt1)!] € range (H,(5)). Thus, since H,(5) = H,(s) > 0
by (9.56) and H,(Es) > 0 as shown above, 5 satisfies (9.52). Therefore, by
Theorem 9.35, § is a truncated Stieltjes moment sequence which has an rk(s)-
atomic representing measure. Hence this holds for s as well.

Conversely, suppose s is a truncated Stieltjes moment sequence. It is obvious that
H,(s) > 0 and H,—|(Es) > 0, so it remains to show the range condition in (9.56).
We argue as in the proofs of Theorems 9.27 and 9.32. By Corollary 1.25, s has a
finitely atomic representing measure p with atoms in R. Setting s; = f X dp(x)
forl=2n+1,2n+2,5 = (sj)fi‘gz is a truncated Stieltjes moment sequence. Since
the Hankel matrix H,(E5) is a block matrix (9.47) with

A=H,1(Es), b= (Sut1,---,52)", €= 241

and H,(E5) > 0, Lemma 9.31(i) implies that b € range (H,—;(Es)).

It remains to verify the uniqueness assertions. First, suppose that D,(s) = 0.
Then the representing measure of s for the even truncated Hamburger problem is
unique by Theorem 9.27, so it is unique for the even Stieltjes case as well.

Now assume that D,(s) # 0. As above we set § = (s,)?ﬂ'l with unknown real
Son+1. We consider H,(ES) as a block matrix

Hy—1(sV) b
b’ S2n+1

H,(E5) = ( ) , where b:= (s;+1,... L son)T.
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Since s is a truncated moment sequence, it has a finitely atomic representing measure
. Putting so,41 = [x*T1du, 5 is an odd truncated Stieltjes moment sequence,
so H,(Es) > 0 by Theorem 9.35. From Lemma 9.31(i) we obtain H,(Es) > 0
if 52,41 is sufficiently large. Fix such a number s;,+;. Then 5 satisfies (9.52).
Indeed, H,(5) = H,(s) > 0, since s is a moment sequence, and range (H,(5)) =
R"*!, since D,(5) = D,(s) # 0. Therefore, by Theorem 9.35, 5 is a Stieltjes
moment sequence. The representing measures for 5 are different as s,,+; varies,
but all of them have the same moments sy, . .., s2,. Thus, we have nonuniqueness
it D,(s) # 0. O

9.7 Exercises

1. Determine Hankel rank and minimal polynomial:

a. s =(3,0,2,0,2,0,2),m = 6.
b. s =(2,2,4,8,16),m = 4.
c. Sets; =1forj=0,1,2,3ands; = O0forj=4,...,2n, wheren > 4.

2. Decide whether or not the following sequences are truncated Hamburger moment
sequences:

s=(4,5,9),m=23.

s =1(2,0,2,0,5),m = 4.
s=(3,2,6,10,18,35),m = 6.
s=(3,0,2,0,2,0,2,0),m =17.

o o

3. Decide whether or not the following sequences are truncated Stieltjes moment
sequences:

a. s =(1,2,4,8,20),m =

b. s=(3,59,17,33),m =

c.s=(3,2,2,2,2,3),m=5

d. s=(3,511,29),m=3
9.8 Notes

Quadrature formulas of the form (9.9) were discovered by C.F. Gauss (1814) and
studied by K.G.J. Jacobi [Jac] and E.B. Christoffel [Chl]. Our treatment of the
positive definite case in Sect. 9.1 follows N.I. Akhiezer and M.G. Krein [AK, §1].
The representation formula (9.36) for positive semidefinite sequences was proved
by E. Fischer [Fi]. The results for the truncated Hamburger and Stieltjes moment
problems in Sect. 9.6 are due to R. Curto and L. Fialkow [CF1].



Chapter 10
The One-Dimensional Truncated Moment
Problem on a Bounded Interval

Throughout this chapter a and b are fixed real numbers such that a < b and m € IN.
We consider the truncated moment problem on the interval [a, b]:
Given a real m-sequence s = (s;)iL,, when is there a Radon measure |1 on [a, b]

such that s; = fabxf dux) forj=0,...,m?

In this case we say that s is a truncated [a, b]-moment sequence and u is a
representing measure for s.

In Sect.10.1 truncated [a, b]-moment sequences are described in terms of
positivity conditions (Theorems 10.1 and 10.2). If a solution exists, there are always
atomic solutions. The main part of this chapter deals with atomic solutions of “small
size”. In Sect. 10.2 the cone S,,+ of all moment sequences and the index of atomic
representing measures are introduced. Boundary points of S,,4; are characterized
as moment sequences with unique representing measures and of index at most m
(Theorem 10.7). The rest of this chapter is devoted to a detailed study of interior
points of S,+;. In Sects. 10.3, 10.4, and 10.6 representing measures of index
m + 1 and m + 2 are investigated. Each interior point of S,,41 has precisely two
representing measures of index m + 1 (Theorem 10.17) and for each § € [a, D]
a distinguished measure with root £ and index at most m 4 2 (Corollary 10.13).
The maximal mass of a point among all representing measures is studied in
Sect. 10.5 (Theorem 10.21). In Sect. 10.7 orthogonal polynomials are developed and
a description of the maximal mass in terms of orthonormal polynomials is given
(Theorem 10.29).

10.1 Existence of a Solution

First we collect some notation that will be used throughout this chapter.
Lets = (sj)]'.”=0 be a real sequence. Recall that L; is the Riesz functional on R[x],

given by L,(x) = sj,j = 0,...,n, and Hi(s), 2k < m, denotes the Hankel matrix
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Hi(s) = (si+))} =0 The shifted sequence Es is Es 1= (s1,...,5m) = (s;+1)/-
Recall that A > 0 means that the matrix A = AT € M,,(R) is positive semidefinite.
The following notation differs between the two cases m = 2n and m = 2n + 1:

Hzn(s) = H,(s) = (Si-hi)lr‘l,j':oy
Hy,(s) := Hy,—1((b — E)(E — a)s)

((@ + b)sitjr1 — Sivjra — absiy))} 2o,
Hy,y1(s) = Hy(Es — as) = (sitj+1 — asi+j); j=o»
Houy1(s) := Hy(bs — Es) = (bsi4j — Si+j+1); j=o-

Here the lower index always refers to the highest moment in the corresponding
matrix and the highest moment occurs only in the right lower corner. The upper and
lower bar notation and the lower indices will be seen to be useful later. An advantage
is that they allow us to treat the even and odd cases at once.

Further, we abbreviate the corresponding Hankel determinants by

D, (s) :==detH, (s), D, (s) := det Hy,(s). (10.1)

For f = Zf:o aix¥ € Rlx]; let f = (ag,....a)" € R¥! denote the coefficient
vector of f. Then for p, g € R[x], and f, g € R[x],—; simple computations yield

L(pq) = p" Hy, ()G, Li((b—x)(a—x)fg) =f" Hau(9)3, (10.2)

L((x=a)pq) =p" Hyy (93, L((b—0)pg) = p" Haus1(5)3- (10.3)

From Proposition 3.3 we restate the formulas (3.8) and (3.9) describing the
positive polynomials Pos([a, b]),, on [a, b] of degree at most m:

Pos([a, b))z = {f + (b—0)(x—a)g: f € Z}. g€ ;) (10.4)
Pos((a. D)ot = { (b —x)f + (x—a)g: f.g € I} (10.5)
The following two existence theorems rely essentially on these descriptions.

Theorem 10.1 (Truncated [a, b]-Moment Problem; Even Case m = 2n) For a
real sequence s = (sj)jzio the following statements are equivalent:

(1) s is a truncated |a, b]-moment sequence.
(i) Lg(p?) > 0 and Ly((b — x)(x — a)q*) > O for p € R[x], and q € R[x],—1.
(iii) H,,(s) > 0 and H,,(s) > 0.

Theorem 10.2 (Truncated [a, b]-Moment Problem; Odd Case m = 2n+ 1) For
a real sequence s = (sj)jzi'(’)'l the following are equivalent:

(i) s is a truncated [a, b]-moment sequence.
(i) Ly((x —a)p?®) = 0 and Ly((b —x)p?) = 0 for all p € R[x],.
(iii) H,,,,(s) = 0 and Houy1(s) = 0.
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Proofs of Theorems 10.1 and 10.2:

(i)<>(ii) We apply Proposition 1.9 to the subspace E = R|[x],, of C([a, b]; R).
Then L; is a truncated [a, b]-moment functional if and only if L;(p) > 0 for all
p € Ex = Pos([a, b]),,. By (10.4) and (10.5) this is equivalent to condition (ii).

(i1)<>(iii) follows at once from the identities (10.2) and (10.3). O

Remark 10.3 Since p* = (b — a)”'[(b — x)p* + (x — a)p?], condition (ii) in
Theorem 10.2 implies that L;( p*) > 0 for p € R, [x]. o

By Theorem 1.26, we can have finitely atomic representing measures in Theo-
rems 10.1 and 10.2. In the subsequent sections we study such representing measures.

10.2 The Moment Cone S,,4+; and Its Boundary Points

The following notions play a crucial role in this chapter.

Definition 10.4 The moment cone S+, and the moment curve ¢, are defined by

b
Sp1 = s:(so,sl,...,sm):sj:/ Ydu@),j=0,....,m, u € Mi([a, b)),

a

et = {s(t) = (1,t,2,....0") : 1 € a,b]}

That is, S,+; is the set of moment sequences s = (s, S1, . -.,Sy,) of all Radon
measures on [a, b]. The curve c,,+ is contained in S,,41, since s(7) is the moment
sequence of the delta measure &;.

By a slight abuse of notation we consider S,,+; and c,,+; as subsets of RmH! by
identifying the row vectors s and s() with the corresponding column vector s and
()T in R™T!.

We denote by 9S,,+; the set of boundary points, by IntS,+; the set of
interior points of S,,+1, and by C,,+1 the conic hull of ¢,,+. Since the polynomials
1,¢,...,¢" are linearly independent, the points s(¢) € C,+; span R+ Hence the
interior of C,,4 is not empty by Proposition A.33(i).

From Theorem 1.26, applied to E = R|[x],, and X = [a, b], it follows that each
s € Sp+1, S # 0, has a k-atomic representing measure

k
= ms, (10.6)
j=1

where k < m+1and ¢ € [a, b] for all j. Since . is k-atomic, the points ¢; are pairwise
distinct and m; > O for all j. The numbers #; are called roots or atoms of p and the
numbers m; are the weights of p. We can assume without loss of generality that

a<ti<thh<---<tiy <bh. (10.7)
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That the measure  in (10.6) is a representing measure of s means that

k
s = Z m;s(t;).
J=1

Thus s belongs to the conic hull of the moment curve c,,+;. Hence S,+1 = Cpg1-
By Theorem 1.26(ii), the set of functionals Ly, where s € S,,+1, is closed in the dual
space E*. This implies that C,,+1 is closed in R"*!. We state these results.

Proposition 10.5 The moment cone S,,11 is a closed convex cone in R with
nonempty interior. It is the conic hull C, 4+ of the moment curve c,+1.

By Definition A.38, a convex subset B of a cone C is a base of C if for each
u € C,u # 0, there exists a unique A > 0 such that Au € B. It is easily seen that

Sm = {(1,51,...,3,71) S Sm-l—l}

is a base of the cone S,,+1. It is just the set of moment sequences of all probability
measures on [a, b].

Clearly, |s;| = |fab t'du| < b —a for s € S™. Hence S” is bounded in R”T!.
Obviously, S is a closed subset of the closed cone S,,+;. Therefore, the set S™ is a
convex compact base of the moment cone S,,+1.

Definition 10.6 Let s € S,+1,5 # 0. The index ind(u) of the k-atomic
representing measure (10.6) for s is the sum

k
ind(p) := Ze(tj), where €(t) ;=2 for t € (a,b) and €(a) = €(b) := 1.

Jj=1

The index ind(s) of s is the minimal index of all representing measures (10.6) for s.

The reason why boundary points and interior points are counted differently lies in
the following fact, which enters into many proofs given in this chapter: If #y € [a, b]
is a zero with multiplicity k of a polynomial p € Pos([a, b]),,, then we have k > 2
if 1y € (a,b), while k = 1 is possible if ) = a or 1y = b.

Let us recall some further notions. For s € S+ let M; denote the set of all
representing measures for s, that is, M is the set of © € My ([a, b]) such that

b
sj:/ tdu(r) for j=0,...,m.

a

If the set M is a singleton, then s is called [a, b]-determinate.
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The following theorem brings a number of important properties together.
Theorem 10.7 Fors € S,,+1, s # 0, the following statements are equivalent:

(i) s is a boundary point of the convex cone S,,+1.
(i) ind(s) <m.
(iii) There exists a p € Pos([a, b])m, p # 0, such that Ly(p) = 0.
(iv) D,,(s) =0 or D,,(s) = 0.
(v) sis [a, b]-determinate, that is, M is a singleton.

Ifp is as in (iii), then supp u C Z(p) for the unique measure i € M.

Proof Let {ey, ..., e,} denote the canonical vector space basis of R"*!.

(1)—(iii) Let u € M. Since s is a boundary point of the cone S, there is a
supporting hyperplane of S,,41 at s (by Proposition A.34(ii)), that is, there exists a
linear functional F # 0 on R”*! such that F(s) = 0 and F > 0 on S,,+1. Then
p(t) = F(s(?)) is a polynomial in ¢ of degree at most m. From s(¢) € S,,4+1 we get
p € Pos([a, b]). Since f # 0, p is not the zero polynomial. Then

b b
Ls(p) = L(F(s(1)) = / F(s(n)dp(r) = / (F(eo) + -+ + Flem)t™)dp(r)

a a

= F(eg)so + -+ + F(em)sm = F(s) = 0.

This proves (iii).

(iii))—(@1) Let p(r) = Z]’.":O ajtf be a polynomial as in (iii). Define a linear
functional F on R™*! by F(ej) = aj, j = 0,...,m. Reversing the preceding
reasoning, we get F(s) = Ly(p) = 0. Since p is not the zero polynomial, F # 0.
Further, F(s(f)) = p(f) = 0 on [a,b], since p € Pos([a, b]). Therefore, F > 0
on ¢,,+1 and hence on its conic convex hull C,,+; = S,,+1- Thus F is a supporting
functional to S,,+ ats. Hence s is a boundary point of S,,1 by Proposition A.34(ii).

(i1)—(iii) Assume that ind(s) < m. Let p denote the product of quadratic factors
(t—1;)* for all ; € (a, b) and linear factors (b — t) and (t — a) provided that the end
points b or a are among the points ¢, respectively. Clearly, then p € Pos([a, b]) and
deg(p) = Y, €(t) = ind(s) < m.

(iii)—(ii) Let p be a polynomial as in (iii). We choose a representing measure
(10.6) for which ind (s) = ind(u). Since Ly(p) = 0, Proposition 1.23 yields
{ti,.... 1y = suppu S Z(p), thatis, p(t;) = Oforj = 1,... k. Eachroot €
(a, b) has even multiplicity. (Otherwise p(f) would change sign at ¢;. Since p(f) > 0
on [a, b], this is impossible.) The only roots of multiplicity 1 are possibly the end
points a and b. Therefore, counting the roots # with multiplicities and adding the
number () we obtain ind(s) = }; e(t;) < deg(p) < m.

(iii)«>(iv) We carry out the proof in the even case m = 2n. The proof in the odd
case is similar; instead of (10.2) and (10.4) we use (10.3) and (10.5).
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Let f(x) = > 1_,ax’ € R[x], and g(x) = Z;:é bi¥ € R[x],—1. As above we

setf = (ag,...,an)T € R"™and 8 = (bo, ..., bp—1)" € R". The Hankel matrices
H,, (s) and H»,(s) are positive semidefinite by Theorem 10.1. Therefore, by (10.2),

Ly(f*) =f "Hy, (5)f = || Hy, () F 11, (10.8)
Li((b = x)(x = a)g®) = ¢ Ha(9)g = |Hau(s)" 2%, (10.9)
where || - || denotes the Euclidean norm of R¢. By (10.4), Pos([a, b])2, consists

of sums of polynomials of the form p = f> + (b — x)(x — a)g>. Clearly, for such a
polynomial p we have L,(p) = 0if and only if L(f?) = 0 and L,((b—x)(x—a)g?) =
0. Therefore, by (10.8) and (10.9), Ly(p) = 0 for p € Pos([a, b]),, implies p = 0
if and only if both matrices H,,(s) and H»,(s) are regular, that is, D,,(s) # 0 and
D5, (s) # 0. Hence (iii) holds if and only if D,,(s) = 0 or D,(s) = 0.

(iii))—(v) Let v € M. By Proposition 1.23, suppv < Z(p). In particular,
this proves the last assertion. Let Z(p) = {xi....,x,}. Then v = Y ', n;6,, for
some numbers n; > 0. Since r < deg(p) < m, there exist Lagrange interpolation
polynomials p; € R[x],, such that p;(x;) = §;,i,j=1,...,r. Then

b r
Lx(Pj)Z/ pidv =" npix)=mn. j=1....r

i=1

This shows that v is uniquely determined by s and p.
(v)—(@) If s is not in 05,41, then s € Int S,41; hence s has infinitely many
representing measures by Proposition 10.9 below. O

We briefly discuss the preceding theorem. Let s be a boundary point of S,,41.
Then s has a unique representing measure i € M ([a, b]). This measure u has the
form (10.6) and ind (u) = ind(s) < m.If all 4 are in the open interval (a, b), then
k < 7. If precisely one ¢ is an end point, then k < ’";’1 and if both end points are
among the #;, then k < 7 + 1. The case k = ’} + 1 can only happen if m is even and
both a and b are among the #. Thus, all boundary points of S;,+1 can be represented

by k-atomic measures with k < ' + 1.

10.3 Interior Points of S,,+ and Interlacing Properties
of Roots

The following result is often used in the sequel. Condition (ii) and (iii) therein should
be compared with conditions (ii) and (iii) in Theorems 10.1 and 10.2.
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Theorem 10.8 For a sequence s € S,,+ the following are equivalent:

(i) s is an interior point of Sp41.

(ii) The Hankel matrices H,, (s) and H,(s) are positive definite.

>iil) m = 2n :
Ly(p*) > 0 and Ly((b—x)(x—a)g*) > 0 forp € R[x],, ¢ € R[x],—1,p, g7#0.
m=2n+1:
Ly((x — a)p?) > 0 and Ly((b —x)p?) > 0 forall p € Rlx],,p # 0.

(iv) D,,(s) > 0 and D,(s) > 0.

(v) Dy(s) > 0,Dg(s) > 0,D,(s) > 0,Dy(s) >0,...,D,,(s) > 0,D,(s) > 0.

Proof (1)<>(iv) is only a restatement of Theorem 10.7 (i)<>(iv). The equivalence
(ii)<>(iv) is a well-known fact from linear algebra. The equivalence of (iii) and
(iv) follows from formulas (10.2) and (10.3). (v)—(iv) is trivial. Obviously, s €
Int S+ implies that s := (so,...,s;) € Int St forj = 0,...,m. Therefore,
(i)—>(v) follows by applying the implication (i)—>(ii) to the sequences s'/). O

Proposition 10.9 Lets € Int S,y1. Foreach & € [a, b] there exists a representing
measure g of s with & as an atom which has indexm+ 1 orm+2if £ € (a,b) and
indexm—+1if§ =aor & =0b.

Proof Clearly, c(£) is a boundary point, because ind(c(£)) < 1. The line through
the two different points s and c¢(§) of S,,4 intersects the boundary of S+ in a
second point s'. Then s = As' + (1 — A)c(§) for some A € (a,b). The unique
representing measure p’ of s” satisfies ind(u’) < m by Theorem 10.7. It is clear
that & = A + (1 — A)8¢ is a representing measure of s. Its index is at most m + 2
if £ € (a,b)andat mostm + 1if & = a or &€ = b. We have ind(s) > m, since
otherwise s would be a boundary point by Theorem 10.7. O

Definition 10.10 A representing measure . of s € Int S,y is called canonical
if o is of the form (10.6) and ind (p) < m + 2.

Each representing measure ji¢ from Proposition 10.9 is canonical.
The following two propositions are useful for deriving interlacing properties of
roots for different canonical measures of the same moment sequence s € Int S,,+1.

Proposition 10.11 Suppose that | is a canonical representing measure of s €
Int Sy41 with roots t] < tp < --- < t; and weights my, ..., my. Let i be a
representing measure of s such that i # . Then we have:

(1) supp it N (4. ti1) # O for t;, 111 € (a.b).

(i) If ind(u) = m+ 1, then supp L N (tj, ti41) # @ forall tj, 111 € [a, b].
(iii) Ift; = a, then supp i N [t1, ) # .
(iv) Ifty = b, then supp it N (tx—1, 1] # 9.

Proof

(i) The proof is a modification of the proof of Theorem 10.7 (iii)—(iv).
Fix t;, ;11 € (a, b). Let p(¢) denote the product of (r—#;11)(t—¢;), all factors
(t—1,)? with #; € (a,b), t; # t;, ti+1, and possibly (—a) resp. (b—1) if aresp. b



236

(i)

(iii)

(iv)
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are among the roots. Then p(¢;) = 0 for all j. Since ind(x) < m + 2, we have
deg(p) < m. (Note that each of the two interior roots ¢, tj4; is counted with 2
in the definition of ind (s), but it appears only with degree 1 in p.) Hence the
functional L; applies to p and we obtain

b k
Li(p) = / pdp = ijp(ti) =0.
a j=1

Assume to the contrary that supp i N (4, #+1) = @. By the definition of p
we have p(f) > 0 on M; := [0,4] U [t;11, 1]. Therefore, since 0 = Ly(p) =
fMjpdﬂ, Proposition 1.23 implies that supp i € Z(p) = {11, ..., }. Thus,

= ZLI n;8, for some numbers n; > 0. Since ind(n) < m + 2 by
assumption, we have k < ’2” + 2 and hence k < m + 1, because k is an integer
and m > 1. Hence there exist interpolation polynomials p; of degree deg(p;) <
m satisfying p;(x;) = 8;,i.j = 1,... k. Finally, L(p;) = [ p;dii = n; and
Ly(pj)) = [ pjdp = m; imply that n; = m; for all j. Thus o = fi, which is the
desired contradiction.

In the case ind(u) = m + 1 the preceding reasoning also works for the
end points among the roots. We illustrate this for #; = a. Let p(f) denote the
product of (t — a)(t — 1), all factors (¢t — t;)*> with t; € (a, b), t; # ti, tiy1, and
(b — 1) if b is a root. Then deg(p) = m, because ind (u) = m + 1. Since
p(t)) = 0 foralljand p(z) > 0 on [t,, b], we can proceed as above and derive
that supp i N (71, ) # 9.

Assume to the contrary that supp i N [a, ) = .

First we note that , # b. Indeed, otherwise ji has support {b} and hence
ind(fi) = 1 which contradicts the assumption s € Int .

Let ¢ be the product of factors (t—1,), (t—t;)>if i > 3 and t; # b, and (t; —1)
ifty = b.Sincet; = a,t, < b,and ind (u) < m+2, we have deg(g) < m. The
polynomial g vanishes exactly at 5, ..., #;. Hence L,(q) = fab qgdu = mq(a).
By construction, ¢ > 0 on [, b] and therefore Ly(q) = | lb qgdii = ftf qdii >
0. But g(a) < 0, so we obtain a contradiction.
follows in a similar manner as (iii). ]

Proposition 10.12 Let u and ' be two different canonical representing measures
of s € Int Sy with roots t) <1, < --- <t and 1} <1ty < --- < t; and weights
m; and m]’., respectively.

®
(i)

(iii)

The roots t; and tj’ contained in (a, b) strictly interlace.

Suppose that ty = t| = a. Then my # m}. Further, m), > m, if and only if
> 1.

If tx = t; = b, then my # mj and we have m) > my if and only if 1,y > 1,_,.
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Proof

®

(ii)

(iii)

By assumption u and p’ have index m + 1 or m + 2. Considering the even and
the odd case separately we see that the numbers of their roots in (a, b) differ
by at most one. By Proposition 10.11 (i) and (iii), the smallest inner roots of
w and ' are different. Therefore it follows from Proposition 10.11(i) that the
inner roots of y and p’ strictly interlace.

The crucial step of the proof is to show that #, > t, implies m| > m;. Let ¢ be
the polynomial defined in the proof of Proposition 10.11(iii). Let us recall that
deg(q) < m, ¢ > 0 on [tp, b] and g vanishes exactly at the roots f,, ..., #. The
root 7, cannot be equal to all roots #;, i > 3. (This would imply that?, =13 = b
and k = 3,s0 ind(u’) = 2 and ind(x) = 4, which is impossible.) Therefore,
ftf qdyp' > 0and

b b b
ma@ = | qdu=Ls<q)=/ qdu’=m’1q(a)+/ gdi’ > mlq(a).

a 15

Since g(a) < 0, the latter yields m| > m;.
By interchanging the role of 1 and ' it follows that t, > 7, implies m; >
Finally, we show that m; % m/. Assume to the contrary that m; = m/. Then
we have 1, = ) by the preceding. Since inner roots strictly interlace by (i), this
can only happen if 7, = ¢, = b. But since  and ' have the same total mass
so and m; = m), it follows that u = w'. This contradicts our assumption.

is proved in a similar manner as (ii). O

Corollary 10.13 Let s € Int S,y1. For each &€ € (a,b) there exists a unique
canonical representing measure (g of s with atom §.

Proof The existence has been already stated in Proposition 10.9, so it remains
to verify the uniqueness. If there were two different such measures, their roots
contained in (a,b) would strictly interlace by Proposition 10.12(i). Since both

measures have the same root £ € (a, b), this is impossible.

10.4 Principal Measures of Interior Points of S,,41

O

Now we turn to the minimal possible index m + 1 for interior points of Sy4.

Throughout this section we suppose that s € Int S+
Definition 10.14 A representing measure p of the form (10.6) for s is called

e principal if ind(u) =m+ 1,
e upper principal if it is principal and b is an atom of u,
e Jower principal if it is principal and b is not an atom of x.
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That is, for principal measures the index is equal to the number of prescribed
moments. The representing measures constructed in the proof of Proposition 10.9
for & = 0 and for £ = 1 are principal. We will return to these measures later.

Given a fixed sequence s = (so, - . . , S) € Sp+1 We define
b
sjn'H = sup / K du(x) = sup Sm+1 (10.10)
HEM; Ja (80++wsSmsSm+1) ESm+-1
b 1
s ., = inf X" dp(x inf Sl (10.11)
m+1 HEM /a e )(so ..... SmSm+1) ESm+1 i

Since M is weakly compact (by Theorem 1.19) and fol X"t dyu is a continuous
function on the compact space M, the supremum in (10.10) and the infimum
in (10.11) are attained. Thus, s;: 41 is the maximum and s, ; is the minimum of
the moment s, over the set M of all measures which have the given moments
S0, - - -, Sm. These extremal values s;: 41 and s, play a crucial role in our approach
to the principal measures u*, but they are also of interest in themselves.

Let s* denote the sequence (so. . . . , Sy, S, 1) € Sput2. Since s;} || is a maximum
and s, | iS a minimum, st and s~ are not in Int S,,4,. Hence sE belongs to the
boundary of S+, so by Theorem 10.7 it has a unique representing measure 1+ of
index ind (u*) < m + 1. Obviously, u+ and 1~ are also representing measure
for the sequence s. Since s € Int S,+;1, ind(s) > m by Theorem 10.7. Hence
ind (u*) = m + 1, thatis, u* and p~ are principal representing measures for s.

The next proposition characterize the numbers si, | in terms of determinants of
Hankel matrices.

Proposition 10.15 Let 5 = (so, ..., Sm, Sm+1) € Su+2. Then s::_,’_l and s, | are

the unique numbers s, satisfying Dy, +1(5) = 0 and D, (5) = 0, respectively.
+ p—

Further, we have s, | > s, .| and

Dyyi(sT) =0, D, (s7) >0, D, 1(s7) =0, Dyyi(s™) >0. (10.12)
Proof We develop D, ;(5) and D,,+1(5) by the last row and obtain
Dy 1(5) = smi1D,_1 () + ¢ Dyg1(5) = —Smp1Dm—1(s) + ¢~ (10.13)

for some numbers ¢* depending only on the given moments so, . . . , .

We prove that s;, | is the unique number s,,,+.1 for which D, (5) = 0. Since s €
Int S,41, wehave D,,_,(s) > 0 by Theorem 10.7 (i)<>(iv). Therefore, by (10.13),
D,, . (3) is a strictly increasing function of s,,+. Let us take some § € Int S, 2.
Then D, (5) > 0 and D,,+1(5) > 0 by Theorem 10.8. Now we decrease s,,+1
untill s, | to obtain D, , ;(5) = 0. Then D,,+1(35) increases by (10.13) and remains
positive. Hence s, , | is the lower bound of the numbers s+ for which D, (5) >
0. Since H,(s) is positive definite because s € Int Sy+1, 8, is also the lower
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bound of the numbers s,,+; such that H,+;(5) > 0, or equivalently, 5§ € S,,+42.
Thus, s;,, , is the number defined by (10.11).

Similarly it follows that the number s;: 41 from (10.10) is uniquely determined
by the equation D,,41(3) = 0. Moreover, the proof shows that s} | > s, |. a

Before we continue we note an interesting by-product of the preceding.

Corollary 10.16 Lets = (so,...,Sn) € Int Sy, and let s, be a real number.
Thens = (S0, ..., Sm, Sm+1) € Sm+2 if and only ifsjn'+l < Smt1 = Sy

Proof The only if part is clear from the definition of srjn: 1 1- Conversely, suppose that
Sty < Swtt < 8y Then s, = Ast, | + (1 — )s;,,, for some A € [0, 1].
Therefore, Au™ + (1 — L)~ is a representing measure for 5, so that 5 € S,,4,. O

Next we show that the two measures u* defined above are the only prinicipal
representing measures of s. Let ; be an arbitrary principal measure for s. Clearly,
5= (50,80 Sut1) € Suta, where 5,41 1= fabx’”“dp,. Since ind (n) =
m+1,D,.,,(8) = 0or Dy41(5) = 0 by Theorem 10.7 (ii)—(iv). Hence, by
Proposition 10.15, Sy41 = S, OF Sut1 = S, ,, which implies that § = s~ or

5 = s7. Since u* is the unique representing measure of s*, we conclude that
p=p orp=pt

We denote by tjjE the roots and by m ji the weights of #* and assume that the roots
are ordered as in (10.7). Since ind (u*) = m+ 1, it follows from Proposition 10.11
that the roots of u+ and ™ are strictly interlacing. To describe their location further
we distinguish between the even and odd cases.

Case m = 2n:
Since both measures u* have index 21 + 1, they have exactly n roots contained
in (a, b) and one end point a or b as root. Let f(x) = Y aix’ € R[x],. Setting

f = (ao....,a,)" € R""" and using (10.3) we compute

. R b n+1

FTHu 65 = L (0 = 0f?) = / (b=xf ) dp* =y m (b =) ().
a _]=l

Since D,,+1(sT) = 0, the Hankel matrix H,,(s™) has a nontrivial kernel. Hence
there exists an f # 0 such that L 1 ((b —x)f?) = 0, that is, (b — t;')f(t;') = 0 for all
Jj=1,...,n+ 1. Since there are n + 1 roots and deg(f) < n, this is only possible
if tL_l = b. A similar reasoning using H,, , ;(s~) instead of H,,+1(sT) shows that
f; = a. Thus, u is upper principal and p~ is lower principal.

Since s has only two principal measures, we conclude that 4% and ™ are the
principal representing measures (¢ from Proposition 10.9 for § = b and § = a, that
iS, g = up and u= = pg.

Casem =2n+ 1:

Since ind (u*) = 2n + 2, u™ has either n + 1 inner roots or » inner roots and
both end points as roots. Thus u* has k > n + 1 roots. Let f € R[x],. Using (10.2)
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we derive

k
Py 65 = Lo (0 =0 = a)f®) = 3 om0 =15 — )

J=1

As in the even case, Hm+1(s+) has a nontrivial kernel, so there is a polynomial
f # 0 such that L+ (b — x)(x — a)f*) = 0. Then (b — £7)(5" — a)f (57) = 0 for
j=1,...,k Since k > n+ 1 and deg(f) < n, one root of /ﬁ' must be an end point.
Therefore, since ind (u*) = 2n + 2, it follows that tf’ =a, tjl—+2 =b,k=n+2.

By Proposition 10.11, the roots of 1™ and u~ strictly interlace. Therefore, ti+ <
i and 17 < t:LI. Hence p " has both end points as roots, while ;™ has only inner
roots. As in the even case, u ™ is upper principal and p~ is lower principal.

In contrast to the even case, u* is equal to both principal measures ¢ from
Proposition 10.9 for § = b,a, thatis, uy+ = pp = .. The second principal
measure 4~ has only inner roots and it is not obtained from Proposition 10.9.

We illustrate the location of roots tjjE of the principal measures u® in the even
and odd cases by the following scheme:

m = 2n, ptea<tf <if <o <t =0, (10.14)
m = 2n, MWoa=t <t <---<t;<b, (10.15)
m=2n+1 pt:a=t<f <---<if <it, =0, (10.16)
m=2n+ 1, HWoooa<t] <t <---<t<b. (10.17)

Further, from Proposition 10.12 we obtain

m=2n: a=t <tf <t; <tf <---<tf <t <th =b,
(10.18)

m=2+1: a=t <y <tf <7< <th, <, <th,=0b
(10.19)

The following theorem summarizes some of the preceding results.

Theorem 10.17 Let s be an interior point of Syy1. Then pt is the unique upper
principal representing measure and |~ is the unique lower princical representing
measure for s. The roots of u= and ™ are stricly interlacing.

Now we define a distinguished canonical representing measure (¢ and a related
polynomial g¢ € Pos([a, b]) for each § € [a, b]. Both will play a crucial role in the
next sections.

Definition 10.18 Let s € Int S,41. For § € (a,b), ue is the unique canonical
measure of s which has § as a root (see Corollary 10.13). For § = aor§ = b, ¢ is
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the unique principal measure of s which has & as aroot, thatis, g, = =, up = p+
form = 2nand p, = pp = u+ form = 2n + 1.

If £ € (a, b) is root of a principal measure 1 F, then Mg = u* has index m + 1.
Note that u, resp. w; is the only principal measure with root a resp. b, but there are
many canonical measures with root a resp. b, see Theorems 10.25 and 10.26 below.

Definition 10.19 For § € [a, b] let the polynomial g¢(x) be the product of factors
(x — 1;)? for all roots #; € (a,b), t; # &, of the measure ¢ and (x — a) resp. (b — x)
if aresp. bis aroot of pg.

Lemma 10.20 Let § € [a,b] and let §,1y, ..., t denote the roots of jg. Then, up to
a constant positive factor, qg is the unique polynomial q € Pos([a, b]) such that

q(§) > 0, deg(q) + €(§) < ind(ue) and q(1) =0 forj=1,....k.  (10.20)

Proof From its definition it is clear that g¢ has these properties. Since in Defini-
tion 10.19 no factor was taken for the root £, we even have deg(qs) + €(§) =

ind(ue)-
Let g be another such polynomial. Since g € Pos([a, b)), its zeros in (a, b) have
even multiplicities. Hence we conclude that deg(g:) < deg(g). But

deg(q) + €(§) < ind(ug) = deg(qz) + €(§)

by (10.20) implies that deg(g) < deg(ge¢). Thus deg(g) = deg(ge). Since g(§) > 0
and g¢(§) > 0, it follows that g is a positive multiple of gg. O

10.5 Maximal Masses and Canonical Measures

Lets € S;,4+1 and € € [a, b]. Then we define

ps(€) = sup{u({&}) : p € My}, (10.21)

that is, ps(£) is the supremum of masses at £ of all representing measures of s. We
will say that a measure ;. € M, has maximal mass at & if p({&}) = ps(§).
Further, we need the following number

ks(§) := inf{Ls(p) : p € Pos([a,D])m, p(§) =1} (10.22)
—intd DD posa i, (10.23)
q(&)

c .

where ¢ := 400 for ¢ > 0. The equality in (10.23) is easily verified.



242 10 The One-Dimensional Truncated Moment Problem on a Bounded Interval

For arbitrary u € M, and p € Pos([a, b])m, p(§) = 1, we obviously have

b
Li(p) = [ pdp = nUENP(E) = n(ED.

Taking the infimum over p and the supremum over u, we derive

15(§) = ps(§). (10.24)

Theorem 10.21 Suppose that s € Int S,41. Let £ € [a, b].
Then the supremum in (10.22) and the infimum in (10.23) are attained and

pv(g) = KS(S) > 0.

The measure pg from Definition 10.19 is the unique representing measure of s
which has maximal mass pg(€) at &.

The infimum in (10.23) is attained at the polynomial gg from Definition 10.19. If
& is not an inner root of a principal measure of s, then qg is up to a positive multiple
the only polynomial p € Pos([a, b)), for which the infimum in (10.23) is attained.

Proof We denote the roots and masses of g by 1o = &, 11,..., 4% and my, ..., my.
For the polynomial g¢ from Definition 10.19 we have deg(g:) < ind (ug) —€(§) =
m by (10.20), so L applies to g¢ and we get

b k
Li(ge) = / gedie = > mge(t) = moge (6).

=0

Therefore, since gz € Pos([a, b]),,, we obtain

q €< POS([CZ, b])m = Ks(%‘)'

pu(®) = mog = 1% > inf% L@,

qe (&) ~ q(§)

Combined with (10.24) we conclude that we have equality throughout, that is,

Lo(qe) _

pe({€}) = mo = py(§) = &) Ks(§). (10.25)

The first equalities of (10.25) mean that the measure ¢ has maximal mass at £. The
last equality of (10.25) says that the infimum in (10.23) is attained at g¢.

Let v be an arbitrary representing measure for s which has maximal mass p,(§)
at §&. Then u := v — p,(§)8¢ is a positive measure satisfying

b b
/ gedpt = / gedv — p(E)qe(€) = Li(ge) — ps(E)ge®) =0 (10.26)
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by (10.25). Since g¢ € Pos([a, b]),,, (10.26) implies that suppp € Z(gz) by
Proposition 1.23. Hence suppv < {£} U Z(g¢). Therefore, v is atomic and all
atoms of v are roots of p¢. Thus ind(v) < ind(ug) and v has £ as an atom, since
v({€}) = ps(§) > 0.If £ € (a,b), then g is canonical, hence is v, and therefore
v = pg by Corollary 10.13.If § = a or £ = b, then g, hence v, is principal. Since
there is only one principal measure with root at a given endpoint, we obtain v =
in this case as well.

Now let ¢ € Pos({[a, b]),, be another polynomial for which the infimum «,(§) in
(10.23) is attained, so that «,(§)q(§) = Ls(q) and g(§) > 0. Then, by (10.25),

k k
mog(€) = K, (E)q(€) = L(q) = Y miq(t)) = mog(€) + Y miq(t)).

J=0 Jj=1

Since g € Pos([a, b]),, and m; > 0, we conclude that g(t;) = Oforj =1,... k.
Suppose that £ is not an inner root of a principal measure for s. Then we have
ind(ug) =m+ 2 if § € (a,b) and ind(ueg) =m+ 1 if £ =aor& = b. In both
cases, m = ind(ug) — €(§), so that deg(g) + €(§) < ind (vg). Thus g satisfies
(10.20). Hence g is a positive constant multiple of gs by Lemma 10.20. O

Remark 10.22

1. The preceding proof shows that for a polynomial g € Pos([a, b]),, the infimum in
(10.23) is attained if and only if ¢(#;) = O for all roots t; # & of g and g(§) > 0.
Let & be an inner root of a principal measure of s. Then deg(gz) = m — 1 and the
infimum in (10.23) is attained at g € Pos([a, b]),, if and only if g = fg¢ for some
constant or linear polynomial f € Pos([a, b]).

2. Let s be a boundary point of S,,,+;. Then s has a unique representating measure
w1 by Theorem 10.7, so ps(€) is the corresponding weight if £ is a root of u and
ps(§) = 0if £ is not a root of w. o

We derive two important consequences of the preceding theorem.

Corollary 10.23 Let i be a canonical representing measure of s € Int S;,41 with
roots tj,j = 1,..., k. Then | has maximal mass at each root t; contained in (a, b).
If  is principal, . has maximal mass at all roots.

Proof If p is canonical and ; € (a,b) is a root of w, then u, = wu by
Corollary 10.13 and Definition 10.18. If u is principal and if ¢ = a or t; = b,
then also u,;, = u by Definition 10.18. In both cases 4 has maximal mass at #; by
Theorem 10.21. O

Corollary 10.24 For each s € Sy+1,5 # 0, there is a representing measure [ of s
such that ind () < m + 1 and  has maximal mass at each root.

Proof First let s € 0S,41. Then, by Theorem 10.7, ind(x) < m and s is [a, b]-
determinate, so p obviously has maximal mass at all its roots. If s € Int S+,
each principal measure has the desired properties by Corollary 10.23. O
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The following two theorems deal with canonical measures having prescribed
masses at the end points. Because of the different behaviour of principal measures
at end points we distinguish between the even and odd cases.

Theorem 10.25 (Odd case m = 2n + 1) Suppose that T and t' are numbers such
that 0 < © < py(a) and 0 < t’ < py(b). Then there exist unique canonical measures
w(t) and uP(x') for s which have masses t and v’ at a and b, respectively.

Leta = {(t) < #5(r) < -+- < (1) and £(7") < () < - < £(t)=b
denote the roots of u(t) and p(z’), respectively. Each root t(t) is a strictly
increasing continuous function of T on the interval (0, ps(a)), while t;(t') is a strictly
decreasing continuous function of T’ on (0, py(b)). Further, k =1 = n + 2 and

t 1= hm (r) = lim t;l(l'), j=2,...,n+2,
T—=>ps(a)—0 *

a=t =46 <ty <t“(t)<t2 <f <<l <1 <it,=0b,

+
= lim ¢ = 1 =1,. L,
7 ILII'}'O j@). ze;%)of(f) J ot

+o_ b - + - +
a=t <)<ty <t <---<tn+l<tn+l(r’)<tn+l<tﬁ+2(t/):tn+2:b.

Proof We carry out the proof for the end point a and define a sequence r(t) :=
(s — tal)f,. Since u* has the root a by (10.16) and maximal mass at ;| = a by
Corollary 10.23, u+ —14, is a positive measure. Obviously, its moments are s;— 7/,
so r(7) is a moment sequence and

n+2

Lio(p) = Li(p) — tp(a@) = (ps(@) — D)p(a@) + Y _mp(t1).  p € Rlx]n.
=2

Since ps(a)—7 > 0, L.)(p) = 0implies thatp(t+) = Oforallj =1,...,n+2,that
is, Lyz)(p) = Ois equivalentto Ly(p) = 0. Hence by Theorem 10.8, s € Int 5,41
implies that 7(t) € Int S,+1. Thus, r(7) has a lower principal measure (. (7)™~ with
roots ¢(t) written as a < £(t) < +++ < t,42(t) < b. Then u(r) 1= u(r)™ + v, is
a canonical representing measure of s with roots

a=1() <t(t) < <ty42(r) <b.
Since t;(7) = tf’ =aand 1 < ps(a) = ut({a}), Proposition 10.12(ii) applies and
yields £, (7) < t;' . Applying Proposition 10.12(i) by using this fact we obtain the
interlacing inequalities stated in the theorem.

Suppose that ji(7) is an arbitrary canonical measure for s with mass 7 at a. Then
f(t) — 18, is a lower principal measure for r(t). Therefore, fi(t) — t8, = u(r)~,
which yields ji(t) = p(7).

Suppose that 0 < 7/ < 1”7 < ps(a). Then n(t') < t(z”) by Propo-
sition 10.12(ii). By the strict interlacing of roots (proposition 10.12(i)) we get
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ti(t") < tj(z”) forj = 2,...,n+ 1. Thus, ;(7) is a strictly increasing function
of T on (0, ps(a)).

Finally, we prove the continuity of #;(7) and the limit equalities in the theorem.
Since #(7) is increasing, all one-sided limits lim; 4+ £(7) for 7o € (0, ps(a)),
lim; 40 #;(7), and lim; , ()0 #(7) exist. It only remains to show the correspond-
ing equalities. As a sample we assume the contrary for some 7y € (0, ps(a)) and j
and choose «, B such that

+ - : . +
tro<t_; < lim t(r)<a<pB < lim t(r)<t'. 10.27
j—1 =1 = > 10—0 ]( ) :3 1040 ]( ) =Y ( )

Let £ € [, B]. By Corollary 10.13, there is a canonical measure ug for s which
has & as a root. Then ¢ := ug({a}) is in [0, py(a)]. If 7z < ps(a), then ug = p™
by Theorem 10.21, which contradicts (10.27). We prove that 7z > 0. Assume to
the contrary that tz = 0. Since ind(ug) = m 4+ 2 = 2n + 3, then b must be
aroot of ug. Let & < & < ..., < &41 < €42 = b be the roots of . Since
Engr = t,'f+2 = b and us({b}) < ut({b}) again by Theorem 10.21, it follows
from Proposition 10.12(iii), applied with t = pg and u’ = uT, that t;l" 1 < &nt1.
Proposition 10.11(iv), applied with i = pg and ji = =, yields §,41 < £, ;. Thus
t;L+1 < &u+1 < 1, Therefore, by the interlacing property in Proposition 10.12(i)
we get £, < £ < tj+ <§ < t;". Thus (4™ has no root between the inner roots & and
&; of . This contradicts Proposition 10.11(i) and proves that tz > 0. Thus we have
shown that 7z € (0, ps(a)).

By construction, £ = fj(z¢). From the strict monotonocity of the function #(7)
and (10.27) it follows that 7z = 7o. Then £ = #;(19). Since £ € [«, 8] was arbitrary,
this is impossible. O

Theorem 10.26 (Even Case m = 2n) Let © be a number such that 0 < t < pg(a).
Then there exists a unique canonical measure (L(t) for s which has mass t at a. Let
a = t(r) < t(r) < .-+ < tx(v) denote the roots of u(t). Then k = n + 2. Each
root tj(t) is a strictly increasing continuous function of T on the interval (0, ps(a))
and

tm = lim t(r), ¢ = lim t(r), j=2,....,n+1,
-1 = m . 7 py(@)—0 (). J *

a=t=n(t)<tf <@ <ty <tf <. <ti1(t) <t <tag2(0)=t,, =b.

The proof of Theorem 10.26 follows a similar pattern as the proof of Theo-
rem 10.25; we omit the details.

However, there is an essential difference between Theorems 10.25 and 10.26: In
the odd case Theorems 10.25 gives parametrizations of all canonical measures ¢
when £ is not a root of a principal measure in terms of the masses 7 € (0, ps(a)) ata
and v’ € (0, ps(b)) at b. In the even case this is not true, since the measures ug with
& contained in some interval (ti_’ £) are not obtained in Theorem 10.26.
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10.6 A Parametrization of Canonical Measures
Letus set J := U;J; and K := U;K}, where J; and K; are the intervals defined by

m=2n:K; = (tj+,t,.—+1)forj=1,...,n, Ji= (7. 45) forl=1,....,n+ 1,

m=2n+1: (j,l)andJ—(I,IH) forj=1,...,n+1.

That is, JUK is the set of points £ € [a, b] which are not roots of a principal measure,
or equivalently, for which the measure j¢ from Definition 10.18 has index m + 2.
Our aim in this section is to give a parametrization of measures ue, § € J U K, in
terms their smallest inner root.

Let us denote the roots of g by #(£) and assume that they are numbered in
increasing order. Using the interlacing results of Propositions 10.11 and 10.12 and
arguing similarly as in the proof of Theorem 10.25 the following properties are
derived.

Even Case: m = 2n:

Let{ € Ji = (a, 1] +). The roots of urare ! (¢) =¢and/(§) € Jj,j=1,....n+1.
Each root #/(¢) is a strictly increasing continuous function on J; and we have

tel : hm ﬂ(;) =i, lim JdQ=¢.j=1....n+1  (1028)
§—n + t—£T -0 ’
a=t <t <tf <t <PQ) <tf <<t <@ <t =0b.

Let{ € K; = (#,1;). Then ju; has the roots ' (¢) = a, 2(¢) = ¢, /T1(¢) € K;
forj = 1,...,n, and #"*2(¢) = b. Each function #(¢) is strictly increasing and
continuous on K;. Further,

teki: lim H©) = r+1 C o lim dQ) =6 =201, (10.29)
¢ +0 {—>1 =0
a==t'Q) <tf <@ <t <... <t <t O < <O =1F =0
0dd Case: m = 2n + 1:
Let{ e Ky = (a,1]) = (t1 ,17). The measure 1; has roots t1({) = ¢, #/({) € K;

for/ = 1,...,n 4+ 1 and "*2(¢) = b. Bach root # () is a strictly increasing and
continuous function on K; and

lekK;: lim P =14, lim Y@ =¢6,j=1,....n+1, (1030
§—>rl +0 {—>1 =0

1 — 1 - 2
a=tf <t'Q) <ty <tf <<, <O <t <O =18, =0



10.6 A Parametrization of Canonical Measures 247

Suppose that { € J; = (f7,;). Then ¢ has roots ' (¢) = a, *({) = ¢, and
1) e Jiforj = 1,...,n + 1. Each #/({) is a strictly increasing continuous
function on J; and

tel : {_litgl+0tj(§'):tj_, lim Y@ =t j=1...,n+1, (1031

1 {—t) —0

a=tf =1'@Q) <ty <PQ) <t <t; <<t <) <th, =0

The preceding gives a continuous parametrization of the roots of the canonical
measures (g for § € J U K in terms of their first inner root { contained in J;
resp. K. Further, in all these cases the limits (10.28)—(10.31) show the one-sided
continuity of the functions #/(¢) at the corresponding inner roots of the principal
measure j*.

Fix an interval J; and let £ € J;. Recall that the polynomial g; from Defini-
tion 10.19 is a product of linear and quadratic factors involving the roots #/(§) of fig.
This definition implies that the above parametrization of roots yields a continuous
parametrization of the polynomials g on J;. Here the vector space R[x],, is equipped
with some norm. Let J; = (A4,A_). Then A4 and A_ are roots of principal
measures. From the limits (10.28)—(10.31) we conclude that each one-sided limit
Pay = limg), 1+0ge exists and gives a polynomial p;, € Pos([a, b]),, which
is positive at A+ and vanishes at the other roots of the corresponding principal
measure. Therefore, by the remarks after the proof of Theorem 10.21, the infimum
in (10.23) is attained for p¢ at & and for p; , at A4, that is, we have k(1) = L;f(’;;)
for all t € [A4, A_]. Thus we have a continuous parametrization of minimizing
polynomials for (10.23) on the closed interval J; = [A4,A_]. (Recall that the
minimizing polynomial for (10.23) is uniquely determined up to a constant factor
for points in J;, but not for inner roots of principal measures.) Therefore, since the
linear functional L, on the finite-dimensional space R[x],, is continuous, the function

Ks(t) = L;;,(([;;) is continuous on the closed interval J;. Verbatim the same proof yields

the continuity of «, on the closure K; of each interval K;. Further, each inner root is
a common end point of some J; and K;. Hence « is continuous on [a, b]. We state
this as

Theorem 10.27 For each s € Int S,,4+1 the function py(t) = k() is continuous
on the interval [a, b].

In the preceding proof a continuous parametrization of minimizing polynomials on
intervals J; and K; was crucial. The following simple example shows that there is
no continuous parametrization of minimizing polynomials on [a, b].

Example 10.28 Let m = 2. Then a = tl_ < i < ;7 <ty = b. Let us take
numbers £ € J; = (a, t+) and¢ € K| = (tl .13 ). Clearly,

g = (=2 ¢ =b-xx-a).
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Let p¢ and p; be minimizing polynomials for (10.23) at £ and ¢, respectively. Then
pe and p; are constant multiples of g and g¢, respectively. Since 2(E) — t;' =b
as & — tf' — 0, all possible limits of these polynomials are of the form

lim pe(x) = ci(x — b)?,  lim pe(x) = c2(b—x)(x —a)
g——0 t—1 40

with ¢; > 0 and ¢, > 0. These limits are different minimizing polynomials for

Ks(tf'). This shows that at the inner root tf’ of u* one cannot have two-sided
continuity of minimizing polynomials. )

10.7 Orthogonal Polynomials and Maximal Masses

Throughout this section, we assume that s € Int S;41.
First we define and develop four sequences of orthogonal polynomials. Put

S0 S1 82 ... Sk
M §2 83 ... Sk+1
S 53 S Y
P(x)=|"7* 7 20 for 2k—1<m,
Sk—1 Sk Sk+1 - -+ $2k—1
1 x X2 ... X
ro ry rp ... T
r rn e Tl
r r3 r. R
Py =2 7" 20 for 2k+1 <m,
Tk—1 Tk Tk41 -+ T2k—1
1 x X2 ... X
S1 — aso §>, — asy oo Sk41 — ASk
S2 — asq §3 — asy e Sk42 — ASk+1
§3 — as S4 — as Y — as,
Qk(x) — 3 2 4 3 k+3 k+2 for 2k < m,
Sk — aASk—1 Sk+1 — ASk ... 82k — AS2h—1
1 by xk
bso—s1  bsi— s> coo bsp—Sp41
bSl — 85 sz — 83 e bsk_,_l — Sk+42
bsy —s3 bsy—s ... bsgay — s
Qk(x) — 2 3 3 4 k+2 k+3 for 2k < m,
bsi—1 — sk bsg — Sk+1 .+ .. bsop—1 — S
1 by x*
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where we have set
rii=(a+Db)sjt1—sj—s42 for j=1,....m—2.

The coefficients of x* in these determinants are Dy;_,, Dyt—2, Dy;_;, and Daj—1,
respectively. Since s € Int S+, they are positive by Theorem 10.8. Hence each
of the above polynomials has degree k with positive leading coefficient.

Further, we consider the following four sequences

s = (), (b—E)E—a)s = ()5, (10.32)

Es —as = (sj+1 — asj);”:_()l, bs — Es = (bs; — sj+1)]'.”:_01. (10.33)

Their Hankel matrices are given by the formulas at the beginning of Sect. 10.1.
Since s € Int 5,41, the corresponding Hankel matrices are positive definite by
Theorem 10.8, hence are the sequences in (10.32) for even m and in (10.33) for
odd m.

The polynomials P,, Py, Qk, Q, are orthogonal polynomials for the moment
sequences (10.32)—(10.33). That is, for any polynomial f € R[x]t—; we have

Lv(Pkf) = L(h—E)(E—a)X(Pkf) = LE‘v—ax(Qkf) = LhS—E‘v(Qkf) =0. (1034)

A simple verification can be given in a similar manner as in Sect. 5.1.

Suppose that p is a representing measure for s. Then the moment sequences
(b—E)(E—a)s, Es—as, and bs — Es are represented by (b —t)(t — a)du, (t—a)du,
and (b —t)du, respectively. Hence the above families of polynomials are orthogonal
with respect to the corresponding measures. That is, for all k # j we have

b b
/ P () Pi(1) dp = / Py(H) Pi(t) (b —1)(t —a)du =0 (10.35)

a a

b b
| 6000 ¢-adi= [ 0000 ®-nau =0

It should be emphasized that the polynomial P, is defined if 2k — 1 < m, while P; is
only if 2j + 1 < m. That is, P; is not defined for the largest index of P,.

Now we turn to the orthonormal polynomials. Let m = 2n or m = 2n + 1. For
k=0,...,nand[ =0,...,n— 1 we define

P Py
D , D ’ pl(-x) =
VDa2Dy \/D21D21+2

0, Oy
VDDt \/ Do 1Dy

pk(x) = , (10.36)

q,(x) = c (x) = : (10.37)
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where the determinants D, and D; with negative i are set to 1. All determinants D;, D;

occuring in (10.36)—(10.37) are positive by Theorem 10.8, since s € Int S,,+1.
Arguing as in the proof of Proposition 5.3 (see e.g. (5.3)) it follows that the

polynomials in (10.36)—(10.37) have norm 1 in the corresponding norms, that is,

b
L(P) = [ 02 di=1.

b
Loye—ap(P)?) = [ 02— )t —aydy = 1.

a

b
Lev-al()) = [ q,0PC-adn=1.

b
Los-5((q)?) = / a0 =y = 1.

a

Note that for m = 2n + 1 the polynomial P, is defined (since only moments s;
with j < 2n + 1 are involved), but P, is not (because D,, , , requires $2,+2).

Our next theorem gives explicit formulas for the function p,(£) in terms of the
orthonormal polynomials introduced above. Recall that the intervals J; and K; have
been defined at the beginning of Sect. 10.6, J = U;J; and K = U/K;. As usual, J
and K denote the closures of the sets J and K, respectively. Define

n 2
m=2n: P(x) = (Zp](é)pl(x)) , £el, (10.38)
j=0
n—1 2
Pe(x) = (b —x)(x— a)(Zp,-(S)pj(x)) , EekK, (1039
j=0
n 2
m=2n+1: Q,()=(~ a)(ij(s)qj(x)) . Eel, (10.40)
j=0
n 2
0:(x) = (b _‘x)(ij(s)qj(x)) , £ek. (10.41)
j=0

Theorem 10.29 Suppose that s € Int S;41.
Even Casem = 2nand & € J: Py is a minimizing polynomial for (10.23) and

n —1
pr(6) = (ij(s)z) .
=0
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Even Case m = 2n and § € K: Pg is a minimizing polynomial for (10.23) and

PO= o (Zp,(s))

Odd Case m =2n+ land & € J: QE is a minimizing polynomial for (10.23) and

n -1
pe) =, ! (qu(s)z)
a\ =

Odd Casem = 2n+ 1 and § € K: Qy is a minimizing polynomial for (10.23) and

(e
G b_g(;q,(s) .

Proof Since s € Int Sy41, Theorem 10.8 implies D;(s) # 0 and D;(s) # 0 for
j=0,...,m. Hence the four sequences (10.32)—(10.33) are positive definite. Recall
that by Theorem 10.21 the polynomial g¢ from Definition 10.19 is a minimizing
polynomial of (10.23). Analyzing g in the various cases leads to the form stated
above. We carry out the proof in the even case m = 2n; the odd case is treated
similarly.

Let & € J;. From the list of atoms of ¢ given in Sect. 10.6 we know that neither
anor b are roots of . Therefore, by Definition 10.19, g¢ = g* for some g € R[x],.
Recall that g¢(§) > 0 by (10.20) and hence g(§) # 0. Setting p; := g(§)7'g

we have p(x)? = ;jig’ so that k(£) = Lq‘;(q;)) = Ly(p;) by Theorem 10.21. Since

ks(§) = L‘Y(pé) and pe(§) = 1, it follows at once from the definition (10.22) of k()
that p; is a minimizer of L,(p?) for p € R[x], under the constraint p(§) = 1. This
problem was settled by Proposition 9.14. By (9.34) the corresponding minimum is
(im0 pj(é)z)_1 and by (9.35) the unique minimizer is a constant multiple of the

polynomial p(x) = Z;’ZO pj(é)pj(x). (Note that pj(é) is real, since £ is real.) Hence

P’ = Py is a minimizer for (10.23). This proves the assertions for § € J;.

By Theorem 10.27 and the discussion preceding it, p, is continuous on [a, b]
and the continuous extension of a continuous minimizing family of polynomials for
(10.23) on J; yields minimizers for the end points of J;. Hence the assertions remain
valid for £ in the closure J;.

Now let £ € K;. We proceed as in the case £ € J; with s replaced by the
positive definite sequence (b — E)(E — a)s. Since £ € K;, it follows from the
description in Sect. 10.6 that both end points a and b are roots of j¢. Therefore, by
Definition 10.19, we have ¢z = (b — x)(x — a)g? with g € R[x],—i. Again g(§) # 0
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by (10.20) and we set ps := g(§)'g. For g = (b —x)(x — a)f* with f € R[x],—1 we
compute

Li(q)  Ly(b—x)(a—x)f?) _1 Lo—pyE—ays(fH)
= = [(b—£)(a—
¢(&) ¢(&) (= =HI" " pey

Using Theorem 10.21, Eq. (10.42), and the relation pg(§) = 1 we obtain

(10.42)

Ly(gs)

SO = e

=[(b—§)(a— " Lo—ryz—as(Pp)-

Hence it follows from the definition of «,(£) that the polynomial p; is a minimizer of
Lp—E)E—a)s( f?) for f € R[x],—; under the constraint f(§) = 1. The orthonormal
polynomials for the sequence (b — E)(E — a)s are py, Py, .- .,P,—;- By Proposi-
tion 9.14, applied to the sequence (b — E)(E — a)s, the corresponding minimum is
(Z]’.l:_é p;(§)*)~" and the minimizer is a multiple of p(x) = Z;:é p;(£)p;(x). Hence,
by (10.42), the minimum &, (§) is

n—1 !

[(b—&)a—"" | D p(€)

=0

and each multiple of (b — x)(a — x)p(x)> = P¢(x) is a minimizer for (10.23). Thus
the assertions are proved in the case £ € K;. Arguing as in the preceding paragraph,
the assertions hold for £ in K; as well. O

We close this chapter by showing how the roots of principal measures x4+ and
canonical measures g can be detected from orthogonal polynomials and quasi-
orthogonal polynomials, respectively.

Proposition 10.30 The roots of the upper and lower principal representing mea-
sures Wt and w= of s are exactly the zeros of the following polynomials:
m=2n M+ : (b _X)Qn(x)v H_ : (-x_ a)Qn(x), (1043)
m=2n+1 put: B-x)(x—a)P,(x), Lo P (). (10.44)

All these zeros are simple.

Proof We carry out the proof for m = 2n+ 1 and ™ ; the other cases can be treated
similarly. Recall that Py, Py,..., P, are orthogonal polynomials for the sequence
(b — E)(E — a)s. Hence P, € RJx], is orthogonal to all polynomials f € R][x],—;
with respect to (b — #)(t — a)du™, that is, by (10.34) and (10.35) we have

b
Loty oars(PLf) = / PuOf ()b — 1)(t — aydp™ = 0.
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By formula (10.16), w1 has ninner roots t;', e, tjl]rl € (a, b). Thus, we can choose
f to vanish at all but one such root ti+ and obtain P,(#;)(b— ti+ )(ti+ —a) = 0. Hence
P,(t;) = 0. Since t1+ = a and t,'f+2 = b, (b — x)(x — a)P,(x) vanishes at all n + 2
roots of ut. Because (b — x)(x — a)P,(x) has degree n + 2, the roots of 1™ exhaust
the zeros of (b — x)(x — a)P,(x) and all zeros are simple. O

The roots of principal measures are described in Proposition 10.30. If £ € [a, ]
is not a root of a principal measure, then § € J U K and ¢ has index m + 2. In
Sect. 10.6 these measures have been parametrized in terms of their smallest inner
root { € J; UKj. Then pg = pig, so it suffices to know the roots of ;. The next
proposition characterizes these roots as zeros of quasi-orthogonal polynomials.

We shall say (see also Definition 9.3 below) that a polynomial ¢ € R[x],, g # O,
n > 2,is called quasi-orthogonal of order n for s if Ly(qf) = 0 forall f € R[x],—>.

Proposition 10.31 There exist strictly increasing continuous functions ¢ on J, and
Y on K| with ranges (0, +00) and (—o0, 0), respectively, such that for { € J; U K;
the roots of the canonical measure ju; are precisely the zeros of the polynomial g¢
defined by

m=2n el ) = (x—@)Q, () — p()(b— 00, (). (10.45)
m=m ek g =0-NE-a[Q,0- VO (10.46)
m=2m+1. L€l g() = —a)lPy, ()~ @b -DP,@].  (1047)
m=2n41, L €Kit = b—0[P @)~ Y(OE—a)P,].  (10.48)

The polynomial g; is quasi-orthogonal of order n ifm = 2nandn+1ifm = 2n+1.

Proof We carry out the proof in the case m = 2nand ¢ € J; = (1, t1+) = (a, tf);
the other cases can be treated in similar manner with necessary modifications.
First we fix I/ = 1,...,n + 1 and define a function ¢; on J; by

€ -a)Q (©)

, J =, 6h). 10.49
b-t)o,)° =) (1049

@(¢) =

First we note that O, # 0 on J; by Proposition 10.30. Hence the denominator in
(10.49) is nonzero on Jj, so ¢; is continuous on J;. Since Qn and Q, have degree n,
0,
0,(5)
¢ = a. This holds for all { € Ji, because 0 and Q,, do no vanish on J;. The roots
of u~ and ™, hence the zeros Q and Q, by Proposition 10.30, strictly interlace.
2,
0,(5)

lim (b—8)0,(8) = (b~ ()0, =0 and (5" —a)Q (1) >0,

=>4 —0

positive leading terms, and no zeros in (—oo, a] by Proposition 10.30, > 0 for

Therefore, > 0 and hence ¢;({) > 0 on J; for all . Since
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it follows that lim§_>t1+_0 @i(§) = +oo. Similarly, lim¢— 0 ¢;({) = 0. Therefore,

by the continuity of the function ¢; on J; its the range is (0, 4+00).

We show that ¢; is injective on J;. Assume to the contrary that there exist numbers
0,0 € J1,¢ # ¢, such that ¢;($) = ¢;(¢’). Then the polynomial g¢(x) has at least
n + 2 zeros, that is, ¢ and ¢’ in the interval J; and one in each of the remaining
n intervals J;. But deg(g;) < n + 1, so that g = 0. Setting x = b we get a
contradiction, since b is not a root of ;™ and hence g;(b) = (b — a)Qn(b) #0
by Proposition 10.30. Summarizing, we have shown that ¢ is a strictly increasing
continuous function on J; with range (0, +00).

Now we set ¢ := ¢;. Recall that Q and Q, are orthogonal polynomials with
respect to (x — a)d iy and (b — x)d e, respectively. Hence, for f € R[x],—1,

b b b
[ et aus = [ 0,0 -aduc - o) [ 0,090 b0 dpc = .
(10.50)

The measure ji; has n + 1 roots #({) € J;,l = 1,...,n+ 1, where ' () = {. By
(10.49), we have g¢(t'({)) = g¢({) = 0. Thus, if we take a polynomial f € R[x],—
that vanishes at all #/(¢),j = 2,...,n + 1, except £(¢), it follows from (10.50) that
g¢ vanishes at 7'(¢). Hence all roots of u; are zeros of g;. Since deg(g;) < n + 1,
these n + 1 roots exhaust the zeros of g;.

Finally, we show that g; is quasi-orthogonal. As a sample we verify this in the
case m = 2n, { € K;. Letf € R[x],—. Using again the orthogonality of Q, and Q
we derive

Ly(g¢f) = Li((b —x)(a —0)[ 2, (x) — ¥ () O, (0])
= Li((x —a)Q,(x) (b — x)f) = ¥ (§) Ly((b —x)Q (x)(x — a)f)
= Lbs—Es(Qn (-x)(x - a)f) - W(f) LEs—as(Qn (-x)(b - -x)f) =0,

where the last equality follows from (10.34), since (x — a)f, (b — x)f € Rl[x],—1.
Hence g; is a quasi-orthogonal polynomial of order n. O

10.8 Exercises

1. Let [a,b] = [0,1] and s = (1,51) € S,. Draw a picture of S, and compute the
numbers s3 and s .

2. Let [a,b] = [-1,1], m = 2 and s = (1,0, 0). Compute the canonical measure
pe for & € [a, b] and determine the principal measures 1 and p~.

3. Suppose thata < 0and b > 2. Letm = 4 and s = (8, 6, 12,24, 48).

a. Show thats € Ss.
b. Show that s is determinate and compute the unique representing measure of s.
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c. Iss’ = (8,6,12,24) € S, determinate?
d. Iss” = (8,6,12,24,48,96) € S determinate?

4. Letc>0,d>0.Set[a,b] =[—c,c],m=3ands = (2d + 2,0,2c2,0).

a. Show thats € Int Sy.
b. Prove that the two principal measures u+ and p— are given by

pwt = 6_c +2d8o + 8, uT = (d+ 1)8—y + (d + 1)8,, where y := c(d + 1)"1/2.

5. Letpu = Z/]'(=1 m;8; be a canonical representing measure for s € Int S+ and
let P € R][x],, be a polynomial which has simple zeros at 71, . . ., #;. Prove that

. P(x) .
m; _LJ(P’(tj)(x—tj)) for j=1,...,k

6. Determine the extreme rays of the moment cone S+ 1.

10.9 Notes

According to M.G. Krein [Kr2], the ideas of this chapter go back to the Russian
mathematicians P.L. Tchebycheff and A.A. Markov. Markov invented canonical
measures and applied them in his study of “limiting values” of integrals [Mv2]. The
theory of principal measures, canonical measures, and maximal masses presented
above is taken from the fundamental paper [Kr2].

The geometry of moment spaces S,,4+1 was elaborated by S. Karlin and L.S.
Shapley [KSh]. The volume of the projection of the base S™ of the moment cone in
R™ is computed in [KSh]. Theorem 10.29 is due to I.J. Schoenberg and G. Szego
[SSz], improving a result of Krein. The two classical monographs of S. Karlin and
W.J. Studden [KSt] and of M.G. Krein and A.A. Nudelman [KN] contain further
results and a detailed study of Tchebyscheff systems, see also [DS]. We partly
followed these books. A description of all solutions of various types of truncated
moment problems is given by Krein [Kr3].



Chapter 11
The Moment Problem on the Unit Circle

This chapter is concerned with the trigonometric moment problem:
Let s = (5))jen, be a complex sequence. When does there exist a Radon measure
W on the unit circle T such that for all j € Ny,

5 = /T dp(2)? (11.1)

The truncated trigonometric moment problem is the corresponding problem for a
finite sequence (sj);’=0 of prescribed moments. The aim of this chapter is to a give a
condensed treatment of some basic notions and results on these problems.

In Sect. 11.1 we prove the Fejér—Riesz theorem (Theorem 11.1) on nonnegative
Laurent polynomials on T. This is the key result for solving the trigonometric
moment problem (Theorem 11.3) in Sect. 11.2. Section 11.3 deals with orthogonal
polynomials on the unit circle. The Szegd recurrence relations (Theorem 11.9) and
Verblunsky’s theorem (Theorem 11.12) about the reflection coefficients occuring
in these relations are obtained. In Sect. 11.4 the truncated trigonometric moment
problem is investigated. In Sect. 11.5 we give a short digression into Carathéodory
and Schur functions and the Schur algorithm and prove Geronimus’ theorem
(Theorem 11.31) about the equality of reflection coefficients and Schur parameters.

Throughout this chapter we adopt the following notational convention which is
often used without mention: For a sequence (s;)"_, where n € IN or n = oo, we set
s—;j := s; for j > 1. The reason is that (11.1) holds for —j provided it does for j.

11.1 The Fejér—Riesz Theorem

The solution of the moment problem on the unit circle is essentially based on the
following Fejér—Riesz theorem.
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Theorem 11.1 Suppose that p(z) = Y i__, ax* € Clz,z7"'], p # 0, is a Laurent
polynomial such that p(z) is real and nonnegative for all 7 € T.

Then there exists a unique polynomial q(z) = Z};o b7 € C[z] of the same
degree such that q(z) # 0 for |z] < 1, ¢(0) > 0, and

p(@) =lq@|* for z€T. (11.2)

Proof Without loss of generality we can assume that n € IN and a,, # 0. Since p(z)
is real on T, we have a_;y = a; for all k. Put f(z) := z"p(z). Then f € C|z] has
degree 2n , f(0) = a, # 0, and the nonzero zeros of f and p coincide. Clearly,

f@Q =a + - +ad +-+a, ="fz7"), z€C,z#0. (11.3)

Equation (11.3) implies that the zeros of f are symmetric with respect to the unit
circle. More precisely, if w is a zero of f, then w # 0 and w ™! is also a zero of f
with the same multiplicity. Let z;,z; L Zms z,;I denote the zeros of f which are
not on T (if there are such zeros) counted according to their multiplicities.

Define g(x) = p(e¥) for x € R. By differentiation it follows that each zero ¢ €
T of p has the same multiplicity as the zero 6 € R of g. Since g(x) = p(e®) > 0 on
IR, each zero 6 of g, hence each zero ¢ € T of p and so of f, is of even multiplicity.
If f has zeros on T, we denote them by &, &1,..., &, &, so that 2m + 2] = 2n.

Then the polynomial f and hence p factor as

i0

m )
PR =@ ="a [ [c—we—xH ][ &)
k=1

J=1

m ) m ]
=[Je-wc"-w][c-&E" -§) [z—"an [ a5 ﬂ(—z)sj}.
k=1

j=1 k=1 j=1

The factor in square brackets is ¢z =" for some ¢ € C. Since m+[=nandp > 0
on T, it follows that ¢z~ = ¢ > 0. Setting

m )
7@ = Ve [Je—w []e-§).
k=1 j=1

the preceding equality yields p(z) = |go(z)|? for z € T. (One of the two groups of
zeros may be absent. In this case we set the corresponding product equal to one.)
Upon multiplying g¢ by a constant of modulus one, we can have ¢o(0) > 0.

1-¢z

Recall that z — is a bijection of T for any ¢ € C. Therefore, if ¢ is a zero of

=<
qo, the polynomial gy(z) lz__iz has the same degree as g and satisfies (11.2) as well.

Continuing in this manner, we can remove all zeros of gy which are contained in
D = {z € C : |z] < 1} and obtain a polynomial ¢ which has the desired properties.
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Let g be another polynomial with these properties. By (11.2), |¢(z)| = q(2)|
on T. From this it follows that the zeros of g and g on T and their multiplicities

coincide. Since ¢(z) # 0 and g(z) # 0 on D, the functions f(z) := 38 and f(lz) are

holomorphic on D and satisfy |f(z)| = | f(lz) | = 1 on T. By the maximum principle
for holomorphic functions, |f(z)] < 1 and | f(lz)| < 1, hence |f(z)] = 1, on D.

Since | f(z)| attains its maximum in ID, f is constant. From ¢(0) > 0, g(0) > 0, and
|£(0)] =1 we get f(0) = 1. Hence f(z) = 1, so that ¢ = q. O

Remark 11.2 The polynomial g in Theorem 11.1 satisfies

p(x) =q(2) q(z7") for ze€C,z#0. o

11.2 Trigonometric Moment Problem: Existence
of a Solution

Recall that the group *-algebra C[Z] of Z is the unital *-algebra C[z,z~!] of all
Laurent polynomials p(z) = >/, ¢;j7/, where ¢; € C and n € IN, with involution
p = p*) = Z]’.l:_n ¢;z/. In the *-algebra C[Z] we have z* = 77!, thatis, zis a
unitary element. The character space of C[Z] is the torus T = {z € C : |z| = 1},
where z € T acts on C[Z] by the point evaluation y,(p) = p(z).

Note that C[Z] can be considered as the *x-algebra of trigonometric polynomials

fO) =Y ce” =co+ Y (ajcoslf + bysinlb). 6 € [-x. 7],

j=—n =1

where ¢j,a;,b; € C and a; = ¢; + ¢, b; = i(c; — c—;), with involution given by
f=rO) =3, cje™ V.

Let s = (sj)je, be a sequence. We denote by L the linear functional on C[Z]
given by Ly(z/) := s;,j € Z. Recall from Example 2.3.3 that the Hankel matrix is
now the infinite Toeplitz matrix H(s) = (hj);ren, With entries hy = si—j,j. k €
INy. Here we have set s_; = s; for / > 1 according to our notational convention.

If s = (55)]L, is a sequence and n < m, then H,(s) = (hu)};—, denotes the
(n+1) x (n+1) Toeplitz matrix with entries &y = s;—; and we abbreviate

S0 S1 oo Sy
S—1 80 e Sp—1
D, :=D,(s) =detH,(s) = |5—» S—1 ... Sy (11.4)

S—n S—n+1 -.- S0
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The next theorem, called the Carathéodory—Toeplitz theorem, provides a solution
of the trigonometric moment problem.

Theorem 11.3 For a complex sequence s = (Sy)nen, the following are
equivalent:

(i) s is a moment sequence for the group Z., that is, there exists a Radon measure
won T such that

Sy = / 7 "du(z) for all neZ. (11.5)
T

(ii) Ly(¢*q) = 0 for g € C|Z], i.e. Ly is a positive functional on the *-algebra
C[z].

(iii) Ls(g*q) = 0 forall q € C[z].

(iv) The infinite Toeplitz matrix H(s) = (Si—;j ﬁ:o is positive semidefinite.

) Zﬁ:o si—kckcj > 0 for all finite complex sequences (c;)jen,.

The measure | is uniquely determined by (11.5). Its support is an infinite set if
and only if the Toeplitz matrix H(s) is positive definite, or equivalently, the moment
sequence s is positive definite, or equivalently, D, (s) > 0 for all n € INy.

Proof Letq(z) = Y ;o cxz* € Clg]. Then ¢*(z) = Y/_¢;z 7 and

n o0 o0
L(g*9) = ) L@ e =) sreee =Y hyac. (11.6)
k=0 k=0 k=0

From (11.6) we conclude that (iii)<>(iv)<>(v). Further, (i)—(ii) by Proposition 2.7
and (ii)—(iii) is trivial. We prove the implication (iii)— (i).

Let p € C[Z] be such that p(z) > 0 on T. By the Fejér—Riesz theorem 11.1, there
is a polynomial g = Z;;o ;7 € C[] such that p = g*q. Then Ly(p) = Ly(q*q) >
0 by (iii). Hence the restriction of L; to the real subspace E := {p € C[Z] : p = p*}
of C(T; R) is E4-positive. Therefore, by Proposition 1.9, the restriction of Ly to E,
hence also L, on C[Z], is given by a measure i € My (T). This implies (i).

Thus we have shown that the four conditions (i)—(iv) are equivalent.

Since the trigonometric polynomials are dense in C(T) by Fejér’s theorem, the
measure 4 is uniquely determined by (i).

We verify the last assertion. If ¢(z) is as above, from (11.6) and (i) we obtain

hyicrci = CkC'/ zk_jd,u =/
> o= e [ iu= [

jk=0 k=0

n

> e

2
du=/ lg(z)Pde.
k=0 T

(11.7)

If w has finite support, we can find ¢ # 0, which vanishes on supp @. Then
(coy...,cn) # 0and Z]’.szo hyj crej = 0 by (11.7). That is, the matrix H(s) and the
sequence s are not positive definite.
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If 1 has infinite support, for any vector (co, ..., c,) # 0 the polynomial g does
not vanish on supp p. Hence it follows from (11.7) that Z]’.szo hijck cj > 0, that is,
H(s) and s are positive definite.

Obviously, the infinite matrix H(s) is positive definite if and only if all finite

matrices H,(s) are, or equivalently, D, (s) > 0 for all n € INy. |
Remark 11.4
1. The minus signs in (11.5) and in the definition Ly(z/) = s; are notational

conventions following the standard literature [KN], [Sim2]. The minus sign in
(11.5) also fits into the usual definition of the Fourier transform for the group Z.
It should be noted that some authors define Ly(z) = s; and/or hy = si—;.

2. In (i), we have set s—, := s, for n € IN by our convention. In (iii), the condition
Ls(¢*q) > 0 is required only for “analytic” polynomials ¢(z)= Z?:o oz )

The following theorem is the counterpart of Theorem 11.3 for the truncated
trigonometric moment problem.

Theorem 11.5 Letn € INy. Fora sequence(sj);.’:o the following are equivalent:

(i) There is a Radon measure . on T such that

sj:/z_jd,u(z) for j=0,...,n. (11.8)

(i) There is a k-atomic measure . on T, k < 2n + 1, such that (11.8) holds.
(iii) The Toeplitz matrix H,(s) is positive semidefinite.
(iv) szzo si—kckc; >0 forall (co,...,c,)" € C*H1.

Proof (i1)—(i) is trivial. Similarly, as in the proof of Theorem 11.3 the implications
(i)—(iii)<«>(iv) follow from (11.6). It suffices to prove that (iv) implies (ii). Let E be
the real vector space of polynomials p = p* € C[Z] such that deg(p) < n. Clearly,
dimE = 2n+ 1. Letp € E be such that p(z) > 0 on T Then the polynomial g from
the Fejér—Riesz theorem also satisfies degg < n. Hence it follows from (11.6) and
(iv) that Ly(p) = L;(¢*q) > 0. Thus Proposition 1.26 applies and yields (ii). O

11.3 Orthogonal Polynomials on the Unit Circle

In this section, we suppose that s = (sj)jez is a moment sequence on Z such that its
representing measure p on T has infinite support. By Theorem 11.3 the latter holds
if and only if the infinite Toeplitz matrix H(s) is positive definite.

Since H(s) is positive definite, there is a scalar product (-, -); on C[z] given by

n

(P.q)s =) ajbisiy (11.9)

k=0
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forp =37, aj7 € Clz) and g = Y }_, biz" € C[z]. From the definition (11.9) it
is immediate that s, = (1, zX), for k € Z and

(zp,29)s = (P> q)s- (11.10)

Next we define two families of polynomials Px, P; associated with s. Put
D_; :=1and Py(z) := 1. For k € IN we set

S0 81 v Sk—1 1
1 S—1 80 e Sk—2 2
Pk(Z) = Dk S_2 851 e Sk—3 Z2 . (11.] ])
-1
k
S—k S—k+1 S—1 2

Since the coefficient of z* in the determinant is Dy_;, P; is a monic polynomial
of degree k for k € INy. The next lemma shows that P,k € INy, are orthogonal
polynomials of the unitary space (Clz], (-, )s)-

Lemma 11.6 (P, P;); = D;! D8y and (Py,7*)s = D;! Dy fork,j € No.

Proof Letl = 0,...,k. To compute (P,(z),z')s we repeat the reasoning from the
proof of Proposition 5.3. Multiplying the last column by z~ and applying the func-
tional L the last column of the determinant will be replaced by (s, sj—1, ..., sj_k)T.

If I < k, the last column coincides with the j-th column and hence
(Pi(2),7')s = 0. Since P, has degree k, this implies that (Py, Pj); = 0 for all
k #j,k,j e No.

Now let j = k. If j = k = 0, then obviously (Py, Po); = (Po.z°)y = so = Dj.
For j = k € N, the determinant becomes Dy, so that (P, 7*), = D,:_lle. Hence,
since the leading coefficient of Py is 1, we get (Py, P)s = (Py, 2*)s = D,:_lle. O

Letp = Z?:o ¢;7 be a polynomial of degree at most k. Put p := Z]]';o ¢j7. The

reciprocal polynomial Ri( p) is defined by

k
Re(p)@) :=2pE) =) e
J=0

Clearly, deg(R(p)) < k and deg(R«(p)) = kif and only if p(0) # 0. Then we have
(R(p)(2) = px) = p(1/2) for z €T, (11.12)
(Ri(p), Re(9))s = (q.p)s- (11.13)

For p = P, we abbreviate P} := Ry(Py). Since Py is monic, P; (0) = 1. Clearly,

Py(z) =Pi(2) =1, Pi(z) =z—s_15;", Pi(2) =1—s15;'z
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Combining the definition P{(z) = R¢(Px)(z) = Z*Pi(z™") with (11.11) we obtain
the explicit formula

50 S—1 ... S—k41 20
ST S0 ... S—k42 Al
P;:(Z) = D §2 81 cee S—k+3 Zk_2 , ke N. (11.14)
k—1
Sk Sk—1 S1 1

Remark 11.7 The notation P is standard in the literature. Note that P} should not
be confused with the adjoint of Py, in the x-algebra C[Z]! o

Some simple facts on these polynomials P} are collected in the following lemma.
Lemma 11.8

() (Pf,2)y=0forj=1,...,kand (P}, 1); = D!, Dy
(i) |Pcl1? = IP} |2 = (PF.1), = D, Di fork € Ny,

Proof All assertions follow by a repeated application of Lemma 11.6 combined
with (11.13). Forj = 1,..., k we obtain

(PE, )y = (Ri(Py), Re(Z7))s = (27, Py)s = 0.
Further, again by (11.13), we have ||P}||> = ||P||* and
o 1) = (Ri(Pi), Ri(27)) = (2", Pr) = || Pi||” = Dy Dx.
(PE 1) = (Ri(Po), Ru(2)) = (&, Pi) = | Pl = DD o

The following theorem is the first main result of this section. The formulas
(11.15) and (11.16) therein are called Szego recursion formulas.

Theorem 11.9 Suppose that s = (s;)jez is a positive definite sequence on Z. Then
there exist uniquely determined complex numbers o, for n € g such that

Pu11(2) = 2Pu(2) — 2P, (2), (11.15)
Py (@) = Py(2) — 2Py (2). (11.16)
Further, we have
oy = —P,11(0), (11.17)
1Pwi1 112 = (1= o) IPull? = s0 [ [0 = le?). (11.18)
Jj=0
Dyy1 = Dyso [ J(1 = ey ). (11.19)

Jj=0
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Proof Using Lemma 11.6 and formula (11.10) we obtain forj = 1,...,n,
(Pn+l _ZPnaZj) = (Pn+lazj> - (Pnazj_l> =0.

By Lemma 11.8, P} is also orthogonal to z, 22, ..., 7" Since P,+ and P, are monic,
P,+1 —zP, has degree at most n. Thus P, —zP, and P} are both of degree at most
n and orthogonal to z, .. ., z". Therefore, since (P, 1) # 0 by Lemma 11.8, setting
a, = (P}, 1);1(Pn+1 — zP,, 1); we conclude that P,y = zP, — «,P) which is
(11.15). Applying R,,+ to both sides of (11.15) yields (11.16).

Setting z = 0 in (11.15) and using that P;(0) = 1 we obtain (11.17). In
particular, this implies that ¢, is uniquely determined by (11.15).

Next we prove (11.18). Recall that multiplication by z is unitary by (11.10),
P,+1LP} (since deg(P}) < n) and ||P,|| = ||P}| by Lemma 11.8(ii). Using these
facts it follows from (11.15) that

2 2 2 2 2 2
I1Pally = zPully = I1Pus1 + anPylly = [1Pusrlly + lenl“IPall5,

which implies the first equality of (11.18). The second follows by repeated
application of the first combined with fact that [|Po|? = (1, 1), = so.

Inserting the equality ||Py+1]|? = D, 'D,+1 (from Lemma 11.8(ii)) into (11.18)
we obtain (11.19). ]

Definition 11.10 The numbers «,, from (11.15) are called the reflection coefficients
of s; they are also denoted by «,(s), or «, (1), where p is the unique representing
measure of s.

Remark 11.11

1. The numbers ¢, also appear under the names Verblunsky coefficients in [Sim2],
canonical moments in [DS], or Schur parameters in the literature.

2. The choice of writing —a,, in (11.15) follows [Sim2]. The reason is that then
a,(p) becomes equal to the Schur parameter y,(u) by Geronimus’ theorem
11.31 below.

3. Equations (11.15) and (11.16) can be rewritten in matrix form as

(P,H_l(z))_( z —ocn) (Pn(z)) .
Pr@)  \—az 1 P(2) )"

The second main result of this section is the following Verblunsky theorem. It
states that sequences of numbers «, € DD are precisely the sequences of possible
reflection coefficients of probability measures on T of infinite support. Since
the parameters ¢, appearing in the Szegd relation (11.15) are the counterpart
of the Jacobi parameters a,, b, from Sect.5.2, Theorem 11.12 might be called
“Favard’s theorem for the unit circle”.
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Theorem 11.12 For a complex sequence (a,),2, the following are equivalent:

(i) There is a positive definite sequence s = (s;)jez, where so = 1, on Z such that
a, = a,(s) forn € No.
(ii) There exists a probability measure . on T of infinite support such that a, =

a,(p) for n € INy.
(iii)) a, € D forall n € INy.

By Theorem 11.3, a moment sequence on 7 is positive definite if and only if
its representing measure has infinite support. Hence Theorem 11.3 yields (i)<>(ii).
(i)—(iii) follows at once from formula (11.18), since P,+; # 0 and (11.18) imply
that |o,| < 1. The main implication (iii)—(i) will be proved at the end of the next
section.

We close this section by stating some facts on zeros of the polynomials P, P}.

Proposition 11.13 For n € IN we have:

(1) If zo € C is a zero of P,(2), then |zo| < 1.
(i) If z0 € Cis a zero of P} (), then |zo| > 1.
(i) [Py (@)| = |Pu(2)| forz € T.

(iv) |P; (@) < |Px(2)| forz € D.

Proof

(1) Since Py(z0) = 0, p(z) 1= fj(z? is a polynomial of degree n — 1. Hence P, is

orthogonal to zopp in the unitary space (Clz], (-, -)5). Using this fact we derive
IPIF = llzpl; = Iz =20)p + 2011} = 1P + 20plI7 = [IPAl7 + 2o lIPI13,
so that
(1 =1laoPlplF = I1Pall3- (11.20)

Since (-, -); is a scalar product, we have |p||; > 0 and ||P,||; > 0. Therefore
(11.20) implies that |zo| < 1.

(ii) Recall that P*(z) = R,(P,)(z) = 2"Pn(z"") and P*(0) = 1. Hence P*(z9) = 0
implies zo # 0 and P,(z;") = 0, so that |z9| > 1 by (i).

(iii) follows from |P}(z)| = |Z"Pn(z)| = |Pa(z)| for z € T by (11.12).

(iv) By (ii), P} (z) # O for |z| < 1. Hence the function f(z) := 11::((3 is holomorphic
on DD, continuous on the closure of ID, and of modulus or;e on T = dD by
(ii). Since n > 0, P,(z) has a zero in D, so in particular, f(z) is not constant.
Therefore, by the maximum principle for holomorphic functions, |f(z)| < 1
and hence |P; (z)| < |P,(2)| forz € D. O
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11.4 The Truncated Trigonometric Moment Problem

Definition 11.14 Letn € IN. The moment cone S+ is given by
Sng1 = 8 =(50,81,...,8) 8 = / du(z),j=0,....,n, u e My(T)} .
T

As in Sect. 10.2, we consider S,+1 as a subset of C"*! by identifying s with the
column vector s” € C"*!, By a similar reasoning as in the proof to Proposition 10.5
it follows that S, 4 is a closed convex cone in C"*! and the conic convex hull of
the moment curve

Cup1 = 1{5(2) = (1,2,2%,...,2") 1z € T}.

The latter implies that each s € S,4+; has an atomic representing measure

k
w= Z m;s,,, (11.21)

j=1
where 71, ..., zx are pairwise different points of T and m; > O forj =1, ..., k. For

such a measure u we set ind(u) = 2k. (Since the unit circle T has no end points,
each atom of p is counted twice.) The index ind(s) is defined as the minimum of
indices of all such representing measures (11.21) for s.

Lets = (s5;)}=o € Sp+1. By our notational convention, we have defined s—; := s;
forj = 1,...,n. Hence, if p is a representing measure for s, then

sj:/z_fd,u for j=—n,—n+1,...,n
T

By a slight abuse of notation we denote the “double™ sequence (s;);__, also by s.
Recall that by Theorem 11.5 a complex sequence s = (sj);‘=0 belongs to 5,4 if
and only if the Toeplitz matrix H,(s) is positive semidefinite.
The following propositions characterizes boundary points and interior points of
the set S,+1. The proofs are verbatim the same as for its counterparts on a bounded
interval (Theorems 10.7 and 10.8) and will be omitted.

Proposition 11.15 A sequence s € S, is a boundary point of S,+1 if and only
if ind(s) < 2n. In this case s is determinate, that is, it has a unique representing
measure 1 € My (T).

Proposition 11.16 For s € S, the following statements are equivalent:

(i) s € Int S,41, that is, s is an interior point of S,+1.
(ii) The Toeplitz matrix H,(s) is positive definite.
(iii) Dj(s) > 0forj=0,...,n
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Note in conditions (ii) and (iii) of Proposition 11.16 the numbers s—; = s; for j =
1,...,n are required.

Now we fix s = (sj)]’.‘=0 € Int S,41. Then, by Proposition 11.16, D;(s) > 0 for
j =0,...,nand hence the sequence s = (sj)]'.’z_n is positive definite, that is,

Z Si—kcrcj >0 forall (co, .. el e (co, ... en) #0.
k=0

This implies that Eq.(11.9) defines a scalar product on the vector space C,[z].
Further, proceeding as in the last section, we define the polynomials P and P},
k = 0,...,n, and the reflection coefficients «;,j = 0,...,n — 1, and derive the
corresponding properties from Theorem 11.9.

Let us denote by C; the set of numbers s,,+; € C for which the extended sequence
5:=(80,...,8 S,+1) belongs to S,4,. In the proof of Proposition 11.17 below we
shall use the following notation:

So S1 ... 8 Z
S—18 ...8%—149
Any1(2) = L (11.22)
Z S—p...85-1 S0
S1 52 o8 Z
S S oo Sp—1 S
Ay =" el S (11.23)
S—n+1 S—n+2 ... S0 1
S—1 8o oo Sp—2 Sp—1
S— S— e Sp—3 Sp—
B,(z)=| " ! =3 Snm2 ) (11.24)
Z S—n+1 ... §=2 §—1

The next proposition is the counterpart of Corollary 10.16 for the unit circle.

Proposition 11.17 Suppose that s = (sj)j’.’=0 € Int S,+1. Then the set Cy is a

_1yn+1
closed disk with radius r,+, = DDi(IS()X) and center ¢4+, = ( 343’;(0)

Proof By Theorem 11.5 (i)<>(iii), Cs is the set of complex numbers s,4; such
that H,11(5) is positive semidefinite. Since D;(s) > 0 for = 1,...,n by Proposi-
tion 11.16, C; is precisely the set of numbers z = 5,41 € C for which A,4+(z) > 0.
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To describe this set we apply Sylvester’s formula (see e.g. [Gn, p. 58]) and
expand the determinant A, (z) with respect to the first and last row and first and
last column. Then we obtain

Dy—1(5) Ap41(2) = Du(5)* — An(2)B,(2). (11.25)

Since s; = s, we have B,,(z) = A,(z). Clearly, the determinant A,(z) is a linear
polynomial in z with leading coefficient (—1)"D,—;(s). Therefore,

An(Z) = Z(_l)nDn—l(s) +An(0) (1126)
Hence, since D, (s) > 0, it follows from (11.25) that A,,1(z) > 0 if and only if
Dy(s)” = |Ay@)* = |2(=1)"Du-1(5) + Au(0)

or equivalently,

D, (s) A, (0)
] = > |7 — (=1)"T! = |z—cpt1]- 11.27
M ) ST e TR (12
This completes the proof of Proposition 11.17. O

The closed disk C; from Proposition 11.17 is the set of the possible (n + 1)-th
moments s,, or more precisely, the set of numbers s,4; for which the extended
sequence § = (S0,...,Sn,Sn+1) 18 In S,42. Recall that D,1(5) = A(sy+1)
by construction and D;(s) = D;(5) > 0 for j = 0,...,n by the assumption
s € Int S,+1. Therefore, by Proposition 11.15, 5 belongs to boundary of M, 4,
if and only if A(s,+1) = 0, or equivalently, s,+; lies on the circle dC;.

For & € dC; let P,y1(z; &) denote the polynomial (11.11) with k = n + 1 and
S—n+1) = §. All other moments s; required in (11.11) are determined by s = (s;)7_.

Let us call a representing measure u for s canonical if ind(p) = 2n + 2.

Theorem 11.18 Suppose that s = (sj)l’.’zo € Int S,+1. For each & on the circle
dC, there exists a unique canonical representing measure (¢ for s such that

§ = snp1 () = / 7" Vdpg(2). (11.28)
T

The (n + 1) atoms of g are precisely the roots of the polynomial P,1(z;§). In
particular, Py+1(z; &) has n + 1 distinct simple roots, all of them lying on T.

Proof Let 5 = (S0,...,5n, Sn+1), Where 5,41 := £. Because £ € dC,, we have
D,y1(5) = A41(5) = 0, so 5 is a boundary point of S,4,. Therefore, by
Proposition 11.15,5 has a unique representing measure ji¢. Clearly, ¢ is the unique
representing measure for s which satisfies (11.28).
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Since 5§ belongs to the boundary of S,y,, ind(ug) < 2n + 2 by Proposi-
tion 11.15. Further, ind(ug) < 2n would imply that s is in the boundary of S,41,
which contradicts the assumption s € Int S,41. Thus ind(ug) = 2n + 2 and e
is indeed a canonical measure for s.

Since H,,+(5) is positive semidefinite, Eq. (11.9), with s replaced by 5, defines a
nonnegative sesquilinear form (-, -); on C, 4 [z]. Repeating the proof of Lemma 11.6
and using that ¢ is a representing measure of § we derive

/T P12 §)17dpe (2) = (Putt, Put1)s = Du(s) ™' D1 (5) = 0.

Therefore, all n 4 1 atoms of ¢ are zeros of P, 1(z; §) (by Proposition 1.23). Since
D, (s) > 0 and hence deg(P,+1) = n + 1, these atoms exhaust the zeros of P,
and all zeros are simple. The atoms of ¢ are in T. Hence the zeros of P, are
in T. O

Next we consider extensions § contained in Int S,4;. Our aim is to build the
bridge to the reflection coefficients. Since we assumed that s € Int S,4, the
sequence s is positive definite and hence (11.9) defines a scalar product on the vector
space C,[z]. Then, proceeding as in the last section, the orthogonal polynomials
Py, k =0,...,n, and the reflection coefficients oj,j = 0, ...,n — 1, are defined and
the corresponding properties from Theorem 11.9 remain valid. By (11.19),

n—1
Fatt = Dum1() 7 Du(s) = 50 1_[(1 — o).
J=0

Obviously, z = s,+1 is in the interior of C; if and only if |s,+1 — cht1]| < Fug1-
Suppose that o, € D := {z € C : [z] < 1} is given. Then, setting

n—1
(=1)"*14,(0) 2

Syl (= Cpat1 + OpFpag = + o, 50| | (1= o|?), (11.29)
+ + + Dy (5) j:l—([) lotj|*)

sp+1 belongs to the interior of Cy. Then D, 1(5) = A(sy+1) > 0,05 = (sj)j’.’:ol
belongs to Int S,+, by Proposition 11.16. Conversely, if 5§ € Int S,42, then s,
is in the interior of C; and hence s,,4 is of the form (11.29) for some unique ¢, € D.

Formula (11.29) describes the new moment s, in terms of the given number «,

and of the reflection coefficients o; and moments s;, j < n, of s.

The following formula expresses «, in terms of the moments s;,j = 0,...,n+1:
M 52 coe Sp Sp+l
-" e Sn—1 Sn
. D" so s Sp—1 S (11.30)
D(s)

S—n41 S—n+2 --- S0 S1
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We prove formula (11.30). Indeed, first using (11.29), then the formulas for 7,
and ¢+, and finally formula (11.26) we derive

Dn—l (S)

oy = 1yt [snt1 — ca1] = D, (s) [s0r1 — (=1)" 1A, (0)D,—1 ()]
_ (D—ng;‘ [swt1(=1)" Dy (5) + A,(0)] = (D ()) An(Sut1)-

Inserting the definition (11.23) of A,(s,+;) into the right-hand side we obtain
(11.30). This completes the proof of formula (11.30).

Finally, we prove that ¢, is the n-th reflection coefficient of the sequence 3. Let
«, denote the n-th reflection coefficient of 5. If P,4 is the (n + 1)-th orthogonal
polynomial for §, then @, = —P,+1(0) by (11.17). We develop the determinant in
formula (11.11) for P,+;(0) by the last column and apply the complex conjugate.
Then —P,+1(0) becomes the right-hand side of (11.30). Hence &, = «,,, that is, o,
is the n-th reflection coefficient of 5.

We summarize the preceding considerations in the following theorem.

Theorem 11.19 Suppose that s = (s])” o € IntS,y1. There is a one-to-one
correspondence, given by the formulas (11.29) and (11.30), between numbers
o, € D and numbers s,+1 in the interior of the disk C. This yields a one-to-one
correspondence between numbers o, € D and extensions s = (sg,...,S.41) of §
belonging to the interior of the moment cone S,+;.

Remark 11.20

1. Set 5 := (s1,...,8y+1). Then the determinant in (11.30) is just the determinant
D, (5) for the sequence §, that is, we have

_(=1)"D,(3)
" Dys)

Therefore, if @ is a representing measure for s, then the (complex!) measure [t
defined by dfi(z) = z~'du(z) has the moments sy, . .., S,+1.
2. We easily compute

S1 S082 — S%
oy = and o) = ) .
S0 So — S15-1

In fact, the reflection coeffients ¢, depend only on the quotients jf) ,jeN.

3. If s = 1, then (11.29) is a recursion formula which determines the moment
sequence s uniquely in terms of the sequence (o). For this reason
we restricted ourselves to probability measures in Theorem 11.12 and in
Sect. 11.5. )



11.5 Carathéodory Functions, the Schur Algorithm, and Geromimus’ Theorem 271

Proof of Theorem 11.12 (iii)—(i) Let « = (a)sen, be a sequence of numbers
a, € D. By induction we construct a positive definite sequence s = (s;)jen,, So = 1,
such that o, = o, (s) for all n € INy.

Letn = 1 andsets := (1,a). Then D;(s) = 1 — |ap|*> > 0, so that s € Int S,.
Further, Py(z) = Pj(z) = 1 and Pi(z) = z— g = 2Py — aoPy.

Suppose now that s/ = (5j)}=9 € Int Sy is constructed such that it has the

reflection coefficients «, . . . , &,—1. Then, by Theorem 11.19, there exists an s, €
C such that s+ = (s0,...,5,41) € Int S,4, has the n-th reflection coefficient
o,. By induction the preceding gives the desired positive definite sequence s. O

Summarizing the main results of this and the preceding sections we have
established a one-to-one correspondence between the following three objects:

e probability measures w on T of infinite support,
e positive definite sequences s = (s;)jez on Z, where sp = 1,
e sequences & = (&ty)nenN, of complex numbers o, € D.

Indeed, for the probability measure w on T, s is its moment sequence (given
by s; = [¢ “du(¢), where j € 7). For the positive definite sequence s, « is its
sequence of reflection coefficients from Theorem 11.9 (given by (11.30)) and u is
the unique solution of the moment problem for s from Theorem 11.3. Finally, for
the sequence «, s is the positive definite sequence from Theorem 11.12 (defined
inductively by (11.29) and s := 1).

11.5 Carathéodory Functions, the Schur Algorithm,
and Geromimus’ Theorem

The following two notions on holomorphic functions are crucial in this section.
Definition 11.21 A holomorphic functionfonD = {z € C : |z| < 1} iscalleda

e Carathéodory function if f(0) = 1 and Ref(z) >0 forz € D,
e Schur function if |f(z)| <1 forz € D.

For ¢ € T, the constant function f(z) = ¢ is obviously a Schur function. For all
other Schur functions f we have | f(z)| < 1 on D by the maximum principle.
The next result is Herglotz’ representation theorem of Carathéodory functions.

Proposition 11.22 For each probability measure p on T, the function F,
defined by

Fo() = /T Q;J_rj du(f). zeD, (1131

is a Carathéodory function. Each Carathéodory function is of the form F,, and the
probability measure | is uniquely determined by the function F .
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It is easily verified that F;, is a Carathéodory function. Indeed, F, is holomorphic
onD, F,(0) = u(T) = 1and Re F,(z) > 0 on I, since

{+z 1-— |z|?
t—z  [g—2
That each Carathéodory function of the form (11.31) is proved (for instance) in [Dn,
Theorem III on p. 21].

Using the representation (11.31) from Proposition 11.22 it is easy to relate the
Taylor coefficients of Carathéodory functions to moment sequences.

Re >0, zeD, ¢ eT.

Proposition 11.23 Let F be a holomorphic function on D with Taylor expansion
o0
F@ =142 c" (11.32)
n=1

Then F is a Carathéodory function if and only if there is a probability measure |4 on
T such that

e = su(1t) = /T Cdu() for ne N,

Proof Let F be a Carathéodory function. By Proposition 11.22, F is of the form
(11.31). For z € D and ¢ € T we have the expansion

{4z _ o
‘- =1+2) ¢z (11.33)

n=1

which converges uniformly on T. Hence, since (T) = 1, integrating over T gives

oo
F)=1+2) s(wz'. zeD.
n=0

Comparing the coefficients of z" yields ¢, = s,(u) forn € IN.
Conversely, suppose that ¢, = s,(t), n € IN, for some probability measure /.
Then, using (11.32) and the uniformly converging expansion (11.33) on T we obtain

ro=14 32 [z = [ (1423 00 auo
n=0 n=1

=/”Zdu(z),
Tf—z

that is, F' = F,. Hence F is a Carathéodory function. O
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The following simple fact will be used several times.

Lemma 11.24 Iff is a Schur function such that f (0) = 0, then I (ZZ) is also a Schur
function.

Proof Since f(0) = 0, Schwarz’ lemma applies and shows that |f(z)| < |z| for
z € D. Hence |f(;) | <1 o0nD, so that f(;) is a Schur function. O

Next we note that the map

1

froFi= [ TTE (11.34)

1-2zf(2)
is a bijection of the Schur functions f onto the Carathéodory functions F with inverse

1 F(z)—1
F—f= . 11.35
! z F(z) + 1 ( )

14+w

Indeed, since w = v = | 7" is a holomorphic bijection of the open unit disc D on
the open half plane Re v > 0, the function F in (11.34) is a Carathéodory function
if f is a Schur function. The inverse v > w = l’jjri maps the half plane Rev > 0
holomorphically onto D. Hence, if F is a Carathéodory function, the function zf(z)
defined by (11.35) is a Schur function and so is f by Lemma 11.24.

If F,, is the Carathéodory function of a probability measure 11, we denote by

1 Fu@) -1

Ju = 2 Fu(@) + 1 (11.36)

the corresponding Schur function. By the preceding we have developed one-to-one
correspondences between probability measures on T, Carathéodory functions and
Schur functions.

Recall that for any y € ID the M6bius transformation

Myw) =" 7

, we D,
1—yz

is a holomorphic bijection of D and a bijection of T. Hence, finite Blaschke
products

LI
fz) =€ / (11.37)
.lj! 1— AjZ
j=
of order n, where ¢ € R and Ay,...,A, € D, are Schur functions. Constant

functions of modulus one are interpreted as Blaschke products of order 0.
Lemma 11.25 For a probabilitiy measure p on T the following are equivalent:

(i) w has finite support.
(ii) Fy is a rational function with all its poles in 'T.
(iii) fy is a finite Blaschke product.
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Proof Clearly, the points of supp u are the singularities of F',,. This fact implies the
equivalence of (i) and (ii).

From (11.34) and (11.35) it follows that f;, is rational if and only if F, is rational;
in this case f, has boundary values of modulus one on T. Hence (ii) holds if and
only if f,, is an rational inner function. It is well-known (see e.g. [Y, p. 208]) that
the rational inner functions are precisely the Blaschke products of finite order. O

Let S denote the set of Schur functions and Sy the finite Blaschke products.
Now we begin to develop the Schur algorithm. Let f be a fixed Schur function.
We define inductively f;(z) := f(z) and

(@) = ¥

O ﬁﬁ&%=quw“ﬂ»=Za—yJ@D’

nelNg.  (11.38)

Conversely, from (11.38) we obtain

Zfut1(2)
14y,

Vn + Z.ﬁ1+l(z) _

- n"f' 1_ n2
1+ y,20+1(2) Yot (1 =1nl)

Ja(2) = M-y, (Ffnt1) =

Suppose that y, € D and f, € S. Since M,, is a holomorphic bijection of DD,
M, (f,) € Sandso fup1 = z7'M,,(f,) € S by Lemma 11.24. By induction this
proves that the functions f;(z) are Schur functions if |y,| < 1 fork < n.

Assume in the above algorithm that y, € D fork = 0,...,n— 1 and y,, = f,,(0)
isnotin D. Then y,, € 0D = T, the algorithm terminates, and |yx| = 1 fork > n. It
is easy to verify that this happens if and only if f € ;.

Definition 11.26 The numbers y, = v,(f), n € NNy, are called the Schur
parameters of the Schur function f.

Thus, if f € S and f ¢ S, the Schur algorithm yields a sequence (f;)new, of
Schur functions f, € S\S; and a sequence (y)qen, of Schur parameters y, € D.

We shall write y, (1) for the Schur parameters of the Schur function f,, given
by (11.36). If the probability measure p has infinite support, then f, ¢ Sy by
Lemma 11.25 and hence all Schur parameters y, (1), n € INg, are in D.

For a Schur function f we denote by a,(f) its n-th Taylor coefficient, that is,

f@ =" a(f)"
n=0

It can be shown [Su] that the Schur parameter y,(f) is a function of the Taylor
coeffients ao(f), ..., a,(f) and that the Taylor coefficient a,(f) is a function of the
Schur parameters yo(f), ..., Yx(f). We shall use only the following results.

Proposition 11.27 Forn € IN there exists a real polynomial ¢, of 2n variables such
that for any Schur function f we have

n—1

an(f) = )’n 1_[(1 - |J/]|2) + @n()/()s )/Os L) yn—ls )/n—l)' (1139)
j=0
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Proof We prove by induction on n that for all k € INy and n € IN there exists a
polynomial ¢, x in y; and y; forj = 0,...,k + n— 1 such that

n+k—1

an(f) = VYarx [ (0= 1017 + @nk (0. Vor - - Vukkot: Virst)- (11.40)
=k

Since f = fj, the case k = 0 gives the assertion.

We compare the coefficient of z in the equation fi + v, zfifi+1 = Yk + Zi+1
by using that f;(0) = y;. This yields ai(fi) + V;Yk¥k+1 = Vi+1. Hence we have
a1(fi) = via1(1 = |y|?). This is the assertion (11.40) for n = 1 and k € IN.

Assume that (11.40) holds for n — 1. Comparing the coefficient of 7" in the
identity

fi(@) = vk + 212 — Vizfir1 (@fi (2)

by using the definition ao(fi) = fx(0) = yx we derive

an(fi) = an—1(fi+1) — Vian—1(frit1/i)

n—1
= a1 (fir) = Vi Y an1—i(fir)ai(fo)

J=0

n—1
= (1 = ) an—1(fix1) — Vi Zan—l—j(fk-i-l)aj(fk)- (11.41)

j=1

For the terms a,—1 (fi+1), @n—1—j(fi+1), aj(fi) in (11.41) the induction hypothesis
(11.40) applies with n replaced by n—1. Hence a, ( f;) is of the required form (11.40).
This completes the induction proof. O

Corollary 11.28 Suppose that f and g are Schur functions such that y;j(f) = y;(g)
forj=0,...,n Then

1f@) —g(@| <2[z|""" for zeD. (11.42)

Iff, g € S have the same Schur parameters yi(f) = yr(g) for k € Ny, then f = g.

Proof First we note that f(0) = yo(f) = yo(g) = g(0). By Proposition 11.27,
for any j € IN the j-th Taylor coefficient of a Schur function is a polynomial in its
Schur parameters )y, ¥, - . - , ¥, ¥;- Hence the assumption implies that the first n+ 1
Taylor coefficients of f and g coincide, so the Schur function A := é( f—g hasa
zero of order n+ 1 at the origin. Therefore, by repeated application of Lemma 11.24
we obtain |a(z)| < |z|"*! on D which gives (11.42).

If ye(f) = w(g) for k € Ny, then (11.42) holds for all n € IN. Passing to the
limit n — oo yields f(z) = g(z) forz € D. O
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Now we reverse the procedure and start with Schur parameters. For y € D, set

Yy +zw

T,.(w) = atyow

Then T,.(f(2)) is also a Schur function for any f € S. From (11.38) we obtain

Yo + Zfut1(2)

@) =Ty, (fu+1(2) = 1+y,7, +1(2)

Let (Yn)nen, be an arbitrary sequence of numbers y, € ID. We develop the inverse
Schur algorithm and define the n-th Schur approximant f!(z) by

f[n] () = V(),Z(T}/l ,z(- .- Ty,,—l,z(yn)))s n € WNo.

(In fact, this is a kind of continued fraction algorithm.) It is not difficult to verify
that f"(z) a rational Schur function with Schur parameters given by

yi(f"y =y for j=0,....n and y,(f") =0 for j > n. (11.43)
Therefore, if n > m, it follows from by Corollary 11.28 that
1) — " (2)] < 202", zeD.

Hence (f(z))en, is a Cauchy sequence for fixed z € D which converges uniformly
on compact subsets of ID to some holomorphic function f(z) on ID. Since ! € S,
it is obvious that f € S. Further, yx(f) = y«(f") = yi for n > k, that is, the Schur
function f has the prescribed Schur parameters yx, k € INo. Since y;, € D for all
k € Ny, f is not in Sy. Therefore, by Lemma 11.25, the unique probability measure
w such that f = f;, has infinite support.

Now let g € S\&; be given. Then y, := y,(g) € D for n € INy. If we start the
inverse Schur algorithm with this sequence (y,,)nen,, then the corresponding Schur
function f(z) has the same Schur parameters as g(z), so it coincides with g(z) by
Corollary 11.28. Hence the sequence (f)(z))en, of Schur approximants converges
to the Schur function g(z) uniformly on compact subsets of D.

For later reference we state an outcome of the preceding considerations as

Proposition 11.29 For each sequence (y,)new, of numbers y, € D there exists a
unique probability measure p on T with infinite support such that

() = vi(fu) = vr for k € Ny.

The next proposition is needed in the proof of Theorem 11.31 below.

Proposition 11.30 Let  be a probability measure on T and let y; be its Schur
parameters. For n € INy there exists a real polynomial  in 2n variables such that

n—1

st () = v [ JA = 1) + ¥ 0. Yor - -+ Va1 Vi) (11.44)
J=0
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Proof Recall that F), denotes the Carathéodory function and f;, is the Schur function
assiciated with u. By (11.34) we then have

_ 1+ @ _ 1 22fu(2)

F -
W@ = 7 (2) 1—2u(2)

=1+ Z2(fuz)".
n=1

This formula implies that the Taylor coefficient a,41(F,) is a sum of the number
2a,(f.) and a polynomial in the lower coefficients a;(f,), where j < n—1. On the
other hand, a,,+1(F,) = 2s,41(1) by Proposition 11.23. Applying formula (11.39)
to the Taylor coefficients a,(f,,) and a;(f,,),j < n — 1, we obtain the assertion. 0O

The main result of this section is the following Geronimus theorem.

Theorem 11.31 For each probability measure (1 on T of infinite support we have

on(p) = yu(p) for n e No.

Proof The assertion will be proved by induction on n. For n = 0 it is easily checked
that 51 (1) = ao(u) = yo(p).

Now suppose that oj(t) = y;(u) forj = 0,...,n—1. We fix these numbers and
abbreviate them by «;. Recall that o; € D for each j.

By Verblunsky’s Theorem 11.12, for each number ¢ € D there is a probability

measure v with infinite support such that a,(v) = ¢ and o;(v) = «; forj =
0,...,n— 1. By (11.29) the corresponding moment s,,+1(v) is of the form
n—1
sur1(v) = () [ [ = e5?) + capr (11.45)
j=0
where c¢,+; depends only on the moments sg,...,s, and so on «y,...,a,—; by

formula (11.44). Note that c,+; does not depend on ¢, (v) = ¢.

On the other hand, by Proposition 11.29, for each { € D there exists a probability
measure v such that y,(V) = ¢ and y;(v) = o; forj = 0,...,n — 1. By
Proposition 11.30 the corresponding moment s,,1 (V) is given by

n—1
st (D) =y [ ] = 1) + Y. (11.46)
Jj=0
where v, depends only on «y, . .., ®,—;, but not on y,(v) = ¢.

Formulas (11.45) and (11.46) describe the sets of possible (n + 1)-th moments
when «,(v) = ¢ and y,(V) = ¢, respectively, run through . Both sets are open
disks with centers c,+1 and ¥,,. Since these sets are the same, c,4+1 = ¥,.
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Since aj(n) = yj(u) = ajforj = 0,...,n—1,wecansetv = vV = pu in
the preceding formulas. Comparing the moment s,,+; (1) in (11.45) and (11.46) by
using that ¢, = V¥, we obtain

n—1 n—1
an () [ T = 1o = vu ) (1 = loy ).
Jj=0 j=0

Since |a;| < 1, this yields o, (1) = y,(1). This completes the induction proof. O

11.6 Exercises

1. Letk € IN and s = (5))jez, Where so = 1, sp_p=5,— = !

28 = 0 otherwise.

a. Show that s is a moment sequence for Z by “guessing” the representing
measure.
b. Compute the Toeplitz determinants H,(s),n € INy.

2. Let g(0) = Y |_,aicoslf be a trigonometric “cosine polynomial” such that
g(0) = 0 for § € [—x, r]. Show that there exists a polynomial g(z) = Z]'-‘:O v
with real coefficients ¢; such that g(0) = |g(e?|? for 6 € [, 7].

Hint: Show that if z; is a nonreal zero with multiplicity k; of the polynomial f(z)

in the proof of Theorem 11.1, then so is its conjugate z;.
3. (JAK]) Lets = (sj);.’zo, where 5o > 0 and n € IN, be a real sequence. Define r;, =

Zlk Z]I';o (l;)sk_zj fork = 0,...,n. Show that the following are equivalent:

@

n
Z Sj—k CkCj = 0 for (co,..., Cn)T e Crtl.
k=0

(ii) There are numbers #; € [0, 7], m; > Oforj=1,...,[] < 1—}-;, such that
I
sk=2mj cos kt;, k=0,...,n.
j=1

(iii) r = (1)}~ is a truncated [—1, 1]-moment sequence.
Hint: 7, = Ly(((z + 271 /2)%).

4. Formulate and prove the counterpart of Exercise 3 for an infinite real sequence
s = (Sj)jG]N()'

More details and further results on Exercises 3 and 4 can be found in [AK, Theorems
13-17].
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In the following exercises we elaborate on the moment problem for a subarc of T,
see [KN, p. 294-295]. Suppose that —7 < a < B < 7. Let T, g denote the subset
of numbers €'/, where t € [2a, 28], of T. We abbreviate a = tana, b = tan §,
¢ = cosa, d = cos 8 and define a Laurent polynomial ¢, g by

0up(z) = —2cos(a — B) + *HP1 7! 4 e @HP

5. Show that ¢, g(z) > 0 for z € Ty g and ¢, g(z) < 0 for z € T\ T, 6.
Hint: Verify that ¢, g(e'") = 4sin(f — ) sin(; — ).

6. Show that if p € C[z,z™'] is nonnegative on T, g, then there exist polynomials
q1, 92 € C[g] such that p(z) = ¢1(2)* + ¢up(2)|g2(2)|* for z € T.
Hints: First suppose —7 <o < f < 7.Setz = (1—ix)(1+ ix)~! and verify that
@ap(2) = 4(cd)™ (b — x)(x — a)(1 + x*)~!. Show that there exists a ¢ € R[x]
and n € IN such that p(z) = g(x)(1 + x?)" and g(x) > 0 for x € [a, b].

Now let -7 <a < B = 7.Setz = (1 +i(x—a)(1 —i(x—a))~". Show
that ¢y 5(z) = 4c 'x(1 4+ (x —a)*)~! and there are ¢ € R[x] and n € IN such that
p(z) = q(x)(1 + (x — a)®)" and g(x) > 0 forx € R.

Apply Corollaries 3.24 and 3.25, respectively, to g.

7. (Moment problem on a circular arc)
Let s = (s4)nen, be a complex sequence and define a sequence § := (5,)nenN, by

5, = e@TPig \ —2cos(a—B) s, +e TP, neZ.

(Recall that s_, := s, for n < 0.) Verify that L,(¢, gf) = L;(f) forf € C[z,z7].

Prove that s is a T, g- moment sequence for Z, that is, there is a Radon
measure p on T supported on T, g such that s, = fT Z"du forn € 7, if and
only if the two infinite Toeplitz matrices H(s) and H(5) are positive semidefinite.

11.7 Notes

The Fejér—Riesz Theorem 11.1 was proved in [Fj] and [Rz1]. The solution of the
trigonometric moment problem in the present form is due to O. Toeplitz [To].
The Szegd recurrence relations (11.15) and (11.16) were obtained in Szegd [Sz],
while Verblunsky’s Theorem 11.12 was proved in [Ver]. The circle Cs and the results
on the truncated trigonometric moment problem are due to N.I. Akhiezer and M.G.
Krein [AK].

Carathéodory functions were first studied in [Cal], [Ca2]. The Herglotz repre-
sentation (Proposition 11.22) was obtained in [Hz]. Schur functions and Schur’s
algorithm were invented in I. Schur’s two pioneering papers [Su], while Geronimus’
Theorem 11.31 was proved in [Gs]. B. Simon’s book [Sim2] has several proofs of
Verblunsky’s and Geronimus’ theorems; the proof of Geronimus’ theorem given in
the text is taken from [Sim2]. Concerning Schur analysis, a collection of classical
papers is [FK], a very readable discussion with many historical comments is [DK],
and a deeper analysis is given in [Kv].
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Chapter 12
The Moment Problem on Compact
Semi-Algebraic Sets

In this chapter we begin the study of the multidimensional moment problem. The
passage to dimensions d > 2 brings new difficulties and unexpected phenomena. In
Sect. 3.2 we derived solvability criteria of the moment problem on intervals in terms
of positivity conditions. It seems to be natural to look for similar characterizations in
higher dimensions as well. This leads us immediately into the realm of real algebraic
geometry and to descriptions of positive polynomials on semi-algebraic sets. In this
chapter we treat this approach for basic closed compact semi-algebraic subsets of
R4. It turns out that for such sets there is a close interaction between the moment
problem and Positivstellensitze for strictly positive polynomials.

All basic notions and facts from real algebraic geometry that are needed for our
treatment of the moment problem are collected in Sect. 12.1. Section 12.2 contains
general facts on localizing functionals and supports of representing measures.
The main existence results for the moment problem (Theorems 12.25, 12.36(ii),
and 12.45) and the corresponding Positivstellensédtze (Theorems 12.24, 12.36(i),
and 12.44) for compact semi-algebraic sets are derived in Sects. 12.3,12.4, and 12.6.
The results in Sects. 12.3 and 12.4 are formulated in the language of prerorderings
and quadratic modules, that is, in terms of weighted sums of squares. In Sect. 12.6
we use another type of positivity condition which is based on the notion of a
semiring.

In Sect.12.4 we develop a fundamental technical result, the representation
theorem for Archimedean quadratic modules and semirings (Theorem 12.35). In
Sects. 12.6 and 12.7, the main theorems are applied to derive a number of classical
results on the moment problem for concrete compact sets.

Apart from real algebraic geometry the theory of self-adjoint Hilbert space
operators is our main tool for the multidimensional moment problem. In Sect. 12.5
we develop this method by studying the GNS construction and the relations to the
multidimensional spectral theorem. This approach yields a very short and elegant
proof of the moment problem result for Archimedean quadratic modules.
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Throughout this chapter, A denotes a commutative real algebra with unit
element denoted by 1. For notational simplicity we write A for A - 1, where A € R.
Recall that ) A? is the set of finite sums ), a? of squares of elements g; € A.

12.1 Semi-Algebraic Sets and Positivstellensiitze

The following definition collects some basic notions needed in the sequel.

Definition 12.1 A quadratic module of A is a subset Q of A such that
0+0CQ, 1€0Q, a°QeQ forall aeA. (12.1)

A quadratic module T is called a preorderingif T-T C T.
A semiring is a subset S of A satisfying

S+SCS, S-SCS, reS forall LeR,A>0. (12.2)

A coneis asubset C of Asuchthat C+ CC C and A-C C C for A > 0.

In the literature “semirings” are also called “preprimes”. The name ‘“quadratic
module” stems from the last condition in (12.1) which means that Q is invariant
under multiplication by squares. Setting a = VA, this implies that A - Q € Q for
A > 0. Hence quadratic modules are cones. While semirings and preorderings are
closed under multiplication, quadratic modules are not necessarily. Semirings do
not contain all squares in general. Clearly, a quadratic module is a preordering if
and only if it is a semiring. In this book, we work mainly with quadratic modules
and preorderings. Semirings will occur only in Theorems 12.35, 12.44, and 12.45
below.

Example 12.2 The subset S = {27:0 ai¥ . a; > 0,n € N} of R[x] is a semiring,
but not a quadratic module. Clearly, Q = > Ry[x]* +x1 Y Ra[x]* +x2 Y Ry[x]?

is a quadratic module of Ry[x],d > 2, but Q is neither a semiring nor a preordering.
[e]

Each cone C of A yields an ordering < on A by defining
a=x<b if and only if b—aeC.
Obviously, > A? is the smallest quadratic module of A. Since A is commutative,
>~ A? is invariant under multiplication, so it is also the smallest preordering of A.

Our guiding example for A is the polynomial algebra Ry[x] := R]xi, ..., x4].
Letf = {fi,...,fi} be a finite subset of Ry[x]. The set

KO =K(fi,....) =xeR: fi(x) >0,....fi(x) >0} (12.3)
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is called the basic closed semi-algebraic set associated with f. It is easily seen that

0(f) = O(fi..... i) = {00+ fior + -+ fiok : 00,...,04 € Z]Rd[x]z}
(12.4)

is the quadratic module generated by the set f and that

T(f)ET(fl,...,fk)={ Z fl...f:kae:GEEZRd[x]z}

e=(e1,....er)€{0,1}
(12.5)

is the preordering generated by the set f. These three sets K(f), Q(f), and T'(f) play a
crucial role in this chapter and the next.

By the above definitions, all polynomials from 7'(f) are nonnegative on K(f), but
in general 7'(f) does not exhaust the nonnegative polynomials on /C(f).

The following Positivstellensatz of Krivine—Stengle is a fundamental result of
real algebraic geometry. It describes nonnegative resp. positive polynomials on /C(f)
in terms of quotients of elements of the preordering T (f).

Theorem 12.3 Let K(f) and T(f) be as above and let g € Ry4[ x]. Then we have:

(i) (Positivstellensatz) g(x) > O for all x € K(f) if and only if there exist
polynomials p, q € T(f) such thatpg = 1 + q.
(ii) (Nichtnegativstellensatz) g(x) > 0 for all x € K(f) if and only if there exist
p.q € T(f) and m € N such that pg = g*" + q.
(iii) (Nullstellensatz) g(x) = 0 for x € K(f) if and only if —g*" € T(f) for some

neN.
(iv) K(f) is empty if and only if —1 belongs to T(f).
Proof See [PD] or [Msl1]. The orginal papers are [Kv1] and [Stel]. O

All “if” assertions are easily checked and it is not difficult to show that all four
statements are equivalent, see e.g. [Ms1]. Standard proofs of Theorem 12.3 as given
in [PD] or [Ms1] are based on the Tarski—Seidenberg transfer principle. Assertion (i)
of Theorem 12.3 will play an essential role in the proof of Proposition 12.22 below.

Now we turn to algebraic sets. For a subset S of Ry[x], the real zero set of S is

Z©S)={xeRY:f(x) =0 for all feS}. (12.6)

A subset V of R¢ of the form Z(S) is called a real algebraic set.

Hilbert’s basis theorem [CLO, p. 75] implies that each real algebraic set is of the
form Z(S) for some finite set S = {hy, ..., hn}. In particular, each real algebraic set
is a basic closed semi-algebraic set, because [C(hy, ..., by, —hi, ..., —hy,) = Z(S).

Let S be a subset of Ry[x] and V := Z(S) the corresponding real algebraic set.
We denote by 7 the ideal of R,[ x| generated by S and by 7 the ideal of f € Ry[x]
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which vanish on V. Clearly, Z(S) = Z(Z) and Z C 7Z.In general, T # 7. (For
instance, if d = 2 and S = {3 + x3}, then V = {0} and x} € Z, butx} ¢ 7.)

It can be shown [BCRo, Theorem 4.1.4] that 7 = 7 if and only if > pj? el
for finitely many p; € Ry[x] implies that p; € T for all j. An ideal that obeys this

property is called real. In particular, Z is real. The ideal Z generated by a single
irreducible polynomial 1 € Ry[x] is real if and only if & changes its sign on R¢,
that is, there are xo, x; € R? such that h(xo)h(x;) < 0, see [BCRo, Theorem 4.5.1].

The quotient algebra
R[V] := Ry[x]/Z (12.7)

is called the algebra of regular functions on V. Since 7 is real, it follows that

S ORVEN (=) R[VP) = {0} (12.8)
Example 12.4 Let us assume that the set f is of the form
f={g1.---,g h,—h,... ¢y, —hn}.
Ifg:={g1,...,g} and Z denotes the ideal of Ry[x] generated by k4, ..., h,, then
Kf) =K@ NZZ), 0f) =0@) +Z, and T(f) =T(9) + Z. (12.9)

We prove (12.9). The first equality of (12.9) and the inclusions Q(f) € Q(g) +Z
and T(f) € T(g) + Z are clear from the corresponding definitions. The identity

Pl = yI(p+ D+ (p = 1P(hy)] € 00). p € Ralx],

implies that Z € Q(f) € T(f). Hence Q(g9) + Z € QO(f) and T(g) + Z < T(¥). o
Another important concept is introduced in the following definition.

Definition 12.5 Let Q be a quadratic module or a semiring of A. Define
Ap(Q) :={a € A:thereexistsa A > 0 suchthat A —a € Qand A + a € Q}.

We shall say that Q is Archimedean if A,(Q) = A, or equivalently, for every a € A
there exists a A > 0 such that A —a € A.

Lemma 12.6 Let Q be a quadratic module of A and let a € A. Then a € A,(Q) if
and only if \*> — a® € Q for some A > 0.

Proof If A £ a € Q for A > 0, then

M —d = 21,1 [(A+a)’A—a)+ (A —a)’ (X +a)] € 0.
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Conversely, if A2 —a®> € Q and A > 0, then

Ata=_ [A-a)+(ta)i]e0 O

1
nl
Lemma 12.7 Suppose that Q is a quadratic module or a semiring of A.

(1) A»(Q) is a unital subalgebra of A.
(ii) If the algebra A is generated by elements ay, . .., ay, then Q is Archimedean if
and only if each a; there exists a A; > 0 such that A; £+ a; € Q.

Proof

(i) Clearly, sums and scalar multiples of elements of A,(Q) are again in A,(Q). It
suffices to verify that this holds for the product of elements a, b € A,(Q).
First we suppose that Q is a quadratic module. By Lemma 12.6, there are
A1 > 0and A, > 0 such that A% —a? and A% — b? are in Q. Then

(A1) = (ab)? = A3\ —a®) + 2 (A3 - b)) € Q.

so that 