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Preface and Overview

Let� be a positive Radon measure on a closed subset K of Rd and ˛ D .˛1; : : : ; ˛d/
a multi-index of nonnegative integers ˛j. If the integral

s˛.�/ WD
Z
K
x˛11 : : : x

˛d
d d�.x/

is finite, the number s˛ � s˛.�/ is called the ˛-th moment of the measure �. If all
˛-th moments exist, the sequence .s˛/˛2Nd

0
is called the moment sequence of �.

Moments appear at many places in physics and mathematics. For instance, if K
is a solid body in R3 with mass density m.x1; x2; x3/, then the number

s.0;2;0/ C s.0;0;2/ D
Z
K
.x22 C x23/m.x1; x2; x3/dx1dx2dx3

is the moment of interia of the body with respect to the x1-axis. Or if X is a random
variable with distribution function F.x/, the expectation value of Xk is defined by

EŒXk� D sk D
Z C1

�1
xkdF.x/

and the variance of X is Var.X/ D EŒ.X � EŒX�/2� D EŒX2� � EŒX�2 D s2 � s21
(provided that these numbers are finite).

The moment problem is a classical mathematical problem. In its simplest form,
the Hamburger moment problem for the real line, it is the following question:

Let s D .sn/n2N0 be a real sequence. Does there exist a positive Radon measure
� on R such that for all n 2 N0 the integral

R C1
�1 xnd� converges and satisfies

sn D
Z C1

�1
xn d� ‹ (1)

1



2 Preface and Overview

That is, the moment problem is the inverse problem of “finding” a representing
measure � when the moment sequence s is given.

For a real sequence s D .sn/n2N0 let Ls denote the linear functional on the
polynomial algebra RŒx� (or on CŒx�) defined by Ls.xn/ D sn, n 2 N0. By the
linearity of the integral it is clear that (1) holds for all n 2 N0 if and only if we have

Ls.p/ D
Z C1

�1
p.x/ d� for p 2 RŒx�: (2)

Thus, the moment problem asks whether or not the functional Ls on RŒx� admits
an integral representation (2) with respect to some positive measure �. To get
some flavour of what this book is about, we sketch without giving proofs some
cornerstones from the theory of the one-dimensional Hamburger problem.

Assume that s D .sn/n2N0 is the moment sequence of some positive measure �
on R. Then, for any polynomial p.x/ DPn

kD0 akxk 2 RŒx� we obtain

Ls.p
2/ D

Z
p.x/2 d� D

Z � nX
k;lD0

akalx
kCl

�
d� D

nX
k;lD0

akalskCl � 0:

Therefore, Ls.p2/ � 0 for all p 2 RŒx�, that is, the functional Ls is positive, and the
Hankel matrix Hn.s/ WD .skCl/

n
k;lD0 is positive semidefinite for each n 2 N0. These

are two (equivalent) necessary conditions for a sequence to be a moment sequence.
Hamburger’s theorem (1920) says that each of these necessary conditions is also
sufficient for the existence of a positive measure. That is, the existence problem for
a solution is easily answered in terms of positivity conditions.

The question concerning the uniqueness of representing measures is more subtle.
A moment sequence is called determinate if it has only one representing measure.
For instance, the lognormal distribution

F.x/ D 1p
2�
�.0;C1/.x/x

�1e�.log x/2=2

gives a probability measure whose moment sequence is not determinate.
Let us assume that s has a representing measure � supported on the bounded

interval Œ�a; a�, a > 0. It is not difficult to show that the support of any other
representing measure, say Q�, is also contained in Œ�a; a�. Then (2) implies that

Z a

�a
f .x/d� D

Z a

�a
f .x/ d Q� (3)

for f 2 RŒx�. By Weierstrass’ theorem each continuous functions on Œ�a; a� can
be approximated uniformly by polynomials. Therefore (3) holds for all continuous
functions f on Œ�a; a�. Hence � D Q�, so that s is determinate.
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A useful sufficient criterion for determinacy is the Carleman condition

1X
nD1

s
� 1
2n

2n D C1:

Now suppose s is a moment sequence such that Ls.pp/ > 0 for p 2 CŒx�; p ¤ 0,
or equivalently, s has a representing measure with infinite support. Then

hp; qis D Ls.pq/; p; q 2 CŒx�;

defines a scalar product on the vector space CŒx�. Let X denote the multiplication
operator by the variable x on CŒx�, that is, .Xp/.x/ D xp.x/. Applying the Gram–
Schmidt procedure to the sequence .xn/n2N0 of the unitary space .CŒx�; h�; �is/ yields
an orthonormal sequence .pn/n2N0 of polynomials pn 2 CŒx� such that each pn has
degree n and a positive leading coefficient. Then there exist numbers an > 0 and
bn 2 R such that the operator X acts on the orthonormal base .pn/ by

Xpn.x/ D anpnC1.x/C bnpn.x/C an�1pn�1.x/; n 2 N0; where p�1 WD 0:

That is, X is unitarily equivalent to the Jacobi operator TJ for the Jacobi matrix

J D

0
BBBBB@

b0 a0 0 0 : : :

a0 b1 a1 0 : : :

0 a1 b2 a2 : : :

0 0 a2 b3 : : :

: : :
: : :

: : :
: : :

1
CCCCCA

If A is a self-adjoint extension of TJ on a possibly larger Hilbert space and EA is
the spectral measure of A, then � D s0hEA.�/1; 1i is a solution of the moment
problem for s. Each solution is of this form. Further, the moment sequence s is
determinate if and only if the closure of the symmetric operator X on the Hilbert
space completion of .CŒx�; h�; �is/ is self-adjoint. All these facts relate the moment
problem to the theory of orthogonal polynomials and to operator theory.

Let s be an indeterminate moment sequence. Nevanlinna’s theorem yields a
parametrization of the solution set. Let P denote the set of holomorphic functions
on the upper half-plane with nonnegative imaginary part and set P WD P [ f1g.
Then Nevanlinna’s theorem states that there is a bijection � ! �� of P to the set
of all solutions of the moment problems for s given by

Z 1

�1
1

x � z
d��.x/ D �A.z/C �.z/C.z/

B.z/C �.z/D.z/ ; z 2 C; Im z > 0:
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Here A;B;C;D are certain entire functions depending only on the sequence s. Thus,
a moment sequence is either determinate or it has a “huge” family of representing
measures. All this and much more is developed in detail in Part I of the book.

There are a number of other variants of the moment problem. The Stieltjes
moment problem asks for representing measures on the half-line Œ0;C1/ and the
Hausdorff moment problem for measures on the interval Œ0; 1�. If only the first
moments s0; : : : ; sm are prescribed, we have a truncated moment problem. In this
case there exist finitely atomic representing measures and one is interested in
measures with “small” numbers of atoms.

The passage from one-dimensional to multidimensional moment problems leads
to fundamental new difficulties. As already observed by Hilbert, there are positive
polynomials in d � 2 variables that are not sums of squares. As a consequence,
there exists a linear functional L on RdŒx� � RŒx1; : : : ; xd� which is positive (that
is, L.p2/ � 0 for p 2 RdŒx�), but L is not a moment functional (that is, it cannot be
written in the form (2)). For this reason the K-moment problem is invented. It asks
for representing measures with support contained in a given closed subset K of Rd.

Let ff1; : : : ; fkg be a finite subset of RdŒx�. Then the closed set

K D fx 2 Rd W f1.x/ � 0; : : : ; fk.x/ � 0g

is called a semi-algebraic set. For such sets methods from real algebraic geometry
provide powerful tools for the study of the K-moment problem. Our main result for
a compact semi-algebraic set K is the following: A linear functional L on RdŒx� is a
moment functional with representing measure supported on K if and only if

L.f e11 � � � f ekk p2/ � 0 for p 2 RdŒx�; e1; : : : ; ek 2 f0; 1g:

If K is only closed but not compact, this is no longer true. But if there exist nontrivial
bounded polynomials on K, there is a fibre theorem that allows one to reduce the K-
moment problem to “lower dimensional” cases. The multidimensional determinacy
question is much more complicated than its one-dimensional counterpart.

It turns out that most methods that have been successfully applied to the moment
problem in dimension one either fail in higher dimensions or at least require more
involved additional technical considerations.

The study of moment problems and related topics goes back to the late nineteenth
century. The Russian mathematicians P.L. Chebychev (1974) and A.A. Markov
(1984) applied moments in their “theory of limiting values of integrals” and invented
important notions; a survey of their ideas and further developments was given
by M.G. Krein [Kr2]. The moment problem itself as a problem in its own was
formulated for the first time by the Dutch mathematician T.J. Stieltjes (1894) in
his pioneering memoir [Stj]. Stieltjes treated this problem for measures supported
on the half-line and developed a far reaching theory. The cases of the real line and of
bounded intervals were studied only later by H. Hamburger (1920) and F. Hausdorff
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(1920). Important early contributions have been made by R. Nevanlinna, M. Riesz,
T. Carleman, M.H. Stone, and others.

A surprising feature of the moment problem theory is the connections and
the close interplay with many branches of mathematics and the broad range of
applications. H.J. Landau wrote in the introduction of an article in the AMS volume
“Moments in Mathematics” [L2]: “The moment problem is a classical question in
analysis, remarkable not only for its own elegance, but also for its extraordinary
range of subjects theoretical and applied, which it has illuminated. From it flow
developments in function theory, in functional analysis, in spectral representation
of operators, in probability and statistics, in Fourier analysis and the prediction of
stochastic processes, in approximation and numerical methods, in inverse problems
and the design of algorithms for simulating physical systems.” Looking at the
developments of the multidimensional moment problem over the last two decades
I would like to add real algebraic geometry, optimization, and convex analysis to
Landau’s list.

This book is an advanced text on the moment problem on Rd and its modern
techniques. It is divided into four main parts, two devoted to one-dimensional
moment problems and two others to multidimensional moment problems. In each
group we distinguish between full and truncated moment problems. Though our
main emphasis is on real moment problems we include short treatments of the
moment problem on the unit circle and of the complex moment problem.

Here is a brief description of the four parts.
Part I deals with the one-dimensional full moment problem and develops

important methods and technical tools such as orthogonal polynomials, Jacobi
operators, and Nevanlinna functions in great detail. Basic existence and uniqueness
criteria are obtained, but also a number of advanced results such as the Nevanlinna
parametrizations for indeterminate Hamburger and Stieltjes problems, finite order
solutions, Nevanlinna–Pick interpolation, Krein and Friedrichs approximants of
Stieltjes solutions, and others are included.

Part II is about one-dimensional truncated moment problems. The truncated
Hamburger and Stieltjes moment problems are treated and Gauss’ quadrature
formulas are derived. In the case of bounded intervals the classical theory of
Markoff, Krein, and Akhiezer on canonical and principal measures, maximal
masses, and the moment cone are studied. Part II also contains a self-contained
digression to the trigonometric moment problem and some highlights of this theory
(Schur algorithm, Verblunsky and Geronimus’ theorems).

In Part III the multidimensional full moment problem on closed semi-algebraic
subsets of Rd is investigated. Here real algebraic geometry and operator theory
on Hilbert space are the main tools. For compact semi-algebraic sets the interplay
between strict Positivstellensätze and the moment problem leads to satisfactory
existence results for the moment problem. In the case of closed semi-algebraic sets
existence criteria and determinacy are much more subtle. The fibre theorem and
its applications and the multidimensional determinacy problem are investigated in
detail. Further, we derive basic existence and determinacy results for the complex
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moment problem. The two main Chaps. 12 and 13 are the heart of Part III and
also of the book. At the end of Part III we touch very briefly upon semidefinite
programming and applications of moment methods to polynomial optimization.

Part IV gives an introduction to the multidimensional truncated moment problem.
Existence theorems in terms of positivity and the flat extension theorem are derived.
Fundamental technical tools (Hankel matrices, evaluation polynomials, the apolar
scalar product for homogeneous polynomials) are developed and discussed in detail.
A number of important special topics (the core variety, maximal masses, deter-
minacy, Carathéodory numbers) are also studied. The multidimensional truncated
moment problem is an active topic of present research. It is expected that convex
analysis and algebraic geometry will provide new powerful methods and that the
status of this area might essentially change in the coming decades. For this reason,
we have not treated all recent developments; instead we have concentrated on basic
results and concepts and on selected special topics.

All moment problems treated in this book deal with integral representations of
linear functionals on a commutative unital algebra or on a (in most cases finite-
dimensional) vector space of continuous functions on a locally compact space. Most
of them are moment problems on certain �-semigroups. In two introductionary
chapters, general results on integral representations of positive functionals are
obtained and notions concerning moment problems for �-semigroups are developed.
These results and notions will play an essential role throughout the whole book.

As mentioned above, the main focus of this book is on the four versions of the
scalar classical moment problem. In the course of this we develop fundamental
concepts and technical tools and we derive deep classical theorems and very recent
results as well. Also, we present a number of new results and new proofs. In this
book, we do not treat matrix moment problems, operator moment problems, infinite-
dimensional moment problems, or noncommutative moment problems.

Apart from the two introductory chapters the parts of the book and a number of
chapters can be read (almost) independently from each other. Sometimes a technical
fact from another part is used in a proof; it can be filled easily. In order to be
independent from previous chapters we have occasionally repeated some notation.

Several courses and seminars on moment problems can be built on this book by
choosing appropriate material from various parts. Each course or seminar should
probably start with the corresponding results from Sects. 1.1 and 1.2. For a one
semester basic course on the one-dimensional moment problem this could be
followed by Sects. 2.1–2.2, Chap. 3, and the core material of the first sections of
Chaps. 4–6. A one semester advanced course on the multidimensional moment
problem could be based on Sects. 11.1–11.3, 11.5–11.6, and selected material from
Chaps. 12 and 13, avoiding technical subtleties. Here applications to optimization
from Chap. 15 are optional. Chapters 8, 9, 10, and 16 are almost self-contained and
could be used for special seminars on these topics. Most exercises at the end of
each chapter should be solvable by active students; some of them contain additional
results or information on the corresponding topics.

As the title of the book indicates, the real moment problem is the central topic.
Our main emphasis is on a rigorous treatment of the moment problem, but also
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on important methods and technical tools. Often several proofs or approaches to
fundamental results are given. For instance, Hamburger’s theorem 3.8 is derived
in Sect. 3.2 from Haviland’s theorem, in Sect. 6.1 from the spectral theorem, and in
Sect. 9.2 from the truncated moment problem. This is also true for a number of other
results such as Stieltjes’ theorem, Carleman’s theorem, Markov’s theorem, and the
Positivstellensätze and moment problem theorems in Chap. 12. At various places
explicit formulas in terms of the moments are provided even if they are not needed
for treating the moment problem. Large parts of the material, especially in Parts III
and IV, appear for the first time in a book and a number of results are new.

Necessary prerequisities for this book are a good working knowledge of measure
and integration theory and of polynomials, but also the basics of holomorphic
functions in one variable, functional analysis, convex sets, and elementary topology.
With this background about two thirds of the book should be readable by graduate
students. In the remaining third (more precisely, in parts of Chaps. 4–7 and Part III)
Hilbert space operator theory and real algebraic geometry play an essential role.
The short disgression into real algebraic geometry given in Sect. 12.1 covers all
that is needed; for more details we refer to the standard books [Ms1] and [PD].
Elementary facts on unbounded symmetric or self-adjoint operators and the spectral
theorem (multidimensional versions in Sect. 12.5 and 15.3) are used at various
places; necessary notions and facts are collected in Appendix A.7. In Chap. 8
Friedrichs and Krein extensions of positive symmetric operators occur; they are
briefly explained in Sect. 8.1. All operator-theoretic notions and results needed in
this book can be found (for instance) in the author’s Graduate Text [Sm9].

In large parts of the book results and techniques from other mathematical
fields are used. In most cases we state or develop such results with reference
to the literature at the places where they are needed. Further, I have added six
appendices: on measure theory, on Pick functions and Stieltjes transforms, on
positive semidefinite matrices, on locally convex topologies, on convex sets, and
on Hilbert space operators. These appendices collect notions and facts that are used
often and at different places of the text. For some results we have included proofs.

Some general notation is collected after the table of contents. Though I tried to
retain standard terminology in most cases, occasionally I have made some changes,
we hope for the better. For instance, instead of the term “moment matrix” I preferred
“Hankel matrix” and denoted it by Hn.L/ or H.L/: Also there is some overlapping
notation. While the symbol A is used for one of the four Nevanlinna functions in
Chap. 7 (following standard notation), it denotes a matrix or a Hilbert space operator
at other places. The meaning will be always clear from the context. The underlying
algebras are usually denoted by sanserif letter such as A, B:

Continued fractions are avoided in this book (in Sect. 6.7 only the notion is
briefly explained). Instead I have put my emphasis on operator-theoretic approaches,
because I am convinced that these methods are more promising and powerful, in
particular concerning the multidimensional case.

In writing this book I benefited very much from N.I. Akhiezer’s classic [Ak]
and B. Simon’s article [Sim1], but also from standard books such as [BCRl], [KN],
[KSt], [Ms1], [Sim3], [Chi1] and from the surveys [La2], [AK]. Applications and
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ramifications of moment problems and related topics are discussed and developed
in the AMS volume [L2] and in the books [Ls2], [BW].

I feel unable to give precise credits for all results occuring in this book. In the
Notes at the end of each chapter I have given (to the best of my knowledge) credits
for some results, including the main theorems, and some hints to the literature and
for further reading. In the bibliography I have listed some key classical papers.

I am indebted to B. Reznick, C. Scheiderer, and J. Stochel for valuable comments
on parts of the manuscripts. I am grateful to Ph. di Dio for reading the whole text
and for his helpful suggestions. Also, I should like to thank R. Lodh and A.-K.
Birchley-Brun from Springer-Verlag for their help in publishing this book.

Leipzig, Germany Konrad Schmüdgen
May 7, 2017



General Notations

Numbers

N0 nonnegative integers
N positive integers
Z integers
R real numbers
C complex numbers
T complex numbers of modulus one
D complex numbers of modulus less than one
RC D Œ0;C1/
CC D fz 2 C W Im z > 0g
i complex unit

Spaces and Sets

Rd d-dimensional real space
Cd d-dimensional complex space
Pd.R/ d-dimensional real projective space
Td d-torus
Sd�1 unit sphere in Rd

Matrices

Mn;k.K/ .n; k/-matrices over K, Mn.K/ D Mn;n.K/

Symn symmetric matrices in Mn.R/

AT transposed matrix of A

Measures

MC.X / (positive) Radon measures on a locally compact Hausdorff space X
M.X / complex Radon measures on X
L1.X ; �/ �-integrable Borel functions on X
ıx delta measure at the point x
�M characteristic function of a set M
Radon measures are always nonnegative!
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Polynomials

x˛ D x˛11 � � � x˛dd for ˛ D .˛1; � � � ; ˛d/ 2 Nd
0

RdŒx� D RŒx1; : : : ; xd�
RdŒx�n D fp 2 RdŒx� W deg.p/ � ng
Hd;m homogeneous polynomials from RdŒx� of degree m
qh homogenization of q
Pos.K/ D ff 2 E W f .x/ � 0; x 2 Kg, where E 	 C.X IR/; K 	 X
Pos.A;K/ D fp 2 A W p.x/ � 0; x 2 Kg
Z.p/ D fx 2 Rd W p.x/ D 0g for p 2 RdŒx�
d is the number of variables and n;m denote the degrees of polynomials!

Moments, Moment Sequences, and Measures

s˛ D
R
x˛ d� ˛-the moment of �

s D .s˛/ moment sequence
s.x/; sN.x/ moment vector of the delta measure ıx
SmC1;S;S.A;K/ moment cones
MC.Rd/ D f� 2 MC.Rd/ W R jx˛j d� < C1 for ˛ 2 Nd

0g Radon measures
with finite moments

Ms D f� 2 MC.Rd/ W s˛ D
R
x˛ d� for ˛ 2 Nd

0g representing measures of s
Ls Riesz functional associated with s defined by Ls.x˛/ D s˛
Hn.s/ finite Hankel matrix associated with s
H.s/ infinite Hankel matrix associated with s
Dn.s/ D detHn.s/ Hankel determinant

Orthogonal Polynomials and Functions

pn orthonormal polynomial of the first kind
Pn monic orthogonal polynomial of the first kind
qn orthogonal polynomial of the second kind
Qn monic orthogonal polynomial of the second kind
pz D .p0.z/; p1.z/; p2.z/; : : : /
qz D .q0.z/; q1.z/; q2.z/; : : : /
P Pick functions
�s Friedrichs parameter
A.z/;B.z/;C.z/;D.z/ entire functions in the Nevanlinna parametrization

Operators

X multiplication operator by the variable x
J infinite Jacobi matrix
T D TJ Jacobi operator for the Jacobi matrix J
d D f.c0; c1; : : : ; cn; 0; 0; : : : / W cj 2 C; n 2 N0g finite complex sequences
hp; qis D Ls.pq/ scalar product on CŒx� associated with s
Hs Hilbert space completion of .CŒx�; h�; �is/
X1; : : : ;Xd multiplication operators by the variables x1; : : : ; xd
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hp; qiL D L.pq/ scalar product on CdŒx� associated with L
HL Hilbert space completion of .CdŒx�; h�; �iL/
�L GNS representation associated with L
TF Friedrichs extension of a positive symmetric operator T
TK Krein extension of a positive symmetric operator T
�.T/ spectrum of T
	.T/ resolvent set of T
D.T/ domain of T
N .T/ null space of T
ET spectral measure of T

Real Algebraic Geometry

T.f/ preordering generated by f, where f is a finite subset of RdŒx�
Q.f/ quadratic module generated by f
K.f/ semi-algebraic set defined by f
RŒV� algebra of regular functions on a real algebraic set VP2

n sum of squares p2 of polynomials p 2 RdŒx�, where
deg p � n

OA characters of a real unital algebra AP
A2 sum of squares a2 of elements a of a real algebra A

AC D ff 2 A W �.f / � 0; � 2 OA g
Moment Functionals and Related Sets

L;L.A;K/ cones of moment functionals
lx point evaluation functional at x
Lg D L.g�/ localization of L at g
ML D f� 2 MC.Rd/ W L.p/D R p.x/ d� for p2RdŒx�g representing measures of L
	L.t/ maximal mass of representing measures of L at t
H.L/ Hankel matrix of L
W.L/;W.L/ set of atoms of representing measures of L
V.L/;V.L/ core variety of L
NL D ff 2 A W L.fg/ D 0; g 2 A g
VL D ft 2 Rd W f .t/ D 0; f 2 NL g
NC.L;K/ D ff 2 Pos.A;K/ W L.f / D 0 g
VC.L;K/ D ft 2 Rd W f .t/ D 0; f 2 NC.L;K/ g
NC.L/ D NC.L;Rd/

VC.L/ D V.L;Rd/

NC.L/ D ff 2 EC W L.p/ D 0 g
VC.L/ D fx 2 X W f .x/ D 0; f 2 NC.L/ g
Sets are denoted by braces such as fxi W i 2 Ig, while sequences are written as
.xn/n2N or .xn/.



Chapter 1
Integral Representations of Linear Functionals

All variants of moment problems treated in this book deal with following problem:
Given a linear functional L on a vector space E of continuous functions on a

locally compact Hausdorff space X and a closed subset K of X , when does there
exist a (positive) Radon measure � supported on K such that

L. f / D
Z
X
f .x/ d�.x/ for f 2 E‹

Functionals of this form are called K-moment functionals or simply moment
functionals when K D X . In this chapter, we develop the underlying basic setup
and introduce a number of general notions.

In Sect. 1.1, we prove various integral representation theorems for functionals on
adapted spaces (Theorems 1.8, 1.12, and 1.14) and derive properties of the set of
representing measures (Theorems 1.19, 1.20, and 1.21). Our existence theorems for
full moment problems derived in Parts I and III are based on these results.

Section 1.2 is devoted to the case when E has finite dimension. Then, by
the Richter–Tchakaloff theorem (Theorem 1.24), each moment functional has a
finitely atomic representing measure. Strictly positive linear functionals (The-
orem 1.30), determinate moment functionals (Theorem 1.36) and the cone of
moment functionals are investigated. Further, we study the set of possible atoms
of representing measures (Theorem 1.45) and prove that it coincides with the core
variety (Theorem 1.49). The last subsection deals with extreme values of integralsR
hd�, where the measure � has fixed moments (Theorems 1.50 and 1.52). The

results obtained in Sect. 1.2 are useful for truncated moment problems treated in
Parts II and IV, but most of them are also of interest in themselves.

Throughout this chapter, X denotes a locally compact topological Hausdorff
space, E is a linear subspace of the space C.X IR/ of real-valued continuous
functions on X , and L is a linear functional on E.

© Springer International Publishing AG 2017
K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics 277,
DOI 10.1007/978-3-319-64546-9_1
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14 1 Integral Representations of Linear Functionals

1.1 Integral Representations of Functionals
on Adapted Spaces

Recall that MC.X / denotes the set of Radon measures on X and that in our
terminology Radon measures are always nonnegative (see Appendix A.1).

1.1.1 Moment Functionals and Adapted Spaces

If C is a subset of E, the functional L is called C-positive if L. f / � 0 for f 2 C. Set

EC WD f f 2 E W f .x/ � 0 for all x 2 X g:

If � is a measure from MC.X / such that E 	 L1.X ; �/, we define an EC-positive
linear functional L� on E by

L�. f / D
Z
X

f .x/d�.x/; f 2 E: (1.1)

The following two definitions introduce basic notions that will be used throughout
this book. The terminology “moment functionals” will be clear later when we study
moment functionals on examples of �-semigroups, see Sect. 2.3.1.

Definition 1.1 A linear functional L on E is a moment functional if there exists a
measure� 2 MC.X / such that L D L�. Any such measure� is called a representing
measure of L. The set of all representing measures of L is

ML D f� 2 MC.X / W L D L�g:

A moment functional L is called determinate if it has a unique representing
measure, or equivalently, if the set ML is a singleton.

Definition 1.2 Let K be a closed subset of X : A functional L on E is a K-moment
functional if there exists a measure � 2 MC.X / supported on K such that L D L�.
The set of such measures is

ML;K D f� 2 MC.X / W L D L� and supp� 
 K g:

A K-moment functional L is said to be K-determinate if the set ML;K is a singleton.

The aim of this section is to apply Choquet’s concept of adapted spaces to the
study of moment functionals.

Definition 1.3 For f ; g 2 C.X IR/ we say that g dominates f if for any " > 0 there
exists a compact subset K" of X such that j f .x/j � "jg.x/j for all x 2 XnK".

Roughly speaking, g dominates f means that j f .x/=g.x/j ! 0 as x!1.
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We give a slight reformulation of the domination property and set

U WD f
 2 Cc.X IR/ W 0 � 
.x/ � 1 for x 2 X g: (1.2)

Lemma 1.4 For any f ; g 2 C.X IR/ the following statements are equivalent:
(i) g dominates f .

(ii) For " > 0 there is an 
" 2 U such that j f .x/j � "jg.x/j C j f .x/j
".x/, x 2 X :
(iii) For " > 0 there is an h" 2 Cc.X IR/ such that j f .x/j � "jg.x/jCh".x/, x 2 X :

Proof
(i)!(ii) Choose 
" 2 U such that 
".x/ D 1 on K":
(ii)!(iii) is clear by setting h" WD j f j
".
(iii)!(i) Since h" 2 Cc.X IR/, the set K" WD supp h" is compact and we have

j f .x/j � "jg.x/j for x 2 XnK". ut
Definition 1.5 A linear subspace E of C.X IR/ is called adapted if the following
conditions are satisfied:

(i) E D EC � EC.
(ii) For each x 2 X there exists an f 2 EC such that f .x/ > 0.

(iii) For each f 2 EC there exists a g 2 EC such that g dominates f .

Lemma 1.6 If E is an adapted subspace of C.X IR/, then for any f 2 Cc.X IR/C
there exists a g 2 EC such that g.x/ � f .x/ for all x 2 X .

Proof Let x 2 X . By Definition 1.5(ii) there exists a function gx 2 EC such that
gx.x/ > 0. Multiplying gx by some positive constant we get gx.x/ > f .x/. This
inequality remains valid in some neighbourhood of x. By the compactness of supp f
there are finitely many x1; : : : ; xn 2 X such that g.x/ WD gx1 .x/C� � �Cgxn.x/ > f .x/
for x 2 supp f and g.x/ � f .x/ for all x 2 X . ut

1.1.2 Existence of Integral Representations

In the proof of Theorem 1.8 below we use the following extension theorem.

Proposition 1.7 Let E be a linear subspace of a real vector space F and let C be a
convex cone of F such that F D ECC. Then each .C\E/-positive linear functional
L on E can be extended to a C-positive linear functional QL on F.

Proof Let f 2 F. We define

q. f / D inf fL.g/ W g 2 E; g � f 2 Cg: (1.3)

Since F D ECC, there exists a g 2 E such that�fCg 2 C, so the corresponding set
in (1.3) is not empty. It is easily seen that q is a sublinear functional and L.g/ D q.g/
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for g 2 E. Therefore, by the Hahn–Banach theorem, there is an extension QL of L to
F such that QL. f / � q. f / for all f 2 F.

Let h 2 C. Setting g D 0; f D �h we have g� f 2 C, so that q.�h/ � L.0/ D 0
by (1.3). Hence QL.�h/ � q.�h/ � 0, so that QL.h/ � 0. Thus, QL is C-positive. ut

Most existence results on the moment problem derived in this book have their
origin in the following theorem.

Theorem 1.8 Suppose that E is an adapted subspace of C.X IR/. For any linear
functional L W E! R the following are equivalent:

(i) The functional L is EC-positive, that is, L. f / � 0 for all f 2 EC.
(ii) For each f 2 EC there exists an h 2 EC such that L. f C "h/ � 0 for all " > 0.

(iii) L is a moment functional, that is, there exists a measure � 2 MC.X / such that
L D L�.

Proof The implications (i)!(ii) and (iii)!(i) are clear.
(ii)!(i) Let f 2 EC. Letting "! 0 in the inequality L. f /C"L.h/ D L. fC"h/ �

0, we get L. f / � 0.
(i)!(iii) We begin by setting

QE WD f f 2 C.X ;R/ W j f .x/j � g.x/; x 2 X ; for some g 2 Eg

and claim that QE D E C . QE/C. Obviously, E C . QE/C 	 QE. Conversely, let f 2 QE.
We choose a g 2 EC such that j f j � g. Then we have f C g 2 . QE/C, �g 2 E and
�f D �gC .gC f / 2 EC . QE/C. That is, QE D EC . QE/C.

By Proposition 1.7, L can be extended to an . QE/C-positive linear functional QL on
QE. We have Cc.X IR/ 	 QE by Lemma 1.6. From the Riesz representation theorem
(Theorem A.4) it follows that there is a measure � 2 MC.X / such that QL. f / DR
f d� for f 2 Cc.X IR/. By Definition 1.5(i), E D EC � EC. To complete the

proof it therefore suffices to show that f 2 L1.X ; �/ and L. f / � QL. f / D R f d� for
f 2 EC.

Fix f 2 EC. Let U be the set defined by (1.2). For 
 2 U , f
 2 Cc.X IR/ and
hence QL. f
/ D R f
 d�. Using this fact and the . QE/C-positivity of QL, we derive

Z
fd� D sup


2U

Z
f
 d� D sup


2U
QL. f
/ � QL. f / D L. f / <1; (1.4)

so that f 2 L1.X ; �/.
By (1.4) it suffices to prove that L. f / � R

fd�. From Definition 1.5(iii), there
exists a g 2 EC that dominates f . Then, by Lemma 1.4, for any " > 0 there exists a
function 
" 2 U such that f � "gC f
". Since f
" � f , we obtain

L. f / D QL. f / � " QL.g/C QL. f
"/ D "L.g/C
Z

f
"d� � "L.g/C
Z

fd�:
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Note that g does not depend on ". Passing to the limit "!C0, we get L. f / � R fd�.
Thus, L. f /D R fd� which completes the proof of (iii). ut

If X is compact, then C.X IR/ D Cc.X IR/, so condition (iii) in Definition 1.5
is always fulfilled and can be omitted. But in this case we can obtain the desired
integral representation of L more directly, as the following proposition shows.

Proposition 1.9 Suppose that X is a compact Hausdorff space and E is a linear
subspace of C.X IR/ which contains a function e such that e.x/ > 0 for x 2 X .

Then each EC-positive linear functional L on E is a moment functional, that is,
there exists a measure � 2 MC.X / such that L. f / D

R
f d� for f 2 E.

Proof Set F D C.X IR/ and C D C.X IR/C. Let f 2 F. Since X is compact,
f is bounded and e has a positive infimum. Hence there exists a � > 0 such that
f .x/ � �e.x/ on X . Since �e � f 2 C and ��e 2 E, f D ��eC .�e � f / 2 EC C.
Thus, F D EC C. By Proposition 1.7, L extends to a C-positive linear functional QL
on F. By the Riesz representation theorem, QL, hence L, can be given by a measure
� 2 MC.X /. ut
Remark 1.10 If X is compact, the assumption e.x/ > 0 on X in Proposition 1.9
implies that e is an interior point of the cone EC. This is a standard assumption of
the theory of ordered vector spaces which will be used in Theorem 1.26 below as
well. In applications in this book we usually take e D 1. ı

In the proof of Theorem 1.8 condition (iii) of Definition 1.5 was crucial. We give
a simple example where this condition fails and L has no representing measure.

Example 1.11 Set E WD Cc.RIR/CR � 1 and define a linear functional on E by

L. f C � � 1/ WD � for f 2 Cc.RIR/; � 2 R;

where 1 denotes the constant function equal to 1 on R. Then L is EC-positive, but it
is not a moment functional. (Indeed, since L. f / D 0 for f 2 Cc.RIR/, (1.1) would
imply that the measure � is zero. But this is impossible, because L.1/ D 1.) ı

The next result is called Haviland’s theorem. For a closed subset K of Rd we set

Pos.K/ D f p 2 RdŒx� W p.x/ � 0 for all x 2 K g:

Theorem 1.12 Let K be a closed subset of Rd and L a linear functional on RdŒx�.
The following statements are equivalent:

(i) L. f / � 0 for all f 2 Pos.K/.
(ii) L. f C "1/ � 0 for f 2 Pos.K/ and " > 0.

(iii) For any f 2 Pos.K/ there is an h 2 Pos.K/ such that L. f C "h/ � 0 for all
" > 0.

(iv) L is a K-moment functional, that is, there exists a measure � 2 MC.Rd/

supported on K such that f 2 L1.Rd; �/ and L. f / D RK f d� for all f 2 RdŒx�.
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Proof Set X D K. Then E D RdŒx� is an adapted subspace of C.K;R/. Indeed,
condition (i) in Definition 1.5 follows from the relation 4p D . pC 1/2 � . p � 1/2.
Condition (ii) is trivial. If p 2 EC, then g D .x21 C � � � C x2d/f dominates f , so
condition (iii) is also fulfilled.

Note that the implications (iv)!(i)!(ii)!(iii) in Theorem 1.12 are obvious. The
other assertions follow from Theorem 1.8. ut

Now suppose that A is a finitely generated commutative real unital algebra. We
develop some notation and facts that will be used in Chaps. 12 and 13.

Definition 1.13 A character of A is an algebra homomorphism � W A ! R

satisfying �.1/ D 1. The set of characters of A is denoted by OA.

We fix a set f f1; : : : ; fdg of generators of A. Then there exists a unique surjective
unital algebra homomorphism � W RdŒx�! A such that �.xj/ D fj; j D 1; : : : ; d. If
J denotes the kernel of � , then J is an ideal of RdŒx� and A is isomorphic to the
quotient algebra RdŒx�=J ; that is,

A Š RdŒx�=J :

Each character � of A is uniquely determined by the point x� WD .�. f1/; : : : ; �. fd//
of Rd. We identify � with x� and write f .x�/ WD �. f / for f 2 A. Under this
identification, OA becomes the real algebraic set

OA D Z.J / WD fx 2 Rd W p.x/ D 0 for p 2 J g: (1.5)

Since Z.J / is closed in Rd, OA is a locally compact Hausdorff space in the induced
topology of Rd and elements of A can be considered as continuous functions on OA:
In the case A D RdŒx� we can take p1 D x1; : : : ; pd D xd and obtain OA D Rd.

For a closed subset K of OA, we define

Pos.K/ D f f 2 A W f .x/ � 0 for x 2 K g:

Then we have the following generalized version of Haviland’s theorem for A.

Theorem 1.14 Let A be a finitely generated commutative real unital algebra and K
a closed subset of OA. For a linear functional L on A, the following are equivalent:

(i) L. f / � 0 for all f 2 Pos.K/.
(ii) L. f C "1/ � 0 for f 2 Pos.K/ and " > 0.

(iii) For any f 2 Pos.K/ there is an h 2 Pos.K/ such that L. f C "h/ � 0 for all
" > 0.

(iv) L is a K-moment functional, that is, there exists a measure � 2 MC. OA/
supported on K such that A 	 L1. OA; �/ and L. f / D ROA f d� for all f 2 A.

Proof (iv)!(i)!(ii)!(iii) are obviously satisfied. (iii)!(i) follows as in the proof
of Theorem 1.8. It remains to prove the main implication (i)!(iv).
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We define a linear functional QL on RdŒx� by QL D L ı � . Let p 2 RdŒx� and
set f WD �. p/. Since � is an algebra homomorphism and �.xj/ D fj, we have
p. f1; : : : ; fd/ D p.�.x1/; : : : ; �.xd// D �. p.x// D f . Hence, for x 2 K,

f .x/D�x. f /D�x. p. f1; : : : ; fd//D p.�x. f1/; : : : ; �x. fd//D p.x1; : : : ; xd/D p.x/:

Thus, if p.x/ � 0 on K, then �. p/ D f � 0 on K and hence QL. p/ D L. f / � 0
by assumption (i). Therefore, by Theorem 1.12 there exists a measure � 2 MC.Rd/

such that supp� 	 K and QL. p/ D RK p d� for all p 2 RdŒx�.
Let f 2 A. Then f D �. p/ for some p 2 RŒx�. Using the definition of QL and the

equality p.x/ D f .x/ for x 2 K we obtain

L. f / D L.�. p// D QL. p/ D
Z
K
p.x/ d�.x/ D

Z
K
f .x/ d�.x/:

This proves (iv). ut
Remark 1.15 Let A and K be as in Theorem 1.14. Let L.K/ denote the K-moment
functionals on A. Then Pos.K/ and L.K/ are cones in A resp. in its dual satisfying

Pos.K/^ D L.K/ and L.K/^ D Pos.K/; (1.6)

where the dual cones Pos.K/^ and L.K/^ are defined by (A.19). Thus, the cones
Pos.K/ and L.K/ are dual to each other. Indeed, the first equality of (1.6) is
Theorem 1.14(i)$(ii), while the second follows from the bipolar theorem [Cw,
Theorem V.1.8]. ı
Example 1.16 Let A be the unital real algebra of functions on R generated by the
two functions f1 D 1

1Cx2
and f2 D x

1Cx2
. Then the identity . f1 � 1

2
/2 C f 22 D 1

4
holds

in A and the set OA is given by the points of the circle in R2 with center . 1
2
; 0/ and

radius 1
2
. Note that the character � 2 OA with �. f1/ D �. f2/ D 0 cannot be obtained

by a point evaluation on R. ı

1.1.3 The Set of Representing Measures

In this subsection we use some facts concerning the vague convergence of measures,
see Appendix A.1.

Definition 1.17 A directed net .Li/i2I of linear functionals on E is a net of linear
functionals Li defined on vector subspaces Ei, i 2 I, of E such that E D [i2I Ei and
Ei 	 Ej and LjdEi D Li for all i; j 2 I, j � i.

Clearly, for such a net .Li/i2I there is a unique well-defined linear functional L
on E such that L. f / D Li. f / if f 2 Ei; i 2 I; we shall write L D limi Li.

Lemma 1.18 Let E be an adapted subspace of C.X IR/ and let .�i/i2I be a net
of measures �i 2 MC.X / which converges vaguely to � 2 MC.X /. Suppose that
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for each i 2 I there is a linear subspace Ei 	 L1.X ; �i/ of E such that .L�i/i2I
is a directed net of linear functionals on E, where L�i . f / WD R

f d�i for f 2 Ei.
Then limi L�i D L�.

Proof Let L WD limi L�i . Take h 2 EC. Since E D [i2IEi, h 2 Ei0 for some i0 2 I.
Let 
 2 U , where U is defined by (1.2). Then, by the definition of L,

Z
h
 d�j �

Z
hd�j D L�j .h/ D L.h/ for j 2 I; j � i0:

Since h
 2 Cc.X ;R/, limi
R
h
 d�i D

R
h d� by the vague convergence, so that

Z
h d�D sup


2U

Z
h
d� D sup


2U
lim
i

Z
h
d�i �

Z
h d�j D L.h/; j � i0: (1.7)

Thus, h 2 L1.X I�/. Therefore, since E D EC � EC, it follows that E 	 L1.X I�/:
Let f 2 EC. There exists a g 2 EC which dominates f , that is, for any " > 0 there

is an h" 2 Cc.X IR/ such that f � "gC h", so that f � h" � "g. Since the index set I
is directed, there is an i0 2 I such that f and g are in Ei0 . Suppose that i 2 I, i � i0.
Then, L. f / D R

f d�i by the definition of L and similarly L.g/ D R
g d�i. Using

these facts and (1.7), applied first with h D f and then twice with h D g, we derive
ˇ̌
ˇ̌L. f /�

Z
f d�

ˇ̌
ˇ̌ D L. f /�

Z
f d� D

Z
f d�i �

Z
f d�

D
Z
. f � h"/ d�i �

Z
. f � h"/ d�C

Z
h" d�i �

Z
h" d�

� "
�Z

g d�i C
Z

gd�

�
C
Z

h" d�i �
Z

h" d�

� ".L.g/C L.g//C
Z

h" d�i �
Z

h" d�; i � i0:

Passing to the limit limi the preceding inequality yields jL. f / � R f d�j � 2 "L.g/.
Now, letting " ! C0, we get L. f / D R

f d�. Since E D EC � EC, it follows that
L.h/ D R h d� for all h 2 E. ut
Theorem 1.19 Suppose that L is a moment functional on an adapted subspace E of
C.X IR/. The set ML of representing measures is convex and vaguely compact.

Proof It is clear that ML is convex. Let f 2 Cc.X ;R/. By Lemma 1.6, there exists
a g 2 E such j f .x/j � g.x/ for x 2 X . Then

sup
�2ML

ˇ̌
ˇ̌ Z f d�

ˇ̌
ˇ̌ �

Z
g d� D L.g/ <1:

Hence, by Theorem A.6, ML is relatively vaguely compact in MC.X /: It therefore
suffices to show that ML is closed in MC.X / with respect to the vague topology.
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For let .�i/i2I be a net from ML which converges vaguely to � 2 MC.X /. From
Lemma 1.18, applied with Ei D E for all i, it follows that L� D limi L�i . Since
�i 2ML, we have L�i D L. Hence L� D L, that is, � 2ML. ut
Theorem 1.20 Suppose that X is a locally compact Hausdorff space such that
C0.X IR/, equipped with the supremum norm, is separable. Let E be an adapted
subspace of C.X IR/ and let .�n/n2N be a sequence of measures �n 2 MC.X /:
Suppose for n 2 N there is a linear subspace En 	 L1.X ; �i/ of E such that
.L�n/n2N is a directed sequence of functionals on E according to Definition 1.17,
where L�n. f / D R f d�n; f 2 En.

Then there exists a subsequence .�nk /k2N that converges vaguely to a measure
� 2 MC.X / and we have limk!1 L�nk D L�. If the functional L� is determinate,
then the sequence .�n/n2N itself converges vaguely to �.

Proof We first show that the set M WD f�n W n 2 Ng is relatively compact in the
vague topology. Let f 2 Cc.X ;R/. By Lemma 1.6, j f .x/j � g.x/ for some g 2 EC.
By Definition 1.17, there is a k 2 N such that g 2 Ek and

R
g d�n D

R
g d�k for

n � k. Hence

sup
n2N

ˇ̌
ˇ̌
Z

f d�n

ˇ̌
ˇ̌ � sup

n2N

Z
g d�n D max

jD1;:::;k

Z
g d�j <1;

so M is relatively vaguely compact by Theorem A.6. Further, since C0.X IR/ is
separable, so is its subset Cc.X IR/ and the vague topology on MC.X / is metrizable
by Proposition A.7. Therefore, .�n/n2N has a subsequence .�nk /k2N that converges
vaguely to some measure � 2 MC.X /. Then L� D limk!1 L�nk by Lemma 1.18.

Suppose that L� is determinate. Let .�mk /k2N be another subsequence which
converges vaguely, say to Q�. From Definition 1.17 it follows that limk!1 L�mk is
independent of the subsequence. Therefore, by Lemma 1.18, L Q� D limk!1 L�nk D
L� and hence Q� D �, because L� is determinate. Thus, since each convergent
subsequence has the same limit, the sequence .�n/n2N itself converges vaguely. ut

The next result characterizes the extreme points of the convex set ML.

Theorem 1.21 Let E be a linear subspace of C.X IR/. Suppose that E contains a
function e such that e.x/ � 1; x 2 X . Let L be a moment functional on E. Then a
measure � 2ML is an extreme point ofML if and only if E is dense in L1.X I�/.
Proof First we assume that � 2ML is not an extreme point of ML. Then there are
measures �1; �2 2 ML, �1 ¤ �2, such that � D 1

2
.�1 C �2/. Since �1 � 2�,

the Radon–Nikodym theorem (Theorem A.3) implies that d�1 D gd� for some
g 2 L1.X I�/. By �1 ¤ �2, we have 1� g ¤ 0. Using that �1; � 2ML we obtain

Z
f .1 � g/d� D

Z
fd� �

Z
fgd� D

Z
fd� �

Z
fd�1 D 0; f 2 E:
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Thus, 1�g ¤ 0 defines a nontrivial continuous linear functional on L1.X I�/ which
annihilates E. Hence E is not dense in L1.X I�/.

Conversely, assume that E is not dense in L1.X ; �/. Since e 2 E 	 L1.X ; �/, the
measure � is finite, so L1.X ; �/ is the dual of L1.X ; �/. Hence there is a function
g 2 L1.X ; �/, kgk1 D 1, which annihilates E. Define �˙ by d�˙ D .1˙ g/d�.
Since kgk1 D 1, �C and �� are positive measures. From the relation

R
fgd� D 0

for f 2 E it follows that�C and�� are in VL. Since� D 1
2
.�CC��/ and�C ¤ ��

(by g ¤ 0), � is not an extreme point of ML. ut
Remark 1.22

1. The proof and the assertion of Proposition 1.21 remain valid for Borel functions
rather than continuous functions.

2. If � 2 ML and E is dense in L2.X I�/ in Theorem 1.21, E is also dense in
L1.X ; �/, so � is an extreme point of ML. The converse is not true, that is, there
are extreme points � of ML for which E is not dense in L2.X ; �/. ı
The following simple fact will often be used to localize the support of represent-

ing measures. We will apply it mainly to semi-algebraic sets and polynomials.

Proposition 1.23 Let f 2 C.X IR/ and � 2 MC.X /. Suppose that f .x/ � 0 for
x 2 X and

R
f .x/ d� D 0. Then

supp� 	 Z. f / WD fx 2 X W f .x/ D 0g:

Proof Let x0 2 X . Suppose that x0 … Z. f /. Then f .x0/ > 0. Since f is continuous,
there are an open neighbourhood U of x0 and an " > 0 such that f .x/ � " on U.
Then

0 D
Z
X
f .x/ d� �

Z
U
f .x/ d� � "�.U/ � 0;

so that �.U/ D 0. Therefore, since U is an open set containing x0, it follows from
the definition of the support that x0 … supp�. ut

1.2 Integral Representations of Functionals on
Finite-Dimensional Spaces

In this section we suppose that E is a finite-dimensional linear subspace of
C.X IR/: We denote by lx the point evaluation at x 2 X , that is, lx. f / D f .x/
for f 2 E.

For some results we will use the following condition:

There exists a function e 2 E such that e.x/ � 1 for x 2 X : (1.8)
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1.2.1 Atomic Measures

Since E is finite-dimensional, it is natural to look for integral representations of
functionals by finitely atomic measures. To simplify the formulation of the results
we consider the zero measure as a 0-atomic measure.

Our first main result is the following Richter–Tchakaloff theorem.

Theorem 1.24 Suppose that .Y; �/ is a measure space, V is a finite-dimensional
linear subspace of L1R.Y; �/, and L� denotes the linear functional on V defined
by L�. f / D R

f d�, f 2 V. Then there is a k-atomic measure � D Pk
jD1mjıxj 2

MC.Y/, where k � dimV, such that L� D L� , that is,

Z
fd� D

Z
fd� �

kX
jD1

mj f .xj/; f 2 V:

Proof Let C be the convex cone in the dual space V� of all nonnegative linear
combinations of point evaluations lx, where x 2 Y; and let C be the closure of C in
V�. We prove by induction on m WD dim V that L� 2 C:

First let m D 1 and V D R�f . Set c WD R
fd�. If c D 0, then

R
.�f /d� D

0 � lx1 .�f /; � 2 R, for any x1 2 Y . Suppose now that c > 0. Then f .x1/ > 0 for
some x1 2 Y . Hence m1 WD cf .x1/�1 > 0 and

R
.�f /d� D m1lx1 .�f / for � 2 R.

The case c < 0 is treated similarly.
Assume that the assertion holds for vector spaces of dimension m�1: Let V be

a vector space of dimension m. By standard approximation of
R
fd� by integrals of

simple functions it follows that L� 2 C. We now distinguish between two cases.
Case 1: L� is an interior point of C.

Since C and C have the same interior points (by Proposition A.33(ii)), we have
L� 2 C.

Case 2: L� is a boundary point of C.
Then there exists a supporting hyperplane F0 for the cone C at L� (by Proposi-
tion A.34(ii)), that is, F0 is a linear functional on V� such that F0 ¤ 0, F0.L�/ D 0
and F0.L/ � 0 for all L 2 C. Because V is finite-dimensional, there is a function
f0 2 V such that F0.L/ D L. f0/; L 2 V�. For x 2 Y , we have lx 2 C and hence
F0.lx/ D lx. f0/ D f0.x/ � 0: Clearly, F0 ¤ 0 implies that f0 ¤ 0. We choose an
.m�1/-dimensional linear subspace V0 of V such that V D V0 ˚ R�f0. Let us set
Z WD fx 2 Y W f0.x/ D 0g. Since 0 D F0.L�/ D L�. f0/ D

R
f0d� and f0.x/ � 0

on Y , it follows that f0.x/ D 0 �-a.e. on Y , that is, �.YnZ/ D 0. Now we define a
measure Q� on Z by Q�.M/ D �.M \Z/. Then

L�.g/ D
Z
Y
g d� D

Z
Z
g d� D

Z
Z
g d Q� D L Q�.g/ for g 2 V0:
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We apply the induction hypothesis to the functional L Q� on V0 	 L1.Z; Q�/. Since
L� D L Q� on V0, there exist �j � 0 and xj 2 Z; j D 1; : : : ; n, such that for f 2 V0,

L�. f / D
nX

jD1
�jlxj. f /: (1.9)

Since f0 D 0 on Z , hence f0.xj/ D 0, and L�. f0/ D 0, (1.9) holds for f D f0 as well
and so for all f 2 V . Thus, L� 2 C. This completes the induction proof.

The set C is a cone in the m-dimensional real vector space V�. Since L� 2 C,
Carathéodory’s theorem (Theorem A.35(ii)) implies that there is a representation
(1.9) with n � m. This means that L� is the integral of the measure � DPn

jD1 �jıxj .
Clearly, � is k-atomic, where k � n � m. (We only have k � n, since some numbers
�j in (1.9) could be zero and the points xj are not necessarily different.) ut

The next corollary will be crucial for the study of truncated moment problems.

Corollary 1.25 Each moment functional on a finite-dimensional linear subspace E
of C.X IR/ has a k-atomic representing measure �, where k � dim E. Further, if �
is a representing measure of L and Y is a Borel subset of X such that �.XnY/ D 0,
then all atoms of � can be chosen from Y .

Proof Apply Theorem 1.24 to the measure space .Y; �dY/ and V D E. ut
Let L denote the cone of all moment functionals on E. The first assertion of the

following theorem is the counterpart of Proposition 1.9 for atomic measures.

Theorem 1.26 Suppose that X is compact and condition (1.8) is satisfied.

(i) For each EC-positive linear functional L0 on E there exists a k-atomic measure
� 2 MC.X /, k � dimE, such that L0. f / D

R
f d� for f 2 E.

(ii) The cone L is closed in the norm topology of the dual space E� of E.

Proof Set m WD dimE. As in the preceding proof, let C denote the cone in the dual
space E� of all nonnegative linear combinations of point evaluations lx at x 2 X . By
Carathéodory’s theorem (Theorem A.35(i)), each L 2 C is a combination of at most
m point evaluations lx, that is, L is of the form

L D
mX
jD1

�jlxj ; where �j � 0; xj 2 X : (1.10)

We prove that C is closed in E�. Let .L.n//n2N be a sequence from C converging
to L 2 E�. Let �.n/j and x.n/j be the corresponding numbers resp. points in (1.10).
Now we use the function e occurring in condition (1.8) and obtain

L.n/.e/ D
X

i
�
.n/
i e.x.n/i / � �.n/j ; j D 1; : : : ;m:
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Hence, since the converging sequence .L.n/.e//n2N is bounded, so are the sequences
.�
.n/
j /n2N, j D 1; : : : ;m. Because X is compact, there are subsequences .�.nk/j /k2N

and .x.nk/j /k2N which converge in R and X , respectively. Passing to the limit in the
representation (1.10) for L.nk/ yields L 2 C. Thus, C is closed in E�.

Next we show that L0 2 C. Assume the contrary. Since C is closed, by the
separation of convex sets (Theorem A.26 (ii)) there exists a linear functional F0 on
E� such that F0.L0/ < 0 and F0.L/ � 0 for L 2 C. Because E is finite-dimensional,
there is an f0 2 E such that F0.L/ D L. f0/; L 2 E�. For x 2 X , lx 2 C and hence
F0.lx/ D lx. f0/ D f0.x/ � 0; so that f0 2 EC. But F0.L0/ D L0. f0/ < 0 which
contradicts the assumption that L0 is EC-positive. This proves that L0 2 C.

Hence L0 is of the form (1.10) and so the integral of the measure� DPm
jD1 �jıxj .

Since some �j may be zero, � is k-atomic with k � m. This proves (i).
Each functional of L is obviously EC-positive and hence in C by (i). Thus

L 	 C. Since trivially C 	 L, we have L D C. Hence L is closed in E�: This
proves (ii). ut

Let L denote the closure of the cone L of moment functionals in E�. The next
proposition reformulates some results in terms of dual cones (see (A.19)).

Proposition 1.27 L 	 .EC/^ D L and L^ D EC D .EC/^^:

If K is compact and condition (1.8) is satisfied, then L D .EC/^.

Proof First we prove that .EC/^ 	 L. Assume to the contrary that there exists
a functional L0 2 .EC/^ such that L0 … L. Then, by the separation of convex
sets (Theorem A.26(i)) applied to the closed (!) cone L in E�, there is a linear
functional F on E� such that F.L0/ < 0 and F.L/ � 0 for L 2 L^. Since E is
finite-dimensional, there exists an element f 2 E such that F.L/ D L. f /, L 2 E�.
For x 2 X , lx 2 L, so that F.lx/ D lx. f / D f .x/ � 0. Hence f 2 EC. Therefore,
since L0 2 .EC/^, we get F.L0/ D L0. f / � 0, a contradiction. Thus we have shown
that .EC/^ 	 L.

Since L 	 .EC/^ 	 L as just proved and .EC/^ is obviously closed, .EC/^ D
L.

Because EC is closed in E, it follows from the bipolar theorem (Proposition A.32)
that EC D .EC/^^: Hence EC D ..EC/^/^ D .L /^ D L^.

Clearly, if L 2 L and p 2 EC, then L. p/ � 0. Therefore, L 	 .EC/^.
Now suppose that K is compact and (1.8) holds. Let L 2 .EC/^. Because L is

EC-positive, we have L 2 L by Proposition 1.9 (or by Theorem 1.26(i)). That is,
.EC/^	L. Since L 	 .EC/^ as noted in the preceding paragraph, L D .EC/^. ut

1.2.2 Strictly Positive Linear Functionals

In this subsection we derive a number of results on strictly EC-positive functionals
that do not hold for EC-positive functionals in general.
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Definition 1.28 A linear functional L on E is called strictly EC-positive if

L. f / > 0 for all f 2 EC; f ¤ 0: (1.11)

The following simple lemma gives some equivalent conditions.

Lemma 1.29 For a linear functional L on E the following are equivalent:

(i) L is strictly EC-positive.
(ii) Let k � k be a norm on E: There exists a number c > 0 such that

L. f / � ck fk for f 2 EC: (1.12)

(iii) L is an inner point of the cone .EC/^ in E�.

Proof (i)!(ii) Let c be the infimum of L. f / on the set UC D f f 2 EC W k fk D 1g.
For x 2 X , the linear functional lx is continuous on the finite-dimensional normed
space .E; k � k/, so there exists a number Cx > 0 such that

jlx. f /j D j f .x/j � Cxk fk for f 2 E: (1.13)

This implies that EC is closed. Therefore, UC is bounded and closed, hence
compact, in the normed space .E; k � k/. Since L is also continuous on .E; k � k/,
the infimum is attained at f0 2 UC. From f0 2 UC we have f ¤ 0 and f 2 EC, so
that L. f0/ D c > 0 by (i). Hence L. f / � c for f 2 UC. By scaling this yields (1.12).

(ii)!(iii) Let k � k� denote the the dual norm of k � k on E�. Suppose that L0 2 E�
and kL � L0k� < c. Let f 2 EC Then, using (1.12) we obtain

ck fk � L0. f / � L. f / � L0. f / � kL � L0k� k fk � ck fk

so that L0. f / � 0. Thus, L1 2 .EC/^: This shows that L is an inner point of .EC/^.
(iii)!(i) Let f 2 EC; f ¤ 0. Then there exists an x 2 X such that f .x/ > 0. Since

L is an inner point of .EC/^, there exists an " > 0 such that .L�"lx/ 2 .EC/^. Hence
L. f / � "f .x/ > 0. ut

In general, EC-positive functionals are not moment functionals (see Exam-
ple 1.32), but strictly EC-positive functionals are, as shown by the next theorem.

Theorem 1.30 Let L be a strictly EC-positive linear functional on E.

(i) L is a moment functional.
(ii) For each x 2 X , there is a finitely atomic measure � 2 ML such that

�.fxg/ > 0:
(iii) For each x 2 X , the infimum


L.x/ WD inf fL. f / W f 2 EC; f .x/ D 1g (1.14)

is a minimum.
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Proof

(i) The strictly EC-positive functional L is an inner point of .EC/^ D L by
Lemma 1.29 and Proposition 1.27. Since the convex set L and its closure L
have the same inner points by Proposition A.33, L is also an inner point of L.
In particular, L belongs to L; that is, L is a moment functional which proves (i).

Let k � k be a norm on E and x 2 X . By Lemma 1.29 and its proof, there
exist positive numbers c and Cx such that (1.12) and (1.13) hold.

(ii) Choose " > 0 such that "Cx < c. Let f 2 EC; f ¤ 0. By (1.12) and (1.13),

.L � "lx/. f / � ck fk � "f .x/ � .c � "/k fk > 0:

Therefore, L � "lx is also strictly EC-positive and hence a moment functional
by (i). Corollary 1.25 implies that L � "lx has a finitely atomic representing
measure �. Then � WD .�C "ıx/ 2ML is finitely atomic and �.fxg/ � " > 0:

(iii) By (1.14), there is a sequence . fn/n2N of functions fn 2 EC; fn.x/ D 1;

such that limn L. fn/ D 
L.x/. Since k fnk � c�1L. fn/ by (1.12), . fn/n2N is
a bounded sequence in the finite-dimensional normed space .E; k � k/. Hence
it has a convergent subsequence . fnk /: Set f D limk fnk : From (1.13) it follows
that f 2 EC and f .x/ D 1. Clearly, L. f / D limk L. fnk / D 
L.x/, so the infimum
in (1.14) is attained at f . ut

Corollary 1.31 Let L be a moment functional on E. Suppose that there exist a
closed subset U of X and a measure � 2 ML such that supp� 	 U and the
following holds: If f .x/ � 0 on U and L. f / D 0 for some f 2 E, then f D 0 on U .

Then each x 2 U is an atom of some finitely atomic representing measure of L.

Proof Being a closed subset of X , U is a locally compact Hausdorff space.
Since supp� 	 U , there is a well-defined (!) moment functional QL on the linear
subspace QE WD EdU of C.U IR/ given by QL. f dU/ D L. f /; f 2 E. Clearly, QL is
. QE/C-positive on QE. The condition on U implies that QL is even strictly . QE/C-positive.
Hence the assertion follows from Theorem 1.30(i), applied to QL and QE 	 C.U ;R/.

ut
Example 1.32 Set X D R and E D Linf1; x; x3; : : : ; x2nC1g, where n 2 N0: Let L
be a linear functional on E. Then EC D RC � 1. Therefore, if L.1/ > 0, then L is
strictly EC-positive, so that L 2 L by Theorem 1.30(i). If L.1/ D 0 and L ¤ 0, then
L is EC-positive, but L … L:

In the case E D Linfx; x3; : : : ; x2nC1g we have EC D f0g, so each linear
functional on E is strictly EC-positive and hence E� D L: ı

1.2.3 Sets of Atoms and Determinate Moment Functionals

In this subsection, L denotes a moment functional on E and we suppose that:

For each x 2 X there exists a function fx 2 EC such that fx.x/ > 0: (1.15)
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Clearly, condition (1.8) implies (1.15).

Definition 1.33 W.L/ WD fx 2 X W �.fxg/ > 0 for some � 2ML g:
That is, W.L/ is the set of points of X that occur as an atom of some representing

measure of L. This is an important set for the moment functionals L.

Lemma 1.34

(i) If L D 0 and � 2ML, then � D 0.
(ii) The set W.L/ is not empty if and only if L ¤ 0.
Proof

(i) Since L D 0, we have L. fx/ D 0, where fx 2 EC is the function from
assumption (1.15). Hence, by Proposition 1.23, supp� 	 Z. fx/ for all x 2 X .
But \x2XZ. fx/ is empty by (1.15), hence is supp�. Thus, � D 0:

(ii) By Corollary 1.25, L has a finitely atomic representing measure �. If L ¤ 0,
then � ¤ 0, so W.L/ is not empty. If L D 0, then � D 0 by (i), so W.L/ is
empty. ut

Lemma 1.35

(i) Suppose that M is a Borel subset of X containing W.L/. Then �.XnM/ D 0

for each measure � 2ML.
(ii) If W.L/ is finite, there exists a measure � 2ML such that supp� D W.L/.

(iii) If W.L/ is infinite, then for any n 2 N there exists a measure � 2ML such
that jsupp�j � n.

Proof The proofs of all three assertions make essentially use of Theorem 1.24.

(i) Assume �.XnM/ > 0 to the contrary. We define functionals L1 and L2 by

L1. f / D
Z
M
f .x/d� and L2. f / D

Z
X nM

f .x/d� ; f 2 E:

We apply Theorem 1.24 to the functional L2 on the measure space XnM with
measure induced from �. Therefore, L2 has a finitely atomic representing
measure �2 with atoms in XnM. The measure �1 on M which is induced from
� is a representing measure of L1. Since � 2ML, we have L D L1 C L2 and
hence Q� WD .�1 C �2/ 2 ML: From �.XnM/ > 0 and Lemma 1.34(i) it
follows that L2 ¤ 0. Hence �2 ¤ 0, so there exists an atom x0 2 XnM of
�2. Then, Q�.fx0g/ � �2.fx0g/ > 0, that is, x0 2 W.L/ 	 M. This contradicts
x0 2 XnM:

(ii) Let W.L/ D fx1; : : : ; xng. By the definition of W.L/, for each xi there is a
measure �i 2ML such that �i.fxig/ > 0. Then � WD 1

n .�1C � � �C�n/ 2ML

and �.fxig/ � 1
n�i.fxig/ > 0, i D 1; : : : ; n. Thus, W.L/ 	 supp�. Since

supp� 	 W.L/ by (i) applied with M D W.L/, we have supp� D W.L/.
(iii) is proved by a similar reasoning as (ii). ut
By Theorem 1.49 below, W.L/ is a closed subset, hence a Borel subset, of X .
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Recall from Definition 1.1 that a moment functional L is called determinate if it
has a unique representing measure, or equivalently, if the set ML is a singleton. The
following theorem characterizes determinacy in terms of the size of the set W.L/.

Let f f1; : : : ; fmg be a vector space basis of E. We abbreviate

s.x/ D . f1.x/; : : : ; fm.x//T 2 Rm: (1.16)

Note that s is the moment vector of the delta measure ıx at x 2 X .

Theorem 1.36 For each moment functional L on E the following are equivalent:

(i) L is not determinate.
(ii) The set fs.x/ W x 2 W.L/g is linearly dependent in Rm.

(iii) jW.L/j > dim.EdW.L//:
(iv) L has a representing measure � such that jsupp�j > dim.EdW.L//:
Proof (i)!(iii) Assume to the contrary that jW.L/j � dim.EdW.L// and let �1
and �2 be representing measures of L. Then, since dimE is finite, so is W.L/, say
W.L/ D fx1; : : : ; xng with n 2 N. In particular, W.L/ is a Borel set. Hence, from
Lemma 1.35(i) applied to M D W.L/; we deduce that supp�i 	 W.L/ for i D 1; 2,
so there are numbers cij � 0 for j D 1; : : : ; n; i D 1; 2, such that

L. f / D
Z

f .x/ d�i D
nX

jD1
f .xj/cij for f 2 E:

From the assumption jW.L/j � dim.EdW.L// it follows that there are functions
fj 2 E such that fj.xk/ D ıjk: Then L. fj/ D cij for i D 1; 2, so that c1j D c2j for all
j D 1; : : : ; n. Hence �1 D �2, so L is determinate. This contradicts (i).

(iii)!(ii) Since the cardinality of the set fs.x/ W x 2 W.L/g exceeds the
dimension of EdW.L/ by (iii), the set must be linearly dependent.

(ii)!(i) Since the set fs.x/ W x 2 W.L/g is linearly dependent, there are pairwise
distinct points x1; : : : ; xk 2 W.L/ and real numbers c1; : : : ; ck, not all zero, such thatPk

iD1 cis.xi/ D 0: Then, since f f1; : : : ; fmg is a basis of E, we have

kX
iD1

ci f .xi/ D 0 for f 2 E: (1.17)

We choose for xi 2 W.L/ a representing measure �i of s such that xi 2 supp�i.
Clearly, � WD 1

k

Pk
iD1 �i is a representing measure of s such that �.fxig/ > 0 for all

i. Let " D min f�.fxig/ W i D 1; : : : ; kg. For each number c 2 .�"; "/,

�c D �C c �
kX

iD1
ciıxi

is a positive (!) measure which represents L by (1.17). By the choice of xi; ci, the
signed measure

P
i ciıxi is not the zero measure. Therefore, �c ¤ �c0 for c ¤ c0.

This shows that L is not determinate.
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(iii)$(iv) If W.L/ is finite, by Lemma 1.35(ii) we can choose a � 2 ML such
that supp� D W.L/. If W.L/ is infinite, Lemma 1.35(iii) implies that there exists a
� 2ML such that jsupp�j > dim.EdW.L//: Thus, in both cases, (iii)$(iv). ut

An immediate consequence of Theorem 1.36 is the following.

Corollary 1.37 Let X , E, and L be as in Theorem 1.36. If jW.L/j > dimE or if
there is a measure� 2ML such that jsupp�j > dimE, then L is not determinate. In
particular, L is not determinate if W.L/ is an infinite set or if L has a representing
measure of infinite support.

Corollary 1.38 Suppose that L is a strictly EC-positive moment functional on E.
Then L is determinate if and only if jX j � dim E.

Proof From Theorem 1.30(ii), X D W.L/. Therefore, dimE D dim .EdW.L//.
Hence the assertion follows from Theorem 1.36(iii)$(i). ut

1.2.4 Supporting Hyperplanes of the Cone of Moment
Functionals

In this subsection, L is a moment functional on E:
Now we introduce two other important sets for the moment functional L.

Definition 1.39

NC.L/ WD f f 2 EC W L. f / D 0 g;
VC.L/ WD fx 2 X W f .x/ D 0 for f 2 NC.L/ g:

The next proposition contains some properties of these sets.

Proposition 1.40

(i) For each measure � 2ML we have supp� 	 VC.L/.
(ii) W.L/ 	 VC.L/:

(iii) If L is strictly EC-positive, then NC.L/ D f0g and VC.L/ D W.L/ D X .

Proof

(i) Since E 	 C.X IR/, Proposition 1.23 implies that supp� 	 VC.L/.
(ii) Let x 2 W.L/: Then, by definition, �.fxg/ > 0 for some � 2 ML. Thus

x 2 supp� and hence x 2 VC.L/ by (i).
(iii) By Definition 1.28, NC.L/ D f0g. Hence VC.L/ D X . From Theorem 1.30(ii)

we obtain W.L/ D X . ut
Example 1.41 (An example for which W.L/ ¤ VC.L/) Let X be the subspace of
R2 consisting of three points .�1; 0/; .0; 0/; .1; 0/ and two lines f.t; 1/W t 2 Rg and
f.t;�1/W t 2 Rg and let E D RŒx1; x2�2dX : We easily verify that the restriction map
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f 7! f dX on RŒx1; x2�2 is injective; for simplicity we write f instead of f dX for
f 2 RŒx1; x2�2:

We consider the moment functional L defined by

L. f / D f .�1; 0/C f .1; 0/; f 2 E: (1.18)

We show that NC.L/ D fx2.bx2 C c/W jcj � b; b; c 2 Rg: It is obvious that these
polynomials are in NC.L/. Conversely, let f 2 NC.L/. Then f .�1; 0/ D f .1; 0/ D 0,
so that f D x2.ax1Cbx2Cc/Cd.1�x21/, with a; b; c; d 2 R. Further, d D f .0; 0/ � 0:
From f .t;˙1/ � 0 for all t 2 R we conclude that d D 0 and jcj � b.

The zero set VC.L/ of NC.L/ is the intersection of X with the x1-axis, that is,
VC.L/ D f.�1; 0/; .0; 0/; .1; 0/g. Let � be an arbitrary representing measure of L:
Then, since � is supporting on VC.L/, there are numbers ˛; ˇ; � � 0 such that
� D ˛ı.�1;0/Cˇı.0;0/C�ı.1;0/. By (1.18), we have L.x1/ D 0 D

R
x1d� D �˛C�

and L.x21/ D 2 D
R
x21d� D ˛C �; which implies that ˛ D � D 1. Therefore, since

L.1/ D 2 D R 1d� D ˛CˇC � , it follows that ˇ D 0. Hence, �.f.0; 0/g/ D 0; so
that .0; 0/ … W.L/. Thus, W.L/ ¤ VC.L/. The functional L on E is determinate. ı

If L D 0, then NC.L/ D E and VC.L/ D ;. If L ¤ 0 is a moment functional,
then VC.L/ ¤ ;; since it contains the support of all representing measures.

Proposition 1.42

(i) Let p 2 NC.L/; p ¤ 0. Then 'p.L0/ D L0. p/;L0 2 E�, defines a supporting
functional 'p of the cone L at L. Each supporting functional of L at L is of
this form.

(ii) L is a boundary point of the cone L if and only if NC.L/ ¤ f0g:
(iii) L is an inner point of the cone L if and only if NC.L/ D f0g:
Proof

(i) Let p 2 NC.L/; p ¤ 0. Since p 2 EC, the functional 'p is L-positive. Further,
'p.L/ D L. p/ D 0. Since p ¤ 0, there exists an x 2 X such that p.x/ ¤ 0.
Then 'p.lx/ D lx. p/ D p.x/ ¤ 0, so that 'p ¤ 0: This shows that 'p is a
supporting functional of L at L.

Conversely, let ' be a supporting functional of L at L. Since E is finite-
dimensional, we have .E�/� Š E, so ' D 'p for some p 2 E. For x 2 X , lx 2 L
and hence '.lx/ D lx. p/ D p.x/ � 0. That is, p 2 EC. From '.L/ D L. p/ D 0
we obtain p 2 NC.L/. Clearly, p ¤ 0, because ' ¤ 0.

(ii) By Proposition A.34(ii), L is a boundary point of L if and only if there is a
supporting functional of L at L. Hence (i) implies the assertion of (ii).

(iii) follows from (ii), since L is inner if and only if it is not a boundary point. ut
A nonempty exposed face (see Definition A.36) of a cone C in a finite-

dimensional real vector space is a subcone F D f f 2 C W '. f / D 0g for some
functional ' 2 C^.

By Proposition 1.27, L^ D EC, that is, each functional ' 2 L^ is of the form
'p.L0/ D L0. p/;L0 2 E�; for some p 2 EC. Hence the nonempty exposed faces of
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the cone L in E� are exactly the sets

Fp WD fL0 2 L W 'p.L0/ � L0. p/ D 0g; where p 2 EC: (1.19)

Let L 2 L. Since L 	 .EC/^, NC.L/ is an exposed face of the cone EC. If X is
compact and condition (1.8) holds, then .EC/^ D L by Proposition 1.27 and hence
each exposed face of EC is of this form. Thus, in this case the subcones NC.L/ are
precisely the nonempty exposed faces of the cone EC.

Proposition 1.43 Let L 2 L and x 2 K: Suppose that X is compact and condition
(1.8) is fulfilled. Then the supremum

cL.x/ WD sup fc 2 R W .L � cLx/ 2 L g (1.20)

is attained and we have cL.x/ � e.x/�1L.e/: Further, L � cL.x/lx is a boundary
point of L and there exists a p 2 EC; p ¤ 0; such that L. p/ D cL.x/p.x/:

Proof If .L � clx/ 2 L, then .L � clx/.e/ � 0, so that c � e.x/�1L.e/. Therefore,
c.x/ � e.x/�1L.e/:

Since K is compact and (1.8) holds, the cone L is closed in E� by Theorem 1.26.
There is a sequence .cn/n2N such that .L � cnlx/ 2 L for all n and limn cn D cL.x/.
Then .L � cnlx/ ! .L � cL.x/lx/. Since L is closed, .L � cL.x/lx/ 2 L, that is, the
supremum (1.20) is attained.

The definition of cL.x/ implies that L � cL.x/lx is a boundary point of L.
Therefore, by Proposition 1.42(ii), there exists a p 2 NC.L � cL.x/lx/; p ¤ 0: Then
L. p/ D cL.x/p.x/: ut
Proposition 1.43 is a tool to reduce problems on moment functionals to boundary
functionals. If L is an inner point of L, it is clear that cL.x/ > 0 for all x 2 X .

Proposition 1.44 For each moment functional L there exists a p 2 NC.L/ such that

VC.L/ D Z. p/ WD fx 2 X W p.x/ D 0g:

Proof First let L be an inner point of L. Then,NC.L/ D f0g by Proposition 1.42(iii),
hence VC.L/ D X ; so we can set p D 0.

Now let L be a boundary point of L. Then, NC.L/ ¤ f0g: Let p1; : : : ; pk be a
maximal linearly independent subset of NC.L/. We prove that p WD p1 C � � � C pk
has the desired properties. Obviously, p 2 NC.L/ and VC.L/ 	 Z. p/ by definition.
Suppose that x 2 Z. p/. Let q 2 NC.L/. By the choice of p1; : : : ; pk, the function q is
a linear combination q DPi �ipi with �i 2 R. From p.x/ D p1.x/C� � �Cpk.x/ D 0
and pj.x/ � 0 (by qj 2 NC.L/) it follows that we have pi.x/ D 0 for all i and
therefore q.x/ D 0. Since q 2 NC.L/ was arbitrary, x 2 VC.L/. ut

For inner points of L we have W.L/ D X (by Lemma 1.29 and Theorem 1.30(ii))
and hence W.L/ D VC.L/. In general, W.L/ ¤ VC.L/ as shown by Example 1.41.

The next theorem characterizes those boundary points for which W.L/ D VC.L/:
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Theorem 1.45 Let L be a boundary point of L. Then W.L/ D VC.L/ if and only if
L lies in the relative interior of an exposed face of the cone L.

Proof First assume that W.L/ D VC.L/: By Proposition 1.44, there exists a p 2
NC.L/ such that Z. p/ D VC.L/. Since 'p 2 L^ and L. p/ D 0, the set Fp defined
by (1.19) is an exposed face of L containing L. We will prove that L is an inner point
of Fp.

If x 2 Z. p/, then lx. p/ D p.x/ D 0, so that lx 2 Fp. We choose a maximal
number of points x1; : : : ; xk 2 Z. p/ such that the point evaluations lx1 ; : : : ; lxk on
E are linearly independent. Since Z. p/ D VC.L/ D W.L/; we have xi 2 W.L/.
Therefore, for each i there exists a representing measure �i of L such that xi is an
atom of �i. Then � WD 1

k

Pk
iD1 �i is also a representing measure of L and each xi is

an atom of �.
Suppose that L0 2 Fp. Let�0 DPj cjıyj be a finitely atomic representing measure

of L0. Since L0. p/ D 0, we have supp�0 2 Z. p/, so that yj 2 Z. p/ for all j. Hence,
by the choice of the points xi, L0 D P

j cjlyj is in the span of lx1 ; : : : ; lxk . That is,

there are reals �1; : : : ; �k such that L0 DPk
iD1 �ilxi . Since � has positive masses at

all points xi, there exists an " > 0 such that �C c � �0 is a positive (!) measure for
c 2 .�"; "/. Its moment functional is .L C cL0/ 2 L: Therefore, .L C cL0/ 2 Fp,
since L;L0 2 Fp. This shows that L is an inner point of Fp.

Conversely, suppose that L is an inner point of an exposed face F of L. Then F
is of the form (1.19) for some p 2 NC.L/. Let x 2 VC.L/. Then, since p 2 NC.L/,
p.x/ D 0 and hence lx 2 F. Since L in an inner point of F, there is a c > 0 such
that L0 WD L � c � lx 2 F. If �0 is a representing measure of L0, then � D �0 C c � ıx
is a representing measure of L and �.fxg/ � c > 0, so that x 2 W.L/. Since
W.L/ 	 VC.L/ always holds by Proposition 1.40(ii), we get W.L/ D VC.L/. ut

Most results of this section are stated in terms of moment functionals. Sometimes
it is convenient to work instead with moment sequences and the moment cone.

Fix a vector space basis f f1; : : : ; fmg of E: Let S denote the cone of moment
sequences s D .sj/mjD1, that is, of sequences of the form sj D

R
fj.x/ d� for some

Radon measure � on X . The linear map s 7! Ls is a homeomorphism of S 	 Rm

onto L 	 E�: Using this simple fact notions and results on L can be reformulated
in terms of the cone S and vice versa. We encourage the reader to carry this out. As
a sample, we describe the supporting hyperplanes and exposed faces of the cone S:

The vector s.x/ D . f1.x/; : : : ; fm.x//T 2 Rm from (1.16) is just the moment
vector of the delta measure ıx, x 2 X . Let h�; �i be the standard scalar product on Rm.

For v D .v1; : : : ; vm/T 2 Rm we abbreviate

fv WD v1 f1 C � � � C vm fm:

Then E D f fv W v 2 Rmg. Since fv.x/ D hv; s.x/i for x 2 X ; we have

EC D f fv W v 2 Rm; hv; s.x/i � 0 for x 2 X g:



34 1 Integral Representations of Linear Functionals

It is easily verified that Ls. fv/ D hv; si for v; s 2 Rm: This implies that for each
linear functional h on E there is a unique vector u 2 Rm such that

hu. fv/ WD h. fv/ D hv; ui; v 2 Rm: (1.21)

Set NC.s/ WD NC.Ls/. For u 2 Rm we define

hu.t/ WD hu; ti; t 2 Rm; and Hu WD fx 2 Rm W hu; xi D 0g:

Lemma 1.46 Let u 2 Rm and s 2 S. Then fu 2 NC.s/ if and only if hu.s/ D 0 and
hu.t/ � 0 for t 2 S.

Proof Let t 2 S. Since t has a finitely atomic representing measure, we can write
t DPi cis.xi/; where xi 2 X and ci � 0 for all i. Using (1.21) we compute

Lt. fu/ D hu; ti D hu.t/ D
X

i
cihu; s.xi/i D

X
i
ci fu.xi/:

Using the definition of NC.s/ the assertions follow at once from this equality. ut
Let s 2 S. By Lemma 1.46, the functional hu, u 2 Rm, is a supporting hyperplane

of S at s if and only if fu 2 NC.s/ and u ¤ 0. Each supporting hyperplane of S at s
is of the form. Thus, s is a boundary point of S if and only if NC.s/ ¤ f0g.

Further, Hu \ S is an exposed face of S if and only if fu 2 NC.s/. All nonempty
exposed faces of S are of this form.

1.2.5 The Set of Atoms and the Core Variety

Throughout this section, L is a moment functional on E such that L ¤ 0.
We define inductively linear subspaces Nk.L/, k 2 N; of E and subsets Vj.L/,

j 2 N0; of X by V0.L/ D X ,

Nk.L/ WD f p 2 E W L. p/ D 0; p.x/ � 0 for x 2 Vk�1.L/ g; (1.22)

Vj.L/ WD fx 2 X W p.x/ D 0 for p 2 Nj.L/g: (1.23)

Definition 1.47 The core variety V.L/ of the moment functional L on E is

V.L/ WD
1\
jD0

Vj.L/: (1.24)

Since L ¤ 0, it follows from Proposition 1.48(ii) that Vk.L/ ¤ ; for all k 2 N:
Note that N1.L/ D NC.L/ and V1.L/ D VC.L/; where NC.L/ and VC.L/ have been
introduced in Definition 1.39.
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Some properties of these sets are contained in the next proposition. Assertion
(1.25) is the crucial step in the proof of Theorem 1.49 below.

Proposition 1.48

(i) Nj�1.L/ 	 Nj.L/ and Vj.L/ 	 Vj�1.L/ for j 2 N:

(ii) If � is representing measure of L, then supp� 	 V.L/:
(iii) There exists a k 2 N0 such that

X D V0.L/ ¥ V1.L/ ¥ : : : ¥ Vk.L/ D VkCj.L/ D V.L/; j 2 N: (1.25)

Proof

(i) follows easily by induction; we omit the details.
Let j 2 N0. We denote by E. j/ WD EdVj.L/ 	 C.Vj.L/IR/ the vector space

of functions fj WD f dVj.L/, where f 2 E, and by L. j/ the corresponding cone
of moment functionals on E. j/. Clearly, E.0/ D E and L D L.0/. Note that in
general dim E. j/ is smaller than dim E.

(ii) We prove by induction that supp� 	 Vj.L/ for j 2 N0. For j D 0 this is
obvious. Assume that this holds for some j. Then

L. j/. fj/ D
Z
Vj.L/

f .x/ d�; f 2 E; (1.26)

defines a moment functional on E. j/. Then supp� 	 VC.L. j// D VjC1.L/
by Proposition 1.40(i) which completes the induction proof. Thus supp� 	
\j Vj.L/ D V.L/:

(iii) Fix � 2 ML. Let L. j/ 2 L. j/ be given by (1.26). Then, NjC1.L/ D NC.L. j//
and VjC1.L/ D VC.L. j//. From Proposition 1.44, applied to L. j/; we conclude
that there exists a pjC1 2 E such that pjC1dVj.L/ 2 NC.L. j// D NjC1.L/ and

VC.L. j// D VjC1.L/ D Z. pjC1dVj.L// D fx 2 Vj.L/ W pjC1.x/ D 0g:
(1.27)

Suppose that L is an inner point of L. Then, by Proposition 1.42(iii),
NC.L/ D N1.L/ D f0g, so that V1.L/ D X . Hence it follows from the
corresponding definitions that Nj.L/ D f0g and Vj.L/ D X for all j 2 N,
so the assertion holds with k D 0.

Now let L be a boundary point of L: Then N1.L/ ¤ f0g and hence V1.L/ ¤
X . Assume that r 2 N and

V0.L/ ¥ : : : ¥ Vr.L/: (1.28)

We show that the functions p1; : : : ; pr are linearly independent. Assume the
contrary. Then

Pr
jD1 �jpj D 0, where �j 2 R, not all zero. Let n be the

largest index such that �n ¤ 0. Then pn.x/ D P
j<n �j�

�1
n pj. (The sum is

to set zero if n D 1.) Since Vi.L/ 	 Vj.L/ if j � i and pj vanishes on Vj.L/ by
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(1.27), it follows that pn D 0 on Vn�1.L/. Hence Vn.L/ 	 Vn�1.L/ by (1.27), a
contradiction to (1.28).

In the preceding two paragraphs we have shown that there is a k 2 N0,
k � dimE, such that Vk.L/ D VkC1.L/. Then NkC1.L/ D NkC2.L/ and hence
VkC1.L/ D VkC2.L/: By induction, VkCj.L/ D Vk.L/ for j 2 N, so that V.L/ D
Vk.L/. ut

The following result says that the core variety is just the set of possible atoms. It
implies that W.L/ is a Borel subset of X .

Theorem 1.49 Suppose that L is a moment functional on E and L ¤ 0. Then
W.L/ D V.L/. In particular, W.L/ is a closed subset of X .

Proof From Proposition 1.48(ii) it follows that W.L/ 	 V.L/.
By Proposition 1.25, there exists a k 2 N0 such that (1.25) holds. We

show that the set U WD V.L/ fulfills the assumptions of Corollary 1.31. By
Proposition 1.48(ii),we have supp� 	 V.L/. Further, if f 2 E satisfies f .x/ � 0

on U D Vk.L/ and L. f / D 0, then f 2 NkC1.L/ and hence f .x/ D 0 on
VkC1.L/ D V.L/ D U : Now Corollary 1.31 applies and gives the converse inclusion
U D V.L/ 	 W.L/. Thus, W.L/ D V.L/.

Since V.L/ D Vk.L/ is closed by its definition, so is W.L/. ut

1.2.6 Extremal Values of Integrals with Moment Constraints

In this subsection, we investigate the supremum and infimum of the integral
R
h d�

of some measurable function h under the constraint that the measure � has given
“moments”

R
fj d� D sj; j D 1; : : : ; n:

Let M.E/ denote the set of Radon measures � on X for which all functions of
E are �-integrable. We fix a vector space basis f f1; : : : ; fng of the finite-dimensional
subspace E of C.X IR/ and define the moment cone

S D
�
s D .s1; : : : ; sn/ W sj D

Z
fj.x/d�; j D 1; : : : ; n; where � 2M.E/

�
:

For s 2 S let Ms denote the set of representing measures of s, that is,

Ms D f� 2M.E/ W sj D
Z

fj.x/d�; j D 1; : : : ; n g:

Let h be a fixed real-valued Borel function on X such that the integral
R
h d� is

finite for all � 2Ms. For instance, if the function h is bounded on X and condition
(1.8) holds, then each measure� 2Mt; t 2 S; is finite and hence

R
h.x/d� is finite.

For an interior point s of S, we are interested in the upper bound Isup.hI s/ and
the lower bound Iinf.hI s/ of the integral

R
h.x/ d� under the constraints � 2Ms:
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Isup.hI s/ D sup
˚ Z

h.x/d� W � 2Ms
�
; (1.29)

Iinf.hI s/ D inf
˚ Z

h.x/d� W � 2Ms
�
: (1.30)

If h is the indicator function �A of a Borel set A, Isup.�AI s/ is the supremum of
masses�.A/ for measures� 2Ms. This is an important quantity in moment theory.

Let Sext denote the moment cone obtained by adding the function h to the
sequence f f1; : : : ; fng. That is,

Sext D
�
.t; tnC1/ 2 RnC1 W t 2 S; tnC1 D

Z
h.x/d� for � 2Mt

�
:

If h 2 E, then
R
h d� D Ls.h/ for � 2 Ss, so that Isup.hI s/ D Iinf.hI s/ D Ls.h/, so

we are done in this case. Further, we set

E�.h/ D f f 2 E W f .x/ � h.x/ for x 2 X g; (1.31)

E�.h/ D f f 2 E W f .x/ � h.x/ for x 2 X g: (1.32)

The following two results relate the problems (1.29) and (1.30) to two other
problems (1.33) and (1.34) and give existence criteria for these problems.

Theorem 1.50 Let s be an interior point of S such that Isup.hI s/ and Iinf.hI s/ are
finite. Further, assume that

R
h d� is finite for all � 2Mt and t 2 S. Then

Isup.hI s/ D inf fLs. f / W f 2 E�.h/g; (1.33)

Iinf.hI s/ D sup fLs. f / W f 2 E�.h/g; (1.34)

and there exist functions fC 2 E�.h/ and f� 2 E�.h/ such that the infimum in (1.33)
is attained at fC and the supremum in (1.34) is attained at f�.

Further, if the supremum in (1.29) is attained at �C 2 Ms and fC 2 E�.h/
satisfies Isup.hI s/ D Ls. fC/, then �C is supported on fx 2 X W h.x/ D fC.x/g:

Likewise, if the infimum in (1.30) is attained at some �� 2Ms and f� 2 E�.h/
is such that Iinf.hI s/ D Ls. f�/, then �� is supported on fx 2 X W h.x/ D f�.x/g:
Proof As stated before the theorem, the assertion holds if h 2 E. Thus we can
assume that h … E.

Since Isup.hI s/ 2 R is the supremum (1.29), .s; Isup.hI s// is in the closure of Sext

and .s; Isup.hI s/C "/ … Sext for all " > 0. Thus .s; Isup.hI s// is a boundary point of
the convex cone Sext of RnC1, so there exists a supporting hyperplane through this
point at Sext. That is, there are a 2 Rn and anC1 2 R such that .a; anC1/ ¤ 0 and

a � tC anC1tnC1 � 0 for all .t; tnC1/ 2 Sext; (1.35)

a � sC anC1Isup.hI s/ D 0: (1.36)
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For any x 2 X , the delta measure ıx is in M.E/. Letting t be the moment sequence
of ıx in (1.35) we obtain

a1 f1.x/C � � � C an fn.x/C anC1h.x/ � 0 for x 2 X : (1.37)

Next we prove that anC1 < 0. Since h … E, it is easily seen that Sext

is not contained in a hyperplane. Hence there is a .t; tnC1/ 2 Sext such that
a � tC anC1tnC1 > 0. Since s is an inner point of S, we have t0 WD sC ".s� t/ 2 S
for small " > 0. Put t0nC1 WD

R
hd� for some � 2 Mt0 . Then .t0; t0nC1/ 2 Sext:

Therefore, setting t00nC1 WD .1C "/�1t0nC1 C ".1C "/�1tnC1,

.s; t00nC1/ D .1C "/�1.t0; t0nC1/C ".1C "/�1.t; tnC1/

is a convex combination of points from Sext, so that .s; t00nC1/ 2 Sext: The inequalities
a � t C anC1tnC1 > 0 and a � t0 C anC1t0nC1 � 0 imply that a � s C anC1t00nC1 > 0:

Combining the latter with (1.36) we obtain anC1t00nC1 > anC1Isup.hI s/. Therefore,
since .s; t00nC1/ 2 Sext and hence Isup.hI s/ � t00nC1 by the definition of Isup.hI s/, it
follows that anC1 < 0.

Set fC.x/ WD �a1a�1
nC1f1 � � � � � ana�1

nC1fn. Dividing (1.37) by �anC1 > 0 we get
fC.x/ � h.x/ � 0 for x 2 X , so that fC 2 E�.h/. From (1.36) and (1.37) we derive
Ls. fC/ D Isup.hI s/: Thus we have shown that the infimum in (1.33) is attained at fC
and equal to Isup.hI s/.

The assertion concerning Iinf.hI s/ follows either by a similar reasoning or
directly from the result on Isup.hI s/, applied with h replaced by �h and fi by �fi.

Finally, let us suppose that the supremum (1.29) is attained for some �C 2Ms

and let Isup.hI s/ D Ls. fC/, where fC 2 E�.h/: Then

Z
fC.x/d�C D Ls. fC/ D Isup.hI s/ D

Z
h.x/ d�C;

so that
R
. fC.x/�h.x// d�C D 0. Since fC�h � 0 on X , it follows that fC�h D 0

�C-a.e.. This means that �C is supported on the set fx 2 X W h.x/ D fC.x/g. The
proof for �� is similar. ut
Remark 1.51 Theorem 1.50 and its proof remain valid if E consists of measurable
functions for some �-algebra instead of continuous functions. ı

Since h.x/ � f .x/ on X for f 2 E�.h/, we have

inf
f2E�.h/

Z
jh � f jd� D inf

f2E�.h/

�Z
hd��

Z
fd�

�
D
Z

hd�� sup
f2E�.h/

Ls. f /:

Thus, finding the supremum in (1.34) is equivalent to the problem of finding the
best approximation of h in L1.X ; �/ by functions from E�.h/: In other words,
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the supremum in (1.34) is attained at f 2 E�.h/ if and only if f is the best
approximation of h in L1.X ; �/ by functions of E from below.

Recall that a real-valued function h on X is called upper semicontinuous if for
each a 2 R the set fx 2 X W f .x/ < ag is open in X . Obviously, the characteristic
function h D �A of some subset A is upper semicontinous if and only if A is closed.

The next theorem is the main result of this section. It contains sufficient
conditions ensuring that the supremum in (1.29) is attained.

Theorem 1.52 Suppose that X is a compact topological space and E is a finite-
dimensional subspace of C.X IR/ satisfying condition (1.8). Let s be an interior
point of S and h an upper semicontinuous bounded real-valued function on X .

Then there exist a k-atomic measure �C D Pk
jD1mjıxj 2Ms, k � dimE C 1,

and a function fC 2 E�.h/ such that the supremum (1.29) and the infimum (1.33)
are attained at fC and �C, respectively, and both numbers coincide. That is, we
have fC.x/ � h.x/ on X , h.xj/ D fC.xj/ for j D 1; : : : ; k, and for each � 2Ms,

Z
f .x/d� D

Z
f .x/d�C D

kX
jD1

mjf .xj/ for f 2 E;

sup
�2Ms

Z
h.x/d� D

Z
h.x/d�C D

kX
jD1

mjh.xj/ D
Z

fC.x/d� D inf
f2E�.h/

Z
fd�:

Proof From the definition of the supremum (1.29) it follows that there is a sequence
.�n/n2N of measures �n 2 Ms such that limn

R
hd�n D Isup.hI s/. By condition

(1.8), we have�n.X / �
R
ed�n D Ls.e/ for n 2 N. Therefore, Theorem A.6 applies

and implies that the set f�n W n 2 Ng is relatively vaguely compact. Then there exist
a Radon measure �C 2 MC.X / and a subnet .�ni/i2I which converges vaguely to
�C. Since X is compact, E 	 Cc.X ;R/ and hence

R
fd�C D limi

R
fd�ni D Ls. f /

for f 2 E. Thus, �C 2Ms.
Further, the function 1 is in Cc.X ;R/ again by the compactness of X . Hence

lim �ni .X / D lim
R
1 d�ni D

R
1 d� D �.X /, so condition (i) in Proposition A.8

is fulfilled. From�n.X / � Ls.e/ and�.X / � Ls.e/we get�n; � 2 MbC.X /. Since h
is upper semicontinuous, it follows from the implication (i)!(iii) of Proposition A.8
that

R
hd�C � limsupi

R
hd�ni D Isup.hI s/. Obviously, Isup.hI s/ �

R
hd�C by

definition. Thus,
R
hd�C D Isup.hI s/, so the supremum (1.29) is attained at �C.

Applying Theorem 1.24 to the functional L. f / D R
f d� on E ˚ R � h

we conclude that �C can be chosen k-atomic, say �C D Pk
jD1mjıxj , with

k � dimEC 1.
All remaining assertions are contained in Theorem 1.50. Because �C is sup-

ported on the set fx 2 X W h.x/ D fC.x/g, we have h.xj/ D fC.xj/ for all
j D 1; : : : ; k. ut

In particular, Theorem 1.52 holds if h is the characteristic function of a closed
subset of X . If we assume that the function h is lower semicontinuous (for instance,
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the characteristic function of an open set), then the counterpart of Theorem 1.52
remains valid almost verbatim for the infimum in (1.30) and the supremum in (1.34).

1.3 Exercises

1. Decide whether or not the following subspace E of C.RIR/ is an adapted
space:

a. E is the span of functions .x2 C n/�1, n 2 N.
b. E is the span of functions e˛x, ˛ > 0.
c. E D Cc.RIR/.

2. Are the polynomials RŒx�n of degree at most n an adapted space of C.RIR/ or
of C.Œ�1; 1�IR/?

3. Let E be the vector space of bounded continuous real functions on R. Each
f 2 E has a unique continuous extension Of to the Stone–Čech compactification
ˇ.R/ of R (see e.g. [Cw, Chapter V, §6]). Let x0 be a point of ˇ.R/nR and
define L. f / WD Of .x0/, f 2 E. Show that L is an EC-positive linear functional on
E which is not a moment functional.

4. Let �n, n 2 N; and � be positive Radon measures on a locally compact
Hausdorff space X such that the sequence .�n/n2N converges vaguely to �
and

P1
nD1 �n.X / <1: Show that limn

R
fd�n D

R
fd� for f 2 C0.X IR/.

5. Let a; b 2 R, where a < b. Determine the character set OA for the �-algebras
A D C.RIR/CR � �a and A D C.RIR/CR � �Œa;b�:
Hint: Look for a topological space X such that A is isomorphic to C.X ;R/.

In the following exercises, E is a finite-dimensional subspace of C.X IR/, S is the
moment cone, and Sj is the set of s 2 S which have a k-atomic representing measure
with k � j.

6. Give an example such that S1 is not closed.
7. Prove that Rm D S � S, where m D dim E:
8. Let C be the smallest number such that each s 2 S has a k-representing measure

with k � C: Show that Sj�1 ¤ Sj for j D 1; : : : ;C:
9. Assume that condition (1.15) holds.

(i) Prove that the cone S is pointed, that is, S \ .�S/ D f0g:
(ii) Prove that if S1 is closed, so is Sk for all k 2 N.

10. Assume that X is compact and (1.8) holds. Prove Lk is closed for all k 2 N.
11. Suppose that L is a strictly EC-positive moment functional on E and jX j >

dim E. Prove that L is not determinate by using the Hahn–Banach theorem.
Hints: Take h 2 Cc.X IR/, h … E: Show that Sh < Ih, where

Sh WD sup fL. f /I f 2 E and f .x/ � h.x/; x 2 X g; (1.38)

Ih WD inf fL. f / W f 2 E and h.x/ � f .x/; x 2 X g: (1.39)
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Choose � 2 R, Sh < � < Ih: Show that the functional L� on F WD E C R � h
defined by L� . f C �h/ D L. f / C ��; f 2 E; is strictly FC-positive. Apply
Theorem 1.30.

1.4 Notes

Choquet’s theory of adapted spaces was elaborated in [Chq]. Haviland’s The-
orem 1.12 goes back to [Ha]. Since the one-dimensional case was noted by
M. Riesz [Rz2], Theorem 1.12 is often called Riesz–Haviland theorem in the
literature. Theorem 1.21 (for polynomials) is due to M.A. Naimark [Na]; the general
version is from [Do].

The important Theorem 1.24 was first proved in full generality by H. Richter [Ri]
in 1957, see also W.W. Rogosinsky [Rg]. V. Tchakaloff [Tch] treated the simpler
compact case about the same time. Richter’s paper has been ignored in the literature
and a number of versions of his result have been reproved even recently.

Theorem 1.26 is due to [FN2]. Assertion (i) of Theorems 1.30 is based on an
idea from [FN1]. Theorems 1.30, 1.36, 1.45, and 1.49 were proved in [DSm1]. The
core variety (for polynomials) was introduced in [F2]. More results on the moment
cone can be found in [DSm1], [DSm2]; proofs of Exercises 1.7–1.10 are given in
[DSm2].

The results of Sect. 1.2.6 were obtained in [Ri], [Rg], [Ii], [Kp1]; see [Kp2] for a
survey. They will not be used later in this book.



Chapter 2
Moment Problems on Abelian �-Semigroups

In this chapter we collect a number of general concepts and simple facts on moment
problems on commutative �-semigroups that will be used throughout the text, often
without mention. Section 2.1 is about positive functionals on �-algebras and positive
semidefinite functions on �-semigroups. In Sect. 2.2 we specialize to commutative
�-algebras and �-semigroups and introduce moment functionals, moment functions,
K-determinate moment functions, and generalized Hankel matrices. Some standard
examples of commutative �-semigroups are given in Sect. 2.3.

Throughout this chapter, K is either the real field R or the complex field C.

2.1 �-Algebras and �-Semigroups

In this section we discuss the one-to-one correspondence between positive semidef-
inite functions on �-semigroups and positive functionals on semigroup �-algebras.

Let us begin with some basic definitions.

Definition 2.1 A �-algebra A over K is an algebra over K equipped with a
mapping � W A! A, called involution, such that for a; b 2 A and ˛; ˇ 2 K,

.˛aC ˇb/� D ˛ a� C ˇ b�; .ab/� D b�a�; .a�/� D a:

The Hermitian part Ah of a �-algebra A is Ah WD fa 2 A W a D a�g:
Our standard examples of real or complex �-algebras in this book are the

polynomial algebras RŒx1; : : : ; xd� and CŒx1; : : : ; xd�, respectively, with involutions
determined by .xj/� D xj; j D 1; : : : ; d.

© Springer International Publishing AG 2017
K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics 277,
DOI 10.1007/978-3-319-64546-9_2
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Definition 2.2 Let A be a K-linear subspace of a some �-algebra over K. We define

A2 D Lin fb�a W a; b 2 Ag; (2.1)

X
A2 D

� kX
iD1
.ai/

�ai W ai 2 A; k 2 N

�
: (2.2)

A linear functional L W A2 ! K is called positive if L is .
P

A2/-positive, that is, if

L.a�a/ � 0 for a 2 A: (2.3)

Lemma 2.3 Let A be a linear subspace of a �-algebra B over K and L W A2 ! K

a positive linear functional. Then the Cauchy–Schwarz inequality holds:

jL.b�a/j2 � L.a�a/L.b�b/ for a; b 2 A: (2.4)

Further, if B is unital and the unit element of B is contained in A, then

L.a�/ D L.a/ for a 2 A: (2.5)

Proof We carry out the proof in the case K D C; the case K D R is even simpler.
For ˛; ˇ 2 K and a; b 2 A we have

L..˛ C ˇb/�.˛aC ˇb//
D ˛˛L.a�a/C ˛ˇL.a�b/C ˛ˇL.b�a/C ˇˇL.b�b/ � 0: (2.6)

Hence ˛ˇL.a�b/ C ˛ˇL.b�a/ is real. Letting ˛ˇ D 1 and ˛ˇ D i, we derive
L.a�b/ D L.b�a/. If B has a unit element 1 and 1 2 A, we set b D 1 and get (2.5).

The expression in (2.6) is a positive semidefinite quadratic form. Hence its
discriminant has to be nonnegative. Since L.a�b/ D L.b�a/ as just shown, this
yields

L.a�a/L.b�b/� L.b�a/L.a�b/ D L.a�a/L.b�b/� jL.b�a/j2 � 0: ut

If the linear subspace A in Definition 2.2 is itself a �-algebra, then (2.3) is just
the definition of a positive functional on the �-algebra A.

In this book we deal mainly with commutative real algebras. Each such algebra
is a �-algebra over R if we take the identity map as involution. In this case,

P
A2

is the set of finite sums of squares a2 of elements a 2 A and the Cauchy–Schwarz
inequality (2.4) has the following form:

L.ab/2 � L.a2/L.b2/ for a; b 2 A: (2.7)
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By a semigroup .S; ı/we mean a nonempty set S with an associative composition
ı (that is, a mapping S�S 3 .s1; s2/ 7! s1ıs2 2 S such that s1ı.s2ıs3/ D .s1ıs2/ıs3
for all s1; s2; s3 2 S) and a neutral element e 2 S (that is, e ı s D s ı e D s for s 2 S).

Definition 2.4 A �-semigroup .S; ı;�/ is a semigroup .S; ı/ endowed with a
mapping � W S! S, called an involution, such that

.s ı t/� D t� ı s� and .s�/� D s; s; t 2 S:

If no confusion can arise we write simply S instead of .S; ı;�/.
Any abelian semigroup becomes a �-semigroup if we take the identity map as

involution. Each group S is a �-semigroup with involution s� WD s�1, s 2 S.

Definition 2.5 A function ' W S ! K on a �-semigroup S is positive semidefinite
if for arbitrary elements s1; : : : ; sn 2 S, numbers �1; : : : ; �n 2 K and n 2 N,

nX
i;jD0

'.s�
i ı sj/ �i �j � 0:

The set of positive semidefinite functions ' W S! K on S is denoted by PK.S/.

Suppose that S is �-semigroup. We define the semigroup �-algebra KŒS�. A
vector space basis of KŒS� is given by the elements of S and product and involution
of KŒS� are determined by the corresponding operations of S. That is, KŒS� is the
vector space of all sums

P
s2S ˛ss, where ˛s 2 K and only finitely many numbers

˛s are nonzero, with pointwise addition and scalar multiplication. The vector space
KŒS� becomes a unital �-algebra over K with product and involution defined by

�X
s2S ˛ss

��X
t2S ˇtt

� WDPs;t2S ˛sˇt.s ı t/;
�X

s2S ˛ss
�� WDPs2S ˛s s�:

Since the elements of S form a basis of KŒS�, there is a one-to-one correspon-
dence between functions ' W S!K and linear functionals L' W KŒS�!K given by

L'.s/ WD '.s/; s 2 S:

Definition 2.6 The unital �-algebra KŒS� over K is the semigroup �-algebra of S
and the functional L' is called the Riesz functional associated with the function '.

Proposition 2.7 For a function ' W S! K the following are equivalent:

(i) ' is a positive semidefinite function.
(ii) L' is a positive linear functional on the �-algebraKŒS�.

(iii) H.'/ D .ast WD '.s� ı t//s;t2S is a positive semidefinite Hermitian matrix.
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Proof For arbitrary a DPs2S ˛ss 2 KŒS�, we have

L'.a
�a/ D

X
s;t2S '.s

� ı t/˛s˛t D
X

s;t2S ast ˛s˛t:

Comparing Definitions 2.5 and 2.2 the first equality implies the equivalence of (i)
and (ii), while the second equality yields the equivalence of (i) and (iii). ut
Corollary 2.8 If ' W S! K is a positive semidefinite function on S, then

'.s�/ D '.s/ and '.s� ı s/ � 0 for s 2 S; (2.8)

j'.s� ı t/j2 � '.s� ı s/'.t� ı t/ for s; t 2 S: (2.9)

In particular, if '.e/ D 0, then '.t/ D 0 for all t 2 S.

Proof By Proposition 2.7, L' is a positive linear functional on the unital �-algebra
KŒS�, that is, L'.s�s/ D '.s� ı s/ � 0. Therefore, (2.8) and (2.9) follow at once
from (2.5) and (2.4), respectively. If '.e/ D 0, then it follows that ' � 0 on S by
setting s D e in (2.9). ut
Definition 2.9 The positive semidefinite matrix

H.'/ D .'.s� ı t//s;t2S
with .s; t/-entry ast WD '.s� ı t/ is called the generalized Hankel matrix associated
with the positive semidefinite function ' W S! K.

2.2 Commutative �-Algebras and Abelian �-Semigroups

Throughout this section, we assume that A is a commutative unital �-algebra over
K and that S is an abelian �-semigroup. As is common, we write C for the
composition ı of S and denote the neutral element of S by 0.

Definition 2.10 A character on A is linear functional � W A! K satisfying

�.1/ D 1; �.ab/ D �.a/�.b/; �.a�/ D �.a/; a; b 2 A: (2.10)

If A is a real algebra with identity involution, this coincides with Definition 1.13.

The set of characters of A is denoted by OA. We equip OA with the topology of
pointwise convergence and assume that OA is then a locally compact topological
Hausdorff space. The latter is always fulfilled if the algebra A is finitely generated.

The following definition restates Definitions 1.1 and 1.2 in the present setting.
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Definition 2.11 Let K be a closed subset of OA. A linear functional L W A ! K is
called a K-moment functional if there exists a Radon measure � on OA such that

supp� 	 K; (2.11)

the function � 7! �.a/ is �-integrable on OA and satisfies

L.a/ D
Z

OA
�.a/ d�.�/ for all a 2 A: (2.12)

A K-moment functional L is said to be K-determinate if there is only one Radon
measure � on OA for which (2.11) and (2.12) holds.

In the case K D OA we call K-moment functionals simply moment functionals and
K-determinate K-moment functionals determinate.

Lemma 2.12 Each K-moment functional is a positive linear functional on A.

Proof Let a 2 A. For � 2 OA we have �.a�a/ D �.a�/�.a/ D j�.a/j2 by (2.10) and
therefore

L.a�a/ D
Z

OA
�.a�a/ d�.�/ D

Z
OA
j�.a/j2 d�.�/ � 0: ut

Remark 2.13 A positive linear functional L on A satisfying L.1/ D 1 is called a
state. Let S.A/ denote the set of states of A. Each character of A is an extreme
point of the convex set S.A/. (The reasoning of the proof of Lemma 18.3(ii) below
gives a proof of this well-known fact.) In general not all extreme point of S.A/ are
characters. (Indeed, by Proposition 13.5, there exists a state L on RŒx1; x2� which
is not a moment functional. From the decomposition theory of states on �-algebras
[Sm4, Section 12.4] it follows that L is an integral of extreme points of S.A/. Since
L is not a moment functional, not all extreme points of S.A/ can be characters; see
also the discussion in [Sm4, Remark 12.4.6].) ı

Next we turn to characters on the abelian �-semigroup S.

Definition 2.14 A character of S is a function � W S! K satisfying

�.0/ D 1; �.sC t/ D �.s/�.t/; �.s�/ D �.s/; s; t 2 S: (2.13)

The set S� of characters of an abelian semigroup S is also an abelian �-
semigroup, called the dual semigroup of S, with pointwise multiplication as
composition, complex conjugation as involution and the constant character as
neutral element.

Let us assume that S� equipped with the topology of pointwise convergence is a
locally compact Hausdorff space. This holds if the �-semigroup is finitely generated.
The following is the counterpart of Definition 2.11 for �-semigroups.
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Definition 2.15 Let K be a closed subset of S�. We say that a function ' W S! K

is a K-moment function if there exists a Radon measure � on S� such that

supp� 	 K; (2.14)

the function � 7! �.s/ is �-integrable on S� and

'.s/ D
Z
S�

�.s/d�.�/ for all s 2 S: (2.15)

A K-moment function ' is called K-determinate if the measure � satisfying (2.14)
and (2.15) is uniquely determined.

If K D S� we call a K-moment function simply a moment function and a K-
determinate moment function determinate.

Comparing the preceding definitions and facts we see that we have a one-to-one
correspondence between notions on a �-semigroup S and its semigroup �-algebra
KŒS�: By (2.13) and (2.10), a function � W S! K is a character on the �-semigroup
S if and only if its Riesz functional on KŒS� is a character on the �-algebra KŒS�.
Comparing Definitions 2.11 and 2.15, it follows that ' is a K-moment function
on S if and only if the Riesz functional L' is a K-moment functional on KŒS�.
Further, by these definitions, ' is K-determinate if and only if L' is. That is, the
moment problems for the semigroup �-algebra KŒS� and for the �-semigroup S are
equivalent. We shall use these fact throughout the book without mention.

From Proposition 2.7 (i)$(ii), and Lemma 2.12 we obtain the following.

Corollary 2.16 Each moment function ' W S! K is positive semidefinite.

By Corollary 2.16 and Lemma 2.12, each moment function ' W S! K is positive
semidefinite and the Riesz functional L' on KŒS� is positive. We shall show later
(Proposition 13.5) that the converse is not true for �-semigroup S D Nd

0 when d � 2.
Even more, the converse is only true in rare cases! Finding sufficient conditions on
a positive linear functional L on RŒNd

0� ensuring that L is a moment functional will
be one of our main tasks in this book.

Next let us suppose that A is a commutative real algebra. We want to define
its complexification AC. The direct sum AC WD A ˚ iA of vector spaces A and
iA becomes a commutative complex �-algebra with multiplication, involution and
scalar multiplication defined by

.aC ib/.cC id/ D ac� bdCi.bcC ad/; .aC ib/� WD a � ib;

.˛ C iˇ/.aC ib/ WD ˛a � ˇbC i.˛bC ˇa/;

where a; b; c; d 2 A and ˛; ˇ 2 R. This complex �-algebra AC is called the
complexification of A. The real algebra A is then the Hermitian part .AC/h of AC.

Recall that
P
.AC/

2 denotes all finite sums
P

j x
�
j xj and

P
A2 is the set of finite

sums
P

i a
2
i , where xj 2 AC and ai 2 A.
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Lemma 2.17
P
.AC/

2 DP A2.

Proof Let x 2 AC. Then x D aCib with a; b 2 A. Using that the algebra A is
commutative (!) we obtain

x�x D .aC ib/�.aC ib/ D a2 C b2 C i.ab� ba/ D a2 C b2 2
X

A2: ut

Each R-linear functional L on A has a unique extension LC to a C-linear functional
on AC. An immediate consequence of Lemma 2.17 is the following corollary.

Corollary 2.18 L is positive on the real �-algebra A (with the identity map as
involution) if and only if LC is positive on the complex �-algebra AC.

At the end of this section we briefly discuss the choice of the field K. A large part
of this book deals with the K-moment problem for the �-semigroup S D Nd

0 with
identity involution. By (2.13), all characters on Nd

0 are real-valued, .Nd
0/

� Š Rd and
we have RŒNd

0� Š RŒx1; : : : ; xd�, see Example 2.3.1 below. That is, we can work
with the real field and real algebras. In Chaps. 12 and 13 we will apply powerful
methods from real algebraic geometry to the real algebra A D RŒx1; : : : ; xd�.

But operator-theoretic treatments require complex Hilbert spaces. In this case it
is more convenient to use the complex semigroup �-algebra CŒNd

0� Š CŒx1; : : : ; xd�.
Since CŒx1; : : : ; xd� is just the complexification of RŒx1; : : : ; xd�, it is easy from the
preceding discussion and Corollary 2.18 to pass from one algebra to the other.

In Chaps. 11 and 15 we will study the moment problem on the unit circle and
the complex moment problem, respectively. In these cases it is unavoidable to work
with the complex field, since otherwise we would not have enough characters.

2.3 Examples

In this section we discuss four important examples that will be crucial for this book.

2.3.1 Example 1: Nd
0
;n� D n

The additive semigroup Nd
0 with identity involution is a �-semigroup and the map

.n1; : : : ; nd/ 7! xn11 � � � xndd
is a �-isomorphism of the semigroup �-algebra KŒNd

0� on the �-algebra
KŒx1; : : : ; xd� of polynomials with involution determined by x�

j D xj, j D 1; : : : ; d.
By identifying .n1; : : : ; nd/ and xn11 � � � xndd we obtain

KŒNd
0� Š KŒx1; : : : ; xd�:
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Clearly, for any t 2 Rd there is a character �t given by the point evaluation
�t. p/ D p.t/; p 2 KŒx1; : : : ; xd�. Conversely, if � is a character, we set tj WD �.xj/
for j D 1; : : : ; d. Then �.xj/ D �..xj/�/ D �.xj/, so t D .t1; : : : ; td/ 2 Rd and

�. p.x1; : : : ; xd// D p.�.x1/; : : : ; �.xd// D p.t1; : : : ; td/ D �t. p/:

Hence � D �t. Thus we have shown that the character space of S D Nd
0 is

.Nd
0/

� D f�t W t 2 Rdg Š Rd; where �t. p/ D p.t/: (2.16)

A function on the semigroup Nd
0 is just a multisequence s D .s˛/˛2Nd

0
. Its Riesz

functional Ls is given by Ls.x˛/ D s˛ , ˛ 2 Nd
0: By the definition of the involution,

positive semidefinite functions on Nd
0 are real-valued. By Definition 2.5, a real

sequence s D .s˛/˛2Nd
0

is a positive semidefinite function on Nd
0 if and only if

X
˛;ˇ2Nd

0

s˛Cˇ �˛ �ˇ � 0

for all finite real multisequences .�˛/˛2Nd
0
:

From Definition 2.15 and Eq. (2.16) it follows that s is a moment function on
Nd
0, briefly a moment sequence, if and only if there is a Radon measure � on Rd Š

.Nd
0/

� such that x˛ 2 L1.Rd; �/ and

s˛ D
Z
Rd

x˛ d� for ˛ 2 Nd
0; (2.17)

or equivalently, p.x/ 2 L1.Rd; �/ and Ls. p/ D
R
Rd p.x/ d� for p 2 RŒx1; : : : ; xd�:

Equation (2.17) means that s˛ is the ˛-th moment of the measure �. Thus, s is a
moment sequence if and only if there is a Radon measure � such that each s˛ is
the ˛-th moment s˛.� of �, or equivalently, Ls is a moment functional according
to Definition 2.11. This explains and justifies the names “moment sequence” and
“moment functional”.

By Definition 2.9, the corresponding generalized Hankel matrix H.s/ has the
.˛; ˇ/-entry s˛Cˇ . In the case d D 1 the matrix H.s/ is a “usual” one-sided infinite
Hankel matrix which is constant on cross-diagonals:

H.s/ D

0
BBBBBBB@

s0 s1 s2 : : : sn : : :

s1 s2 s3 : : : snC1 : : :
s2 s3 s4 : : : snC2 : : :
: : : : : : : : : : : : : : : : : :

sn snC1 snC2 : : : s2n : : :

: : : : : : : : : : : : : : : : : :

1
CCCCCCCA
: (2.18)
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Remark 2.19

1. It should be emphasized that notions such as positive semidefinite sequence,
moment sequence, and Hankel matrix depend essentially on the underlying �-
semigroup.

2. In the literature the Hankel matrix is often called the moment matrix, because its
entries are moments if s is a moment sequence. We will not use this terminology.
The reason is that we will work with Hankel matrices as technical tools even if
we do not know whether or not s is a moment sequence. In algebraic geometry
the Hankel matrix appears under the name catalecticant matrix. ı

2.3.2 Example 2: N2d
0
; .n;m/� D .m;n/

The additive semigroup N2d
0 with involution

.n1; : : : ; nd;m1; : : : ;md/
� D .m1; : : : ;md; n1; : : : ; nd/

is a �-semigroup and the map

.n1; : : : ; nd;m1; : : : ;md/ 7! zn11 � � � zndd zm11 � � � zmd
d

is a �-isomorphism of CŒN2d
0 � onto the �-algebra CŒz1; : : : ; zd; z1; � � � ; zd� of

complex polynomials with involution given by .zj/� WD zj, j D 1; : : : ; d. That is,

CŒN2d
0 � Š CŒz1; z1; : : : ; zd; zd�:

Arguing as in the preceding example it follows that the character space is given by
the evaluations at points of Cd, that is,

S� D f�z W z 2 Cdg Š Cd; where �z. p/ D p.z1; : : : ; zd; z1; : : : ; zd/:

Positive semidefinite functions on this �-semigroup S are complex multise-
quences s D .s˛;ˇ/˛;ˇ2Nd

0
for which

X
˛;˛0 ;ˇ;ˇ02Nd

0

s˛C˛0 ;ˇCˇ0 �˛;ˇ �˛0 ;ˇ0 � 0

for all finite complex multisequences .�˛;ˇ/˛;ˇ2Nd
0
.

The ..˛; ˇ/; .˛0; ˇ0//-entry of the corresponding generalized Hankel matrix H.s/
is s˛C˛0 ;ˇCˇ0 . The first equality of (2.8) yields s˛C˛0 ;ˇCˇ0 D sˇCˇ0 ;˛C˛0 for
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˛; ˇ; ˛0; ˇ0 2 Nd
0. In the case d D 1 the matrix H.s/ has the form

H.s/ D

0
BBBBBBB@

s00 s01 s02 : : : s0n : : :
s01 s11 s12 : : : s1n : : :
s02 s12 s22 : : : s2n : : :
: : : : : : : : : : : : : : : : : :

s0n s1n s2n : : : snn : : :
: : : : : : : : : : : : : : : : : :

1
CCCCCCCA
: (2.19)

2.3.3 Example 3: Zd;n� D �n

The additive groupZd equipped with the involution .n1; : : : ; nd/� D .�n1; : : : ;�nd/
is a �-semigroup. There is a �-isomorphism

.n1; : : : ; nd/ 7! zn11 � � � zndd

of the group �-algebra CŒZd� onto the �-algebra of trigonometric polynomials in d
variables, or equivalently, of complex polynomials in z1 2 T; : : : ; zd 2 T. Thus,

CŒZd� Š CŒz1; z1; : : : ; zd; zd W z1z1 D z1z1 D 1; : : : ; zdzd D zdzd D 1�:

It is easily verified that the character space .Zd/� consists of point evaluations at
points of the d-torus Td D f.z1; : : : ; zd/ 2 Cd W jz1j D � � � D jzdj D 1 g, that is,

.Zd/� D f�z W z 2 Tdg Š Td; where �z. p/ D p.z/:

The .n;m/-entry of the generalized Hankel matrix H.s/ is sm�n and we have
sm�n D sn�m for n;m 2 Zd. In the case d D 1 the matrix H.s/ is given by

H.s/ D

0
BBBBBBB@

: : : : : : : : : : : : : : : : : :

: : : s0 s1 s2 s3 : : :

: : : s1 s0 s1 s2 : : :

: : : s2 s1 s0 s1 : : :

: : : s3 s2 s1 s0 : : :

: : : : : : : : : : : : : : : : : :

1
CCCCCCCA
; (2.20)

where s0 stands at the (0,0)-entry. A matrix of this form is called a Toeplitz matrix.
This matrix is constant on each descending diagonal from left to right.
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2.3.4 Example 4: Z;n� D n

The additive group Z with identity involution is a �-semigroup. The map n 7! xn is
a �-isomorphism of the group �-algebra RŒZ� on the �-algebra RŒx; x�1� of Laurent
polynomials with involution given by x� D x. The character space Z� is

Z� D f�t W t 2 Rnf0gg Š Rnf0g; where �t. p/ D p.t; t�1/:

The .n;m/-entry of the generalized Hankel matrix H.s/ is snCm, so that

H.s/ D

0
BBBBBBB@

: : : : : : : : : : : : : : :

: : : s�2 s�1 s0 : : :

: : : s�1 s0 s1 : : :

: : : s0 s1 s2 : : :

: : : s1 s2 s3 : : :

: : : : : : : : : : : : : : :

1
CCCCCCCA
: (2.21)

Here again s0 is located at the (0,0)-entry of the matrix. That is, H.s/ is a “usual”
two-sided infinite Hankel matrix which is constant on cross-diagonals.

2.4 Exercises

1. Let S be an abelian �-semigroup. Show that S�S is an abelian �-semigroup with
product .s1; s2/ ı .s0

1; s
0
2/ D .s1s0

1; s2s
0
2/ and involution .s1; s2/� D .s2; s1/, where

s1; s0
1; s2s

0
2 2 S. Which examples of Sect. 2.3 fit into this scheme?

2. Let s D .sn/n2N0 be a complex positive semidefinite sequence for the �-
semigroup N0 with involution n� D n. Prove the following:

a. sn 2 R and s2n � 0 for n 2 N0.
b. .smCn/

2 � s2ms2n for m; n 2 N0.
c. .sn/2

k � .s0/2
k�1sn2k for n 2 N0, k 2 N. In particular, s0 D 0 implies that

sn D 0 for all n 2 N.

3. (Schur’s theorem) Show that if A D .aij/ni;jD1 and B D .bij/ni;jD1 are positive
semidefinite matrices over R, then so is the matrix C WD .aijbij/ni;jD1.

4. Show that if s D .sn/n2N0 and t D .tn/n2N0 are positive semidefinite sequences
for the �-semigroup N0, then so is the pointwise product sequence .sntn/n2N0 :

5. Let ' and  be positive semidefinite functions on the additive group R. Show
that ', ' C  , and ' are also positive semidefinite functions on R.

6. Show that '.t/ D cos t is a positive semidefinite function on R.
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7. Let � 2 MC.R/ be a finite measure. Prove that

'.t/ D
Z
R

e�i tx d�.x/; t 2 R;

is a continuous positive semidefinite function on R.
(Bochner’s theorem (see e.g. [RS2]) states that each continuous positive semidef-
inite function ' on R is of this form with � uniquely determined by ':)

2.5 Notes

Basics on positive functionals and general �-algebras can be found (for instance)
in [Sm4]. The notion of a �-semigroup appeared first in the Appendix written by
B. Sz.-Nagy of the functional analysis textbook [RzSz]. The standard monograph
about harmonic analysis on semigroups is [BCRl].
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The One-Dimensional Moment Problem



Chapter 3
One-Dimensional Moment Problems
on Intervals: Existence

In this chapter we begin the study of one-dimensional (full) moment problems:
Given a real sequence s D .sn/n2N0 and closed subset K of R, the K-moment

problems asks: When does there exist a Radon measure� onR supported on K such
that sn D

R
R
xnd�.x/ for all n 2 N0?

Our main aims are the solvability theorems for K D R (Hamburger’s Theo-
rem 3.8), K D Œ0;C1/ (Stieltjes’ Theorem 3.12), and K D Œa; b� (Hausdorff’s
Theorems 3.13 and 3.14). They are derived in Sect. 3.2 from Haviland’s theo-
rem 1.12. To apply this result representations of positive polynomials in terms of
sums of squares are needed. In Sect. 3.1 we develop such descriptions that are
sufficient for the applications in Sects. 3.2 and for the truncated moment problems
treated in Sects. 9.4 and 10.1.

In Sect. 3.3 we establish a one-to-one correspondence between the Stieltjes
moment problem and the symmetric Hamburger moment problem. In Sect. 3.4 we
derive unique representations of nonnegative polynomials on intervals (Proposi-
tions 3.20–3.22). These results are stronger than those obtained in Sect. 3.1 and they
are of interest in themselves.

3.1 Positive Polynomials on Intervals

Suppose that p.x/ 2 RŒx� is a fixed nonconstant polynomial. Since p has real
coefficients, it follows that if � is a non-real zero of p with multiplicity l, so is
�. Clearly, .x � �/l.x � �/l D ..x � u/2 C v2/l, where u D Re� and v D Im�.
Therefore, by the fundamental theorem of algebra, each nonzero real polynomial p
factors as

p.x/ D a.x � ˛1/n1 � � � .x � ˛r/nr .x � �1/j1 .x � �1/j1 : : : .x � �k/jk .x� �k/jk (3.1)

D a.x � ˛1/n1 � � � .x � ˛r/nr ..x � u1/
2 C v21/j1 : : : ..x � uk/

2 C v2k /jk ; (3.2)

© Springer International Publishing AG 2017
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where

n1; : : : ; nr; j1; : : : ; jk 2 N; a; ˛1; : : : ; ˛r 2 R;

�1 D u1 C iv1; : : : ; �k D uk C ivk; u1; : : : ; uk 2 R; v1 > 0; : : : ; vk > 0;

˛i ¤ ˛j if i ¤ j; and �i ¤ �j; �i ¤ �j if i ¤ j:

Thus, Eq. (3.2) expresses p as a product of a constant a, of powers of pairwise
different linear polynomials x � ˛i with real zeros ˛i, and of powers of pairwise
different quadratic polynomials .x � uj/2 C v2j with no real zeros. Note that linear
factors or quadratic factors may be absent in (3.2). Up to the numeration of factors
the representation (3.2) (and likewise the representation (3.1)) of p is unique.

If a; b; c; d are elements of a commutative ring, there is the two square identity

.a2 C b2/.c2 C d2/ D .ac � bd/2 C .adC bc/2: (3.3)

This implies that each product of sums of two squares is again a sum of two squares.
Recall that Pos.M/ is the set of p 2 RŒx� that are nonnegative on M 	 R andP
RŒx�2 is the set of finite sums of squares p2, where p 2 RŒx�. We denote by RŒx�n

and Pos.M/n the corresponding subsets of polynomials p such that deg. p/ � n and
by
P2

n the set of finite sums of squares p2, where deg. p/ � n.
The following three propositions contain all results on positive polynomials

needed for solving the moment problem on intervals. The formulas containing
polynomial degrees will be used later for the truncated moment problems.

Proposition 3.1

(i) Pos.R/ DPRŒx�2 D f f 2 C g2 W f ; g 2 RŒx� g.
(ii) Pos.R/2n DP2

n D f f 2 C g2 W f ; g 2 RŒx�n g.
Proof

(i) Let p 2 Pos.R/, p ¤ 0. Since p.x/ � 0 on R, it follows that a > 0 and
the numbers k1; : : : ; kr in (3.2) are even. Hence p is a product of squares and
of sums of two squares. Therefore, by (3.3), p is of the form f 2 C g2, where
f ; g 2 RŒx�. The other inclusions are obvious.

(ii) follows at once from (i), because deg. f 2 C g2/ D 2max.deg. f /; deg.g//. ut
Proposition 3.2

Pos.Œ0;C1// D ˚ f C xg W f ; g 2 ˙ RŒx�2 g; (3.4)

Pos.Œ0;C1//2n D
˚
f C xg W f 2 ˙2

n ; g 2 ˙2
n�1
�
; n 2 N; (3.5)

Pos.Œ0;C1//2nC1 D
˚
f C xg W f ; g 2 ˙2

n

�
; n 2 N0: (3.6)
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Proof Clearly, (3.4) implies (3.5) and (3.7), since

deg.
X

i
f 2i C xg2i / D maxi.2 deg. fi/; 1C 2 deg.gi//:

Let us abbreviate Q WDPRŒx�2C x
P

RŒx�2. It is obvious that Q 	 Pos.Œ0;C1//.
Thus, it suffices to prove that Pos.Œ0;C1// 	 Q.

Next we note that the set Q is closed under multiplication. Indeed, for arbitrary
f1; f2; g1; g2 2PRŒx�2, we have

. f1 C xg1/. f2 C xg2/ D . f1f2 C x2g1g2/C x. f1g2 C g1f2/ 2 Q:

Let p 2 Pos.Œ0;C1//; p ¤ 0; and consider the representation (3.2). Since Q is
closed under multiplication, it suffices to show that all factors from (3.2) are in Q.
Products of quadratic factors and even powers of linear factors are obviously in Q.
It remains to handle the constant a and the linear factor x � ˛i for each real zero ˛i
of odd multiplicity. Since p.x/ � 0 on Œ0;C1/, we have a > 0 by letting x!C1
and ˛i � 0, because p.x/ changes its sign in the neighbourhood of a zero with odd
multiplicity. Hence a 2 Q and x�˛i D .�˛iCx/ 2PRŒx�2Cx

P
RŒx�2 D Q: ut

Proposition 3.3 Suppose that a; b 2 R, a < b. Then:

Pos.Œa; b�/ D ˚ f C .x � a/g W f ; g 2 ˙ RŒx�2
�
; (3.7)

Pos.Œa; b�/2n D
˚
f C .b � x/.x � a/g W f 2 ˙2

n ; g 2 ˙2
n�1
�
; (3.8)

Pos.Œa; b�/2nC1 D
˚
.b � x/f C .x � a/g W f ; g 2 ˙2

n

�
: (3.9)

Proof The equality (3.7) is an immediate consequence of (3.8) and (3.9).
All polynomials on the right-hand sides of (3.8) and (3.9) belong to the

corresponding left-hand sides. We prove the converse inclusions of (3.8) and (3.9)
by induction on n. Both (3.8) and (3.9) are trivial for n D 0. Assume that (3.8) and
(3.9) hold for n. Let p 2 Pos.Œa; b�/2nC2 or p 2 Pos.Œa; b�/2nC3.

Suppose that p has a quadratic factor q without real zeros in (3.2). Multiplying by
�1 if necessary we can assume that q � 0 on R. Then p D qp0 with p0 2 Pos.Œa; b�/
and deg. p0/ � deg. p/ � 2. Applying the induction hypothesis to p0 it follows that
p is in the corresponding set on the right-hand side of (3.8) or (3.9).

Now we treat the case when p has a real zero, say ˛. Upon a linear transformation
we can assume without loss of generality that a D 0 and b D 1. Then .b�x/.x�a/ D
x.1�x/. First let ˛ 2 .0; 1/. Considering p.x/ in a neighbourhood of ˛, we conclude
that ˛ has even multiplicity. Hence we can factorize p D .x� ˛/2p0 and argue as in
the preceding paragraph. Thus we can assume that ˛ … .0; 1/.

Case 1: p 2 Pos.Œ0; 1�/2nC2:
First suppose that ˛ � 0. Then x � ˛ � 0 on Œ0; 1�, so we can write p D .x � ˛/p0
with p0 2 Pos.Œ0; 1�/2nC1. By the induction hypothesis we have

p0 2 .1 � x/f C xg with f ; g 2 ˙2
n : (3.10)
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Therefore, from the identity

p D .x � ˛/p0 D x.1 � x/f C x2g � ˛Œx.1 � x/. f C g/C .1 � x/2f C x2g�

we conclude that p 2P2
nC1Cx.1 � x/

P2
n.

Now suppose that ˛ � 1. Then p D .˛ � x/p0 with p0 2 Pos.Œa; b�/2nC1. The
assertion p 2 P2

nC1Cx.1 � x/
P2

n follows from the induction hypotheses (3.10)
combined with the identity

p D .˛ � x/p0 D .1 � x/p0 C .˛ � 1/p0
D .1 � x/2f C x.1 � x/gC .˛ � 1/Œx.1 � x/. f C g/C .1 � x/2f C x2g�:

Case 2: p 2 Pos.Œa; b�/2nC3:
First let ˛ � 0. Then we write p D .x � ˛/p0 with p0 2 Pos.Œa; b�/2nC2. Hence, by
the induction hypothesis,

p0 D f C x.1 � x/g with f 2 ˙2
nC1; g 2 ˙2

n :

Then the identity

p D .x � ˛/p0 D xf C .1 � x/x2g � ˛=2 Œx .2f C .1 � x/2g/C .1 � x/.2f C x2g/�

implies that p 2 .1 � x/
P2

nC1Cx
P2

nC1 :
Now let ˛ � 1. Then it follows from

p D .˛ � x/p0 D .1 � x/p0 C .˛ � 1/p0
D .1 � x/f C x.1 � x/2gC .˛ � 1/=2 Œx .2f C .1 � x/2g/C .1� x/.2f C x2g/�

that p 2 .1 � x/
P2

nC1Cx
P2

nC1 :
This completes the induction proof of (3.8) and (3.9). ut
Another proof of formulas (3.8) and (3.9) is sketched in Exercise 3.2. Descrip-

tions of Pos.K/ for some other sets K are given in Exercise 3.7. In Sect. 3.4 we give
stronger forms of representations of positive polynomials.

The next proposition is a classical result due to S. Bernstein. It enters into the
solution of Hausdorff’s moment problem given by Proposition 3.14 below.

Proposition 3.4 Suppose that p 2 RŒx� and p.x/ > 0 for all x 2 Œ�1; 1�. Then there
are numbers m 2 N and akl � 0 for k; l D 1; : : : ;m such that

p.x/ D
mX

k;lD0
akl.1 � x/k.1C x/l: (3.11)



3.1 Positive Polynomials on Intervals 61

The proof of Proposition 3.4 is based on two classical lemmas which are of interest
in themselves. The following lemma is due to E. Goursat.

Lemma 3.5 Suppose that p 2 RŒx�, p ¤ 0, and m D deg. p/. The Goursat
transform of p is the polynomial Qp 2 RŒx� defined by

Qp.x/ D .1C x/mp

�
1 � x

1C x

�
: (3.12)

Then we have:

(i) deg .Qp/ � m and we have deg.Qp/ D m if and only if p.�1/ ¤ 0.
(ii) p 2 Pos.Œ�1; 1�/ if and only if Qp 2 Pos.Œ0;C1//.

(iii) p.x/ > 0 on Œ�1; 1� if and only if Qp.x/ > 0 on Œ0;C1/ and deg .Qp/ D m.

Proof

(i) Let p.x/ DPm
kD0 akxk. It is obvious that

Qp.x/ D
mX

kD0
ak.1C x/m�k.1 � x/k

is a polynomial and deg .Qp/ � m: Its coefficient of xm is
Pm

kD0 ak.�1/k D
p.�1/ Thus deg.Qp/ D m if and only if p.�1/ ¤ 0.

(ii) For x ¤ �1 we set t D 1�x
1Cx . Then t ¤ �1 and x D 1�t

1Ct . Further, x 2 .�1; 1�
if and only if t 2 Œ0;C1/. Therefore, we have p.x/ � 0 on .�1; 1�, or
equivalently p.x/ � 0 on Œ�1; 1�, if and only if Qp.t/ � 0 on Œ0;C1/.

(iii) Clearly, p.x/ > 0 for x 2 .�1; 1� if and only if Qp.t/ > 0 on Œ0;C1/: If this
holds, then p.�1/ � 0, so that p.�1/ > 0 if and only if deg .Qp/ D m by (i). ut

Remark 3.6 Let us note the following interesting facts:
The inverse of the mapping x 7! t D 1�x

1Cx is given by the same formula t 7! x D 1�t
1Ct .

If p and its Goursat transform Qp have degree m, then the Goursat transform of Qp is
just 2mp: ı

The next lemma is the one-dimensional version of a classical result of G. Polya;
a multivariate version is given by Proposition 12.51 below.

Lemma 3.7 Suppose that p 2 RŒx� and p.x/ > 0 for x 2 Œ0;C1/. Then there
exists an N 2 N such that .1C x/Np.x/ has only positive coefficients, that is,

.1C x/Np.x/ D
mX

kD0
bkx

k with bk > 0; k D 0; : : : ;m:

Proof Let us introduce the notation .z/jt WD z.z � t/ : : : .z� . j� 1/t/. Then
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�
k

m

�j

1=m

D k

m

�
k

m
� 1

m

�
� � �
�
k

m
� j � 1

m

�
D kŠ

.k � j/Šmj
: (3.13)

Let p.x/ DPn
jD0 ajxj, where an ¤ 0, and define

P.x; y/ WD
nX

jD0
ajx

jyn�j and Pt.x; y/ WD
nX

jD0
aj.x/

j
t.y/

n�j
t : (3.14)

Since p.x/ > 0 on Œ0;C1/ and deg. p/ D n, the homogenous polynomial P is
positive on � D f.x; y/ W x � 0; y � 0; xC y D 1g; so P has a positive minimum,
say c, on the compact set �. For N 2 N we have

.xC y/NP.x; y/ D
nX

jD0

NX
iD0

aj

 
N

i

!
xiCjyNCn�i�j: (3.15)

Fix k 2 N0 such that k � m. Set m WD N C n and l WD m � k. The coefficient bk of
xkyl in (3.15) is

bk D
kX

jD0
aj

 
N

k � j

!
kX

jD0
aj

NŠ

.k � j/Š.N � .k � j//Š

D NŠmn

kŠ lŠ

kX
jD0

aj
kŠ

.k � j/Šmj

lŠ

.l � .n � j//Šmn�j

D NŠmn

kŠ lŠ

kX
jD0

aj

�
k

m

�j

1=m

�
l

m

�n�j

1=m

D NŠmn

kŠ lŠ
P1=m

�
k

m

��
l

m

�
:

Here the equality before last holds by (3.13) and the last equality is the definition of
P1=m. Since Pt.x; y/ ! P.x; y/ uniformly on � as t ! C0 and P.x; y/ � c > 0 on
�, it follows that bk > 0 for all k if N, hence m D N C n, is sufficiently large. ut
Proof of Proposition 3.4 Let n D deg. p/. Since p.x/ > 0 on Œ�1; 1�,
Lemma 3.5(iii) implies that the Goursat transform Qp has degree n and Qp.x/ > 0 on
Œ0;C1/. Thus, by Lemma 3.7, there are numbers N 2 N and a0 > 0; : : : ; aNCn > 0

such that

.1C t/N Qp.t/ D
NCnX
jD0

ajt
j: (3.16)

Set m WD N C n and t D 1�x
1Cx for x ¤ �1. Then x D 1�t

1Ct and .1C t/�1 D 1Cx
2

, so
that Qp.t/ D .1C t/np.x/. Inserting these facts and using Eq. (3.16) we derive
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p.x/ D .1C t/�n Qp.t/ D .1C t/N�m Qp.t/ D
NCnX
jD0

ajt
j.1C t/�m

D
mX
jD0

aj

�
1 � x

1C x

�j�
1C x

2

�m

D
mX
jD0

2�maj.1 � x/j.1C x/m�j: ut

3.2 The Moment Problem on Intervals

In this section, we solve the moment problem for closed intervals J by combining
Haviland’s theorem with the descriptions of Pos.J/ given in the preceding section.

Let P.N0/ denote the set of real sequences s D .sn/n2N0 which are positive
semidefinite, that is, for all �0; �1; : : : ; �n 2 R and n 2 N we have

nX
k;lD0

skCl�k �l � 0: (3.17)

Let s D .sn/n2N0 be a real sequence. Recall that Ls is the Riesz functional on
RŒx� defined by Ls.xn/ D sn, n 2 N0. Let Es denote the shifted sequence given by

.Es/n D snC1; n 2 N0:

Clearly, LEs. p.x// D Ls.xp.x// for p 2 RŒx�.
Further, we define the Hankel matrix Hn.s/ and the Hankel determinant Dn.s/ by

Hn.s/ D

0
BBBBB@

s0 s1 s2 : : : sn
s1 s2 s3 : : : snC1
s2 s3 s4 : : : snC2
: : : : : : : : : : : : : : :

sn snC1 snC2 : : : s2n

1
CCCCCA
; Dn.s/ D detHn.s/: (3.18)

The following result is Hamburger’s theorem.

Theorem 3.8 (Solution of the Hamburger Moment Problem) For a real
sequence s D .sn/n2N0 the following are equivalent:

(i) s is a Hamburger moment sequence, that is, there is a measure � 2 MC.R/
such that xn 2 L1.R; �/ and

sn D
Z
R

xnd�.x/ for n 2 N0: (3.19)

(ii) s 2 P.N0/; that is, the sequence s is positive semidefinite.
(iii) All Hankel matrices Hn.s/, n 2 N0, are positive semidefinite.
(iv) Ls is a positive linear functional onRŒx�, that is, Ls. p2/ � 0 for p 2 RŒx�:
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Proof From Proposition 2.7 we know that (i) implies (ii) and that (ii) and (iv)
are equivalent. The Hankel matrix Hn.s/ is just the symmetric matrix associ-
ated with the quadratic form in (3.17); hence (ii) and (iii) are equivalent. The
main implication (iv)!(i) follows from Haviland’s Theorem 1.12 combined with
Proposition 3.1. ut

The next proposition deals with representing measures of finite support.

Proposition 3.9 For a positive semidefinite sequence s the following are equiva-
lent:

(i) There is a number n 2 N0 such that

D0.s/ > 0; : : : ;Dn�1.s/ > 0 and Dk.s/ D 0 for k � n: (3.20)

(ii) s is a moment sequence with a representing measure � supported on n points.

Proof By Theorem 3.8 the sequence s has a representing measure �. For c D
.c0; c1; : : : ; ck/T 2 RkC1 we define pc.x/ WDPk

jD0 cjxj: Then, by (3.19) we derive

cTHk.s/c D
kX

j;lD0
sjClcjcl D

Z ˇ̌
ˇ̌ kX
jD1

cjx
j

ˇ̌
ˇ̌2d�.x/ D

Z
jpc.x/j2 d�.x/: (3.21)

The proof is based on the following two facts.

I. First suppose that supp� consists of n points. Then, for k � n we can choose
c 2 RkC1; c ¤ 0; such that the polynomial pc.x/ vanishes on supp�. Then
(3.21) is zero, so Hk.s/ is not positive definite and hence Dk.s/ D 0.

II. Suppose that Dk.s/ D 0. Then Hk.s/ is not positive definite, so there exists a
c ¤ 0 such that the expression in (3.21) is zero. Therefore, by Proposition 1.23,
supp� 	 Z. pc/: Since deg. p/ � k, supp� contains at most k points.

(i)!(ii) Since Dn.s/ D 0 by (i), supp� has at most n points by II. If supp� had
fewer than n points, then we would have Dn�1.s/ D 0 by I, which contradicts (i).

(ii)!(i) Then Dk.s/ D 0 for k � n by I. If Dk.s/ were zero for some k < n � 1,
then supp� would have at most n � 1 points by II. This contradicts (ii). ut
Remark 3.10 It was recently proved in [BS3] that the assumption “s is positive
semidefinite” in Proposition 3.9 can be omitted. That is, if s is an arbitrary real
sequence satisfying condition (i), then s is a Hamburger moment sequence (and has
an n-atomic representing measure by Proposition 3.9). ı

Many considerations in subsequent chapters require the stronger assumption that
the moment sequence s D .sn/n2N0 s is positive definite, that is,

nX
k;lD0

skClckcl > 0 for all c D .c0; c1; : : : ; cn/T 2 RnC1; c ¤ 0; n 2 N0:

The following proposition characterizes this property.
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Proposition 3.11 For a Hamburger moment sequence s D .sn/n2N0 the following
statements are equivalent:

(i) Each representating measure � of s has infinite support.
(ii) s is positive definite.

(iii) Hn.s/ is positive definite for all n 2 N0.
(iv) Dn.s/ > 0 for all n 2 N0.

Proof The equivalence (ii)$(iii) and the implication (iii)!(iv) are clear from
elementary linear algebra. Proposition 3.9 yields (i)$(iv).

It suffices to prove (i)!(iii). Assume that (3.21) vanishes for some c. Then the
infinite set supp� is contained in the zero set of the polynomial pc. Hence pc D 0,
so that c D 0. Thus, Hk.s/ is positive definite for each k 2 N0. This proves (iii). ut

The second main result is Stieltjes’ theorem.

Theorem 3.12 (Solution of the Stieltjes Moment Problem) For any real
sequence s the following statements are equivalent:

(i) s is a Stieltjes moment sequence, that is, there is a measure � 2 MC.Œ0;C1//
such that xn 2 L1.Œ0;C1/; �/ and

sn D
Z 1

0

xnd�.x/ for n 2 N0: (3.22)

(ii) s 2 P.N0/ and Es 2 P.N0/.
(iii) All Hankel matrices Hn.s/ and Hn.Es/, n 2 N0, are positive semidefinite.
(iv) Ls. p2/ � 0 and Ls.xq2/ � 0 for all p; q 2 RŒx�:

Proof The proof is almost the same as the proof of Theorem 3.8; instead of
Proposition 3.1 we apply formula (3.5) in Proposition 3.3. ut

Combining Haviland’s theorem with (3.7) the same reasoning used in the proofs
of Theorems 3.8 and 3.12 yields the following result.

Theorem 3.13 (Solution of the Moment Problem for a Compact Interval) Let
a; b 2 R, a < b. For a real sequence s the following are equivalent:

(i) s is an Œa; b�-moment sequence.
(ii) s 2 P.N0/ and ..aC b/Es� E.Es/� ab s/ 2 P.N0/.

(iii) Ls. p2/ � 0 and Ls..b � x/.x � a/q2/ � 0 for all p; q 2 RŒx�.

Bernstein’s theorem (Proposition 3.4) allows us to derive two solvablity criteria
of moment problems which are not based on squares of polynomials.

Theorem 3.14 Let s D .sn/n2N0 be a real sequence and let Ls be its Riesz functional
on RŒx�. Then s is a Œ�1; 1�-moment sequence if and only if

Ls..1 � x/n.1C x/k/ � 0 for all k; n 2 N0: (3.23)
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Proof The only if part is obvious, since all polynomials .1 � x/n.1 C x/k are
nonnegative on Œ�1; 1�. To prove the only if part we assume that condition (3.23)
holds. Then, by Proposition 3.4, Ls. p/ � 0 for all strictly positive polynomials on
Œ�1; 1�. Therefore, by Haviland’s theorem 1.12 (ii)!(iv), Ls is a Œ�1; 1�-moment
functional. Hence s is a Œ�1; 1�-moment sequence. ut

Theorem 3.14 leads to the following criterion for the Hausdorff moment problem.

Theorem 3.15 A real sequence s is a Œ0; 1�-moment sequence if and only if

..I � E/ns/k �
nX

jD0
.�1/j

 
n

j

!
skCj � 0 for k; n 2 N0: (3.24)

Proof By applying the bijection x 7! 1
2
.x C 1/ of the intervals Œ�1; 1� onto Œ0; 1�

we conclude from Theorem 3.14 that s is a Œ0; 1�-moment sequence if and only if
Ls..1 � x/nxk/ � 0 for k; n 2 N0: But the latter is equivalent to (3.24), since

..I � E/ns/k D
nX

jD0
.�1/j

 
n

j

!
.Ejs/k D

nX
jD0
.�1/j

 
n

j

!
skCj

D
nX

jD0
.�1/j

 
n

j

!
Ls.x

kCj/ D Ls..1 � x/nxk/: ut

Condition (3.24) is an important property in the context of �-semigroups. Let S
be an abelian unital semigroup with identity map as involution. For y 2 S and a
function ' on S we define the shift Ey and a mapping�y by

.Ey'/.z/ WD '.zC y/; z 2 S; and �y WD Ey � I:

A function ' W S! R is called completely monotone if '.z/ � 0 and

.�1/n.�y1 : : : �yn'/.z/ D ..I � Ey1/ : : : .I � Eyn/'/.z/ � 0 for z 2 S

and y1; : : : ; yn 2 S. Completely monotone functions are moment functions, see e.g.
[BCRl, Chapter 4, Theorem 6.4]. It can be shown that condition (3.24) implies that
the function '.n/ D sn; n 2 N0; on the semigroup S D N0 is completely monotone,
so Theorem 3.15 becomes a special case of this general result.

We close this section by treating the moment problem for the �-semigroup Z

with involution n� D n. The corresponding moment problem is called the two-sided
Hamburger moment problem or strong Hamburger moment problem.

Clearly, the map n 7! xn yields an isomorphism of the semigroup algebra RŒZ�

and the algebra RŒx; x�1� of real Laurent polynomials. It is easily checked that the
characters of RŒx; x�1� are precisely the evaluations at points of R� WD Rnf0g.
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Theorem 3.16 (Solution of the Two-Sided Hamburger Moment Problem) For
a real sequence s D .sn/n2Z the following statements are equivalent:

(i) s is a moment sequence for the �-semigroup Z, that is, there exists a positive
Radon measure � onR� such that the function xn on R� is �-integrable and

sn D
Z
R�

xn d� for all n 2 Z: (3.25)

(ii) s 2 P.Z/, that is, s is positive semidefinite on Z.
(iii) Ls is a positive functional, that is, Ls. f 2/ � 0 for all f 2 RŒx; x�1�.

Proof (ii)$(iii) and (i)!(ii) follow from Proposition 2.7 and Corollary 2.16,
respectively. We prove the main implication (iii)!(i).

Let p 2 RŒx; x�1�C, that is, p.x/ � 0 for all x 2 R�. Because p is a Laurent
polynomial, x2kp 2 RŒx� for some k 2 N. Since x2kp.x/ � 0 on R� and hence on
R, by Proposition 3.1 there are polynomials f ; g 2 RŒx� such that x2kp D f 2 C g2.
Then p D .x�kf /2 C .x�kg/2 2PRŒx; x�1�2. Hence Ls. p/ � 0 by (iii). Therefore,
by Theorem 1.14,(i)!(iv), Ls is a moment functional on RŒx; x�1� Š RŒZ�, so s is
a moment sequence on Z. This proves (i). ut

3.3 The Symmetric Hamburger Moment Problem
and Stieltjes Moment Problem

A Radon measure � on R is called symmetric if �.M/ D �.�M/ for all Borel sets
M. Let Msym

C .R/ denote the symmetric measures of MC.R/. Set RC WD Œ0;C1/.
We define mappings � W R!RC and 
 W RC!R by �.x/ D x2 and 
.x/ D px.

For � 2 Msym
C .R/ and � 2 MC.RC/ let �C WD �.�/ 2 MC.RC/ and 
.�/ 2

MC.R/ denote the corresponding images of � and � under � and 
, respectively.
That is, �C.M/ D �.��1.M// and 
.�/.M/ D �.
�1.M//. Further, we set

�sym WD �
.�/C .�
/.�/�=2: (3.26)

Then we have
Z 1

0

f .y/ d�C.y/ D
Z
R

f .x2/ d�.x/; (3.27)

Z
R

g.x/ d�sym.x/ D 1

2

Z 1

0

�
g.
p
y/C g.�py/� d�.y/ (3.28)

for Borel functions f on RC and g on R if the integrals on one side exist.
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Lemma 3.17 The map � 7! �C is a bijection of Msym
C .R/ onto MC.RC/ with

inverse given by � 7! �sym.

Proof The proof is given by simple verifications. As samples we show that �sym is
symmetric for � 2 MC.RC/ and that .�C/sym D � for � 2 MC.R/.

Let M 	 R be a Borel set. Inserting the corresponding definitions we derive

2�sym.M/ D �.
�1.M//C �..�
/�1.M//
D �.ft 2 RC W t2 2 Mg/C �.ft 2 RC W �t2 2 Mg/
D �.ft 2 RC W �t2 2 �Mg/C �.ft 2 RC W t2 2 �Mg/ D 2�sym.�M/:

Let �C and �� denote the restrictions of � to .0;C1/ and .�1; 0/, respec-
tively. Clearly, � D �.f0g/ı0 C �C C ��. We easily verify that


�.�/ D �.f0g/ı0C 2�C; .�
/�.�/ D �.f0g/ı0C 2��;

so that

2.�C/sym D 
�.�/C .�
/�.�/ D 2�.f0g/ı0 C 2�C C 2�� D 2�: ut

Proposition 3.18 Suppose that s D .sn/n2N0 is a Stieltjes moment sequence. Set
Os D .Osn/n2N0 , where Os2n D sn and Os2nC1 D 0 for n 2 N0. The map � 7! �sym

is a bijection of the solutions of the Stieltjes moment problem for s on the set of
symmetric solutions of the Hamburger moment problem for Os and the inverse of this
map is given by � 7! �C.

Proof If � solves the Hamburger moment problem for Os, then by (3.27),

Z 1

0

ynd�C.y/ D
Z
R

x2nd�.x/ D Os2n D sn; n 2 N0;

that is, �C solves the Stieltjes moment problem for s.
Conversely, let � be a solution of the Stieltjes moment problem for s. By (3.28),

Z
R

xnd�sym.x/ D 1

2

Z 1

0

�
.
p
x/n C .�px/n

�
d�.x/:

This number vanishes if n is odd. If n is even, say n D 2k, then it is equal to
sn=2 D sk D Osn. Thus �sym is a symmetric solution of the moment problem for Os.
The remaining assertions are already contained in Lemma 3.17. ut

A Hamburger (resp. Stieltjes) moment sequence is called determinate if it has
only one representing measure in MC.R/ (resp. in MC.Œ0;C1//.
Proposition 3.19 A Stieltjes moment sequence s is determinate if and only if the
Hamburger moment sequence Os is determinate.
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Proof By Proposition 3.18, there is a one-to-one correspondence between solutions
of the Stieltjes moment problem for s and symmetric solutions of the Hamburger
moment problem for Os. To complete the proof it therefore suffices to show that if
the symmetric sequence Os is indeterminate, its moment problem has at least two
symmetric (!) solutions. This will be achieved by Corollary 6.26 in Sect. 6. ut

3.4 Positive Polynomials on Intervals (Revisited)

The representation of elements of Pos.R/ as sums of two squares given in
Propositions 3.1 is far from being unique. For instance, we have

x21 C x22 D .ax1 C bx2/
2 C .bx1 � ax2/

2 for a; b 2 R; a2 C b2 D 1:

In this section, we develop unique representations of nonnegative polynomials on
intervals. The Markov–Lukacs theorem (Corollary 3.24) enters into the proof of
Theorem 10.29 below. Except for this, these results are not used in the rest of the
book.

Throughout this section, suppose that p.x/ is a nonconstant polynomial in RŒx�.
We consider the representation (3.2) and set prz.x/ WD a.x � ˛1/n1 � � � .x � ˛r/nr :

Then pnrz.x/ WD p.x/prz.x/�1 is a polynomial with leading term 1 which has no real
zero. The factorization

p.x/ D prz.x/pnrz.x/ (3.29)

decomposes p into a polynomial prz.x/ which captures all real zeros of p and a
polynomial pnrz.x/ which has no real zero.

Now let p 2 Pos.R/. Then the leading coefficient a of p is positive and the
multiplicity of each real zero ˛j of p is even, say nj D 2kj with kj 2 N. Thus,

prz.x/ D a
rY

jD1
.x � ˛j/2kj ; (3.30)

so that prz 2 Pos.R/ and hence pnrz 2 Pos.R/.
If prz D a or pnrz D 1, then the formulas in Propositions 3.20–3.22 should be

interpreted in the obvious manner by omitting the corresponding factors.

Proposition 3.20 The polynomial p is in Pos.R/ if and only if there are integers
k1; : : : ; kr 2 N and reals a > 0; c > 0, ˛1 < � � � < ˛r; x1 < x2 < � � � < x2n�1 such
that

p.x/ D a
rY

jD1
.x � ˛l/2kl

	 nY
jD1
.x � x2j�1/2 C c

n�1Y
jD1
.x � x2j/

2



: (3.31)
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(One of the two polynomial factors of p in (3.31) might be absent.) The numbers
a; c; ˛1; : : : ; ˛r; k1; : : : ; kr; x1; : : : ; x2n�1 are uniquely determined by these require-
ments.

Proof The if part is easily checked. We carry out the proof of the only if part.
As noted above, the assumption p 2 Pos.R/ implies that prz has the form (3.30).
The polynomial pnrz has no real zero, leading coefficient 1 and even degree, say

2n. In the case n D 0 the second main factor in (3.31) is absent. Assume now that
n 2 N. By (3.1), the polynomial pnrz has precisely n zeros, say z1; : : : ; zn, with
positive imaginary parts. Setting

f .x/ D .x � z1/ � � � .x � zn/ and g.x/ D .x � z1/ � � � .x � zn/;

we have pnr.x/ D f .x/g.x/. Then u.x/ WD 1
2
. f .x/Cg.x// and v.x/ WD 1

2i . f .x/�g.x//
are in RŒx� and satisfy

u.x/2 C v.x/2 D f .x/g.x/ D pnrz.x/: (3.32)

Now we consider the rational functions

'j.x/ D .x � zj/.x � zj/
�1; j D 1; : : : ; n; and '.x/ D '1.x/ : : : 'n.x/:

Clearly, 'j is an injective map of the real line to the unit circle. Since Im zj > 0,
arg'j.x/ strictly increases on .0; 2�/ as x increases on R. Therefore,

arg'.x/ D arg'1.x/C � � � C arg'n.x/

strictly increases on .0; 2�n/ as x increases on R. Hence there exist real numbers
x1 < x2 < � � � < x2n�1 such that '.xk/ D .�1/k for k D 1; : : : ; 2n � 1. Since

'.x/ D f .x/

g.x/
D u.x/C iv.x/

u.x/� iv.x/
D u.x/2 � v.x/2 � 2iu.x/v.x/

u.x/2 C v.x/2

and u.x/; v.x/ 2 R for x 2 R, x1; x3; : : : ; x2n�1 are zeros of the real part u.x/ and
x2; : : : ; x2n are zeros of the imaginary part v.x/. Since deg.u/ D n and deg.v/ D
n�1, these numbers exhaust the zero sets of u and v, respectively. The leading term
of u is 1. Put c WD b2, where b is the leading term of v. Then, by (3.32),

pnrz.x/ D u.x/2 C v.x/2 D
nY

jD1
.x � x2j�1/2 C c

n�1Y
jD1
.x � x2j/

2: (3.33)

Since p D przpnrz, (3.31) follows by combining (3.30) and (3.33).
To prove the uniqueness assertion we assume that a0; c0; ˛0

l ; k
0
l; x

0
j; r

0;m0 is another
set of numbers satisfying the above conditions. From (3.31) it is clear that p has the
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leading term a D a0 and the real zeros ˛l D ˛0
l with multiplicities 2kl D 2k0

l . Hence
n D deg. p/� r D deg. p/� r0 D n0. Thus, it follows from (3.31) and (3.33) that

pnrz.x/ D
nY

jD1
.x � x0

2j�1/2 C c0
n�1Y
jD1
.x � x0

2j/
2: (3.34)

Comparing (3.33) and (3.34) we obtain

q.x/ WD
nY

jD1
.x � x2j�1/2 �

nY
jD1
.x � x0

2j�1/2 D c0
n�1Y
jD1
.x � x0

2j/
2 � c

n�1Y
jD1
.x � x2j/

2:

The proof is complete once we have shown that q.x/ � 0. Assume the contrary.
Without loss of generality, let x0

1 � x1. We denote by li the number of roots of
q which are equal to xi and by ri the number of roots of q in the open interval
.xi; xiC1/. Then the number of zeros of q in the interval Œx1; x2nC1� is

m WD l1 C � � � C l2nC1 C r1 C � � � C r2m�2: (3.35)

If q.x2j/ ¤ 0, then q.x2j/ > 0, and if q.x2jC1/ ¤ 0, then q.x2jC1/ < 0 by the
definition of q. Hence, if li D liC1 D 0, there is a zero in .xi; xiC1/, so that ri � 1.
Further, if li > 0, then xi is a zero of multiplicity at least 2 and so li � 2. The
preceding implies that ri C .li C liC1/=2 � 1 for each i D 1; : : : ; 2n � 2 and hence
m � l1=2C 2n� 2 by (3.35). If l1 ¤ 0, then m > 2n� 2. If l1 D 0, then x0

1 < x1 and
hence q has a zero in .x0

1; x1/, since q.x0
1/ > 0 and q.x1/ > 0. In both cases q has at

least 2n� 1 zeros. Since deg.q/ D 2n� 2, this is the desired contradiction. ut
Next we consider the half-axis. Let pŒ0;C1/

rz .x/ denote the product of the constant
a and all factors .x � ˛j/nj in (3.2), where ˛j 2 Œ0;C1/. Then the polynomial

pŒ0;C1/
nrz .x/ WD p.x/pŒ0;C1/

rz .x/�1 has leading term 1, no zero in Œ0;C1/, and we
have

p.x/ D p Œ0;C1/
rz .x/p Œ0;C1/

nrz .x/: (3.36)

Let p 2 Pos.Œ0;C1//. Then we have a > 0 and the multiplicity nl of each zero
˛l 2 .0;C1/ of p is even, nl D 2kl with kl 2 N. Thus

p Œ0;C1/
rz .x/ D axk0

rY
lD1
.x � ˛l/2kl ; (3.37)

where k0 2 N0. In particular, p Œ0;C1/
rz .x/ and p Œ0;C1/

nrz .x/ are in Pos.Œ0;C1//.
Proposition 3.21 Let m WD deg. p Œ0;C1/

nrz /. Then p 2 Pos.Œ0;C1// if and only if
there are integers k0; k1; : : : ; kr 2 N, r 2 N0, and real numbers a > 0; c > 0,
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0 < ˛1 < � � � < ˛r; 0 < x1 < x2 < � � � < x2n�1; (3.38)

such that

p.x/ D axk0
rY

lD1
.x � ˛l/2kl

	 nY
jD1
.x � x2j�1/2 C cx

n�1Y
jD1
.x � x2j/

2



for m D 2n;

p.x/ D axk0
rY

lD1
.x � ˛l/2kl

	
x

nY
jD1
.x � x2j/

2 C c
nY

jD1
.x � x2j�1/2



for m D 2nC 1:

These numbers are uniquely determined by p and the above requirements.

Proof It is enough to prove the only if part. For simplicity we drop the upper index
Œ0;C1/: By the formula (3.43) and the factorization (3.42) it suffices to prove that
pnrz has the form given in square brackets.

Put P.x/ WD pnrz.x2/. Since pnrz has no zero on Œ0;1/, P has no real zeros and
deg.P/ D 2m. By Proposition 3.20, P can be represented as

P.x/ D
mY
jD1
.x � t2j�1/2 C c

m�1Y
jD1
.x � t2j/

2; (3.39)

where t1 < t2 < � � � < t2m�1 and c > 0. Because P is even, we also have

P.x/ D
mY
jD1
.xC t2j�1/2 C c

m�1Y
jD1
.xC t2j/

2; (3.40)

where �t2mC1 < � � � < �t2 < �t1: Comparing (3.39) and (3.40) it follows from the
uniqueness assertion of Proposition 3.20 that

t1 D �t2m�1; : : : ; tm�1 D �tmC1; tm D 0: (3.41)

Hence, setting xj WD t2mCj for j D 1; : : : ;m � 1, the inequalities in (3.38) hold.
Inserting (3.41) into (3.39) we obtain

pnrz.x
2/ D P.x/ D

nY
jD1
.x2 � x2j�1/2 C cx2

n�1Y
jD1
.x2 � x2j/

2;

for m D 2n and

pnrz.x
2/ D P.x/ D x2

nY
jD1
.x2 � x2j/

2 C c
nY

jD1
.x2 � x2j�1/2;
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for m D 2nC 1. Replacing x2 by x, we obtain the formulas in square brackets. The
uniqueness assertion is easily reduced to that of Proposition 3.20. ut

Finally, we turn to the interval Œ�1; 1�. We denote by p Œ�1;1�rz .x/ the product of
jaj, all factors .x � ˛j/nj with ˛j 2 .�1; 1/, .x C 1/ni if ˛i D �1, and .1 � x/ni if

˛i D 1 in the representation (3.2) of p. As above, p Œ�1;1�nrz .x/ WD p.x/ p Œ�1;1�rz .x/�1 is
a polynomial which has no zero in Œ�1; 1� and

p.x/ D p Œ�1;1�rz .x/p Œ�1;1�nrz .x/: (3.42)

Let p 2 Pos.Œ�1; 1�/. Then the multiplicity nl of all zeros ˛l 2 .�1; 1/ of p is
even, that is, nl D 2kl with kl 2 N. Thus we have

p Œ�1;1�rz .x/ D jaj.1C x/k0 .1 � x/krC1

rY
lD1
.x � ˛l/2kl ; (3.43)

where k0; krC1 2 N0. Further, p Œ�1;1�rz .x/ and p Œ�1;1�nrz .x/ are in Pos.Œ�1; 1�/.
Proposition 3.22 Set m D deg. p Œ�1;1�nrz /. The polynomial p is in Pos.Œ�1; 1�/ if and
only if there there are numbers k0; krC1 2 N0, k1; : : : ; kr 2 N, a > 0; b > 0; c > 0,

�1 < ˛1 < � � � < ˛r < 1; � 1 < x1 < x2 < � � � < x2n�1 < 1; (3.44)

such that (3.42) and (3.43) hold and

p Œ�1;1�nrz .x/ D b
nY

jD1
.x � x2j�1/2 C c.1 � x2/

n�1Y
jD1
.x � x2j/

2; m D 2n;

p Œ�1;1�nrz .x/ D b.1C x/
nY

jD1
.x � x2j/

2 C c.1 � x/
nY

jD1
.x � x2j�1/2; m D 2nC 1:

The corresponding numbers are uniquely determined by p and these conditions.

Proof Again the if part is easily verfied. To prove the formulas for p Œ�1;1�nrz we
abbreviate p D p Œ�1;1�nrz . We set t D 1Cx

1�x and define

P.t/ D p.1/�1.1C t/mp

�
t � 1
tC 1

�
: (3.45)

(In fact, P is just the Goursat transform of the polynomial p.1/�1p.�x/.) Then we
have x D t�1

tC1 and hence

p.x/ D p.1/.1C t/�mP.t/ D p.1/

�
1 � x

2

�m

P.t/: (3.46)
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Note that t 2 Œ0;C1/ if and only if x 2 Œ�1; 1/. Therefore, by (3.45), p.x/ > 0 on
Œ�1; 1� implies that P.t/ > 0 on Œ0;C1/. The factor p.1/�1 in (3.45) ensures that
the polynomial P has the leading term 1. The preceding implies that P D P Œ0;C1/

nrz .
Clearly, deg.P/ D m: Thus, by Proposition 3.21, P has the form

P.t/ D
nY

jD1
.t � t2j�1/2 C � t

n�1Y
jD1
.t � t2j/

2 for m D 2n; (3.47)

P.t/ D t
nY

jD1
.t � t2j/

2 C �
nY

jD1
.t � t2j�1/2 for m D 2nC 1; (3.48)

where � > 0 and 0 < t1 < t2 < � � � < t2nC1. Setting xj WD tj�1
tjC1 , (3.44) holds and

t � tl D 1C x

1� x
� 1C xl
1 � xl

D 2.x � xl/

.1 � x/.1 � xl/
; l D 1; : : : ; 2nC 1:

Inserting this into (3.47) and (3.48) by using the equality t D 1Cx
1�x and (3.46) we

get

p.x/ D p.1/

�
1 � x

2

�m

P.t/ D b
nY

jD1
.x � x2j�1/2 C c.1 � x/.1C x/

n�1Y
jD1
.x � x2j/

2;

for m D 2n and

p.x/ D p.1/

�
1 � x

2

�m

P.t/ D b.1C x/
nY

jD1
.x � x2j/

2 C c.1 � x/
n�1Y
jD1
.x � x2j�1/2;

for m D 2nC 1, where b; c 2 Œ0;C1/. This proves the formulas for p Œ�1;1�nrz :

The uniqueness can be shown either by repeating the corresponding reasoning
from the proof of Proposition 3.20 or by tracing it back to the uniqueness statement
in Proposition 3.21. We do not carry out the details. ut
Remark 3.23 Since p Œ�1;1�nrz has leading term 1, jb � cj D 1 in Proposition 3.22. ı

From the preceding Propositions 3.21 and 3.22 we easily derive nice and useful
descriptions of positive polynomials of degree at most m D 2n resp. m D 2nC 1.

The following result is usually called the Markov–Lukacs theorem.

Corollary 3.24 For a; b 2 R, a < b, and n 2 N0, we have

Pos.Œa; b�/2n D fpn.x/2 C .b�x/.a�x/qn�1.x/2 W pn 2 RŒx�n; qn�12RŒx�n�1g;
(3.49)

Pos.Œa; b�/2nC1 D f.b � x/pn.x/
2 C .a� x/qn.x/

2 W pn; qn 2 RŒx�n g: (3.50)
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Proof The right-hand sides are obviously contained in the left-hand sides.
We prove the converse inclusion. By a linear transformation we can assume that

a D �1; b D 1. Let p 2 Pos.Œ�1; 1�/m for m D 2n resp. m D 2n C 1. Collecting
the factors of p D p Œ�1;1�r p Œ�1;1�nr in the formulas of Propositions 3.22 it follows that
p belongs to the corresponding sets on the right. ut

In a similar manner Proposition 3.21 yields at once the following corollary.

Corollary 3.25 For any n 2 N0; we have

Pos.Œ0;C1//2n D fpn.x/2 C xqn�1.x/2 W pn 2 RŒx�n; qn�1 2 RŒx�n�1g; (3.51)

Pos.Œ0;C1//2nC1 D fxpn.x/2 C qn.x/
2 W pn; qn 2 RŒx�n g: (3.52)

Remark 3.26 All three Propositions 3.20–3.22 give unique representations of non-
negative polynomials on the corresponding intervals. Propositions 3.21 and 3.22 are
stronger than Corollaries 3.25 and 3.24, while Corollaries 3.25 and 3.24 are stronger
than Propositions 3.2 and 3.3, respectively. However, as already mentioned earlier,
Propositions 3.1–3.3 are sufficient for solving the moment problems on intervals. ı

3.5 Exercises

1. Let A be a commutative ring. Find the counterpart of the two square identity
(3.3) for n D 4 and n D 8: Given elements a1; : : : ; an; b1; : : : ; bn 2 A, there are
elements c1; : : : ; cn 2 A which are bilinear functions of the ai and bj such that

.a21 C � � � C a2n/.b
2
1 C � � � C b2n/ D c21 C � � � C c2n:

Remark: As shown by A. Hurwitz, n D 1; 2; 4; 8 are the only natural numbers
for which there is such an n square identity, see [Hu] for precise formulation.

2. Use the Goursat transform (3.12) to derive the formulas (3.8) and (3.9) for the
interval Œ�1; 1� from the corresponding formulas (3.5) and (3.7) for Œ0;C1/.

3. Show that Pos.Œ�1; 1�/ D ff C .1 C x/g C .1 � x/h W f ; g; h 2 PRŒx�2g and
use this description to formulate a solvability criterion for the Œ�1; 1�-moment
problem.

4. Let f 2 RŒx�, a; b 2 R; a < b, and set Tf D fpC fq W p; q 2PRŒx�2g. Suppose
that Œa; b� D fx 2 R W f .x/ � 0g. Let k and l be the multiplicities of the zeros a
and b of f , respectively.

a. Find a polynomial q 2 Pos.Œ�1; 1�/ such that q … Tf for f .x/ D .1 � x2/3.
b. Show that Pos.Œa; b�/ D Tf if and only if k D l D 1.

Details for b. can be found in the proof of [PR, Corollary 11].
5. Let p.x/ D x2 C c, where 0 < c < 1. Show that p cannot be written in the form

p.x/ DP2
k;lD0 akl.1 � x/k.1C x/l with akl � 0 for k; l D 0; 1; 2.
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6. Let a; b; c 2 R, a < b < c, and set K D Œa; b� [ fcg. Describe Pos.K/ and find
solvability conditions for the K-moment problem.

7. Let a; b; c; d 2 R; a < b < c < d. Show that

a. Pos..�1; a�[ Œb;C1// D ˚ f C .x � a/.x � b/g W f ; g 2PRŒx�2
�
;

b. Pos.Œa; b�[ Œc; d�/ D ˚ f C .x�a/.b�x/.x�c/.x�d/g W f ; g 2PRŒx�2
�
:

8. Use Exercise 7 to give solvability criteria for the K-moment problem, where

a. K D .�1; a�[ Œb;C1/,
b. K D Œa; b� [ Œc; d�.

9. Suppose that �1 < a1 < b1 < a2 < � � � < an < bn < C1. Define K1 WD
[n

kD1Œak; bk� and K2 WD Rn [n
kD1 .ak; bk/: Describe Pos.Kj/ and give necessary

and sufficient conditions for Kj-moment sequences, where j D 1; 2.
10. Show that the sequence s D .0; 1; 0; 0; : : : / satisfies Dk.s/ D 0 for all k 2 N0,

but s is not a moment sequence.
11. Give an alternative proof of Proposition 3.4 by showing following steps:

a. It suffices to prove the result for linear and for quadratic polynomials.
b. The assertion holds for linear and for quadratic polynomials.

(This proof was given by F. Hausdorff [Hs], p. 98–99, see e.g [PSz], p. 276–
277.)

12. Suppose that s is a moment sequence. Prove that
P2n

kD0
sk
kŠ � 0 for n 2 N.

13. Let K be a closed subset of R. Prove that the following statements are
equivalent:

(i) If s D .sn/ and t D .tn/ are K-moment sequences, then so is st WD .sntn/.
(ii) If x; y 2 K, then xy 2 K.

Hint: For (ii))(i), use Haviland’s theorem and Lst;z. f .z// D Ls;x
�
Lt;y. f .xy//

�
:

14. “Guess” representing measures for the following sequences .sn/1nD0:

a. sn D anC1

nC1 C cbn, where b 2 R and a; c � 0,
b. sn D nŠ;
c. sn D 1

.nC1/.nC2/ :

15. (Solution of the two-sided Stieltjes moment problem)
Show that for a real sequence s D .sn/n2Z the following are equivalent:

(i) s is a two-sided Stieltjes moment sequence, that is, there exists a Radon
measure � on .0;C1/ such that xn is �-integrable and sn D

R C1
0 xn d�

for n 2 Z.
(ii) s 2 P.Z/ and Es 2 P.Z/.

(iii) Ls and LEs are positive functionals on RŒx; x�1�, that is, Ls. f 2/ � 0 and
Ls.xf 2/ � 0 for all f 2 RŒx; x�1�.
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3.6 Notes

The results on positive polynomials have a long and tricky history, see [PR] for
some discussion. Polya’s theorem appeared in [P]; we reproduced his proof. The
Markov–Lukacs theorem is due to A.A. Markov [Mv1] for m D 2n and F. Lukacs
[Lu]. Proposition 3.22 is due to S. Karlin and L.S. Shapley [KSh, p. 35], while
Proposition 3.21 can be found in [KSt, p. 169]. The proof of Proposition 3.20
follows [Ml]; our proof of Proposition 3.22 seems to be new. Other proofs of the
Markov–Lukacs theorem are given in [Sz],[KSt] (see also [Ka]) and [KN]; Szegö
[Sz, p. 4] derived it from the Fejér–Riesz theorem. Bernstein’s theorem was proved
in [Bn].

The existence criteria for moment problems on intervals were obtained in the
classical papers by T.J. Stieltjes [Stj], H. Hamburger [Hm] and F. Hausdorff [Hs].
The results on symmetric Hamburger moment problems are from [Chi2].



Chapter 4
One-Dimensional Moment Problems:
Determinacy

The main aim of this chapter is to develop some very useful results concerning
the uniqueness of solutions of one-dimensional Hamburger and Stieltjes moment
problems. These are Carleman’s conditions (4.2) and (4.3) in Theorem 4.3, which
are sufficient for determinacy, and Krein’s conditions (4.19) and (4.23) in Theo-
rems 4.14 and 4.17, which provide necessary criteria.

4.1 Measures Supported on Bounded Intervals

The following proposition contains a number of characterizations of measures
supported on an interval Œ�c; c�, c > 0, in terms of their moment sequences.

Proposition 4.1 Suppose that s D .sn/n2N0 is a Hamburger moment sequence.
Let � be representing measure of s and let c 2 R; c > 0. The following are
equivalent:

(i) � is supported on Œ�c; c�.
(ii) There exists a number d > 0 such that jsnj � dcn for n 2 N0.

(iii) There exists a number d > 0 such that s2n � dc2n for 2 N0.

(iv) S WD lim infn!1 s
1
2n
2n � c.

Further, if s0 D �.R/ � 1, then the following statements are equivalent:
(v) � is supported on Œ�1; 1�.

(vi) lim infn!1 s2n � 1.
(vii) lim infn!1 s2n < C1.

Proof The implications (i)!(ii)!(iii)!(iv) are obviously true with d D s0.
Therefore, for the equivalence of (i)–(iv) it suffices to prove that (iv) implies (i).

© Springer International Publishing AG 2017
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For ˛ > 0, let �˛ denote the characteristic function of the set Rn.�˛; ˛/ and put
M˛ WD

R
�˛d�. Then

M˛˛
2n D

Z
R

˛2n�˛d� �
Z
R

x2n�˛d� �
Z
R

x2nd� D s2n

and hence .M˛/
1
2n˛ � s

1
2n
2n for n 2 N. Therefore, if M˛ > 0, by passing to the limits

we obtain ˛ � S. Thus, M˛ D �.Rn.�˛; ˛// D 0 when ˛ > S. Since S � c by
(iv), this implies that supp� 	 Œ�S; S� 	 Œ�c; c�, which proves (i).

We verify the equivalence of (v)–(vii). Since �.R/ � 1, (v) implies s2n � 1 and
hence (vi). The implication (vi)!(vii) is trivial, so it remains to prove (vii)!(v).

Assume to the contrary that (v) does not hold. Then we can find an interval
Œa; b� 	 RnŒ�1; 1� such that �.Œa; b�/ > 0: Set A D a if a > 1 and A D �b if
b < �1. Then s2n � A2n�.Œa; b�/ for n 2 N. Since A > 1 and �.Œa; b�/ > 0, we
deduce that limn s2n D C1: This contradicts (vii). ut
Corollary 4.2 If a Hamburger moment sequence s has a representing measure with
compact support, then s is determinate.

Proof Let �1; �2 2Ms. By Proposition 4.1 (iv)!(i), �1 and �2 are supported on
Œ�S; S�. Then, for all f 2 RŒx�,

Z S

�S
f .x/ d�1 D

Z S

�S
f .x/ d�2: (4.1)

Since the polynomials RŒx� are dense in C.Œ�S; S�IR/ by the Weierstrass theorem,
(4.1) holds for all continuous functions f . This in turn implies that �1 D �2: ut

4.2 Carleman’s Condition

Recall that a Hamburger moment sequence is determinate if it has a unique
representing measure, while a Stieltjes moment sequence is called determinate if
it has only one representing measure supported on Œ0;C1/.

The Carleman theorem contains a powerful sufficient condition for determinacy.

Theorem 4.3 Suppose that s D .sn/n2N0 is a positive semidefinite sequence.

(i) If s satisfies the Carleman condition

1X
nD1

s
� 1
2n

2n D C1; (4.2)

then s is a determinate Hamburger moment sequence.
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(ii) If in addition Es D .snC1/n2N0 is positive semidefinite and

1X
nD1

s
� 1
2n

n D C1; (4.3)

then s is a determinate Stieltjes moment sequenc..

The main technical ingredient of the proof of Theorem 4.3 given in this section is
a result on quasi-analytic functions (Corollary 4.5). Another proof of Theorem 4.3
based on Jacobi operators can be found at the end of Sect. 6.4.

Let us begin with some notions on quasi-analytic functions. Suppose .mn/n2N0

is a positive sequence and J 	 R is an open interval. Let Cfmng denote the set of
functions f 2 C1.J/ for which there exists a constant Kf > 0 such that

sup
t2J
j f .n/.t/j � Kn

f mn for n 2 N0: (4.4)

We say Cfmng is a quasi-analytic class if the following holds: if f 2 Cfmng and
there is a point t0 2 J such that f .n/.t0/ D 0 for all n 2 N0, then f .t/ � 0 on J. In
this case the functions of Cfmng are called quasi-analytic.

Quasi-analyticity is characterized by the following Denjoy–Carleman theorem.

Theorem 4.4 Cfmng is a quasi-analytic class if and only if
1X
nD1

.infk�n m
1=k
k /�1 D1: (4.5)

Proof [Hr, Theorem 1.3.8]. For log convex sequences .mn/n2N0 a proof is contained
in [Ru2, Theorem 19.11]. ut

For our proof of Theorem 4.3 the following corollary is sufficient.

Corollary 4.5 Suppose that .mn/n2N0 is a positive sequence such that

1X
nD1

m�1=n
n D1: (4.6)

Suppose that f 2 C1.J/ and there is a constant Kf > 0 such that (4.4) is satisfied.
If there exists a t0 2 J such that f .n/.t0/ D 0 for all n 2 N0, then f .t/ � 0 on J.

Proof Since obviously m1=nn � infk�n m1=kk , (4.6) implies (4.5). Hence Cfmng is a
quasi-analytic class by Theorem 4.4. This proves the assertion. ut

The simplest examples of quasi-analytic functions are analytic functions.

Example 4.6 (.mn D nŠ/n2N0) Since nŠ � nn, the sequence .nŠ/n2N0 satisfies (4.5)
and (4.6). Hence CfnŠg is a quasi-analytic class. It is well-known (see e.g. [Ru2,
Theorem 19.9]) that each function f 2 CfnŠg has a holomorphic extension to a strip
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fz W Re z 2 J; jIm zj < ıg, ı > 0. Therefore, if f 2 CfnŠg and f .n/.t0/ D 0 for some
t0 2 J and all n 2 N0, then we have f .t/ � 0 on J. That is, for the special class
CfnŠg the assertion of Corollary 4.5 holds by the uniqueness theorem for analytic
functions without refering to the Denjoy–Carleman theorem. ı
Remark 4.7

1. Let .mn/n2N0 be a positive sequence such that m0 D 1 and

m2n � mn�1mnC1 for n 2 N: (4.7)

Condition (4.7) implies that .ln mn/n2N0 is a convex sequence. Indeed, it can be
shown that then m1=nn � m1=kk for n � k, so that m1=nn D infk�n m

1=k
k . Therefore, by

Theorem 4.4, in this case Cfmng is quasi-analytic if and only if
P1

nD1m
�1=n
n D

1, that is, if (4.6) is satisfied.
2. Let s D .sn/n2N0 be a Hamburger moment sequence such that s0 D 1. Then the

Hölder inequality implies that (4.7) holds for mn D s2n. Therefore, since m0 D 1,
it follows from the preceding remark that .ln s2n/n2N0 is a convex sequence. ı
The following simple lemma is used in the proofs of Theorems 4.3 and 4.14.

Let MC.R/ denote the Radon measures � on R satisfying
R jxjn d� < 1 for all

n 2 N0: Recall that Ms is the set of representing measures of a moment sequence s.

Lemma 4.8 Suppose that � 2MC.R/ and � 2 L1.R; �/. Then the function

g.t/ WD
Z
R

eitx�.x/d�.x/ (4.8)

is in C1.R/ and satisfies

g.n/.t/ D
Z
R

.ix/neitx�.x/d�.x/ for n 2 N0; t 2 R: (4.9)

Proof We proceed by induction on n. For n D 0 the assertion holds by definition.
Suppose that (4.9) is valid for n and all t 2 R. Fix t 2 R and put

'h.x/ WD h�1.eihx � 1/;  h.x/ WD 'h.x/.ix/neitx�.x/ for h 2 R; h ¤ 0:

Then  h.x/! .ix/nC1eitx�.x/ on R as h! 0. By the complex version of the mean
value theorem, j'h.x/j D j'h.x/ � 'h.0/j � jxj sup f j' 0

h. y/j W jyj � jxj; y 2 Rg:
Therefore, since j' 0

h. y/j D jeihyj D 1, we get

j h.x/j D j'h.x/.ix/neitx�.x/j � jxnC1j k�kL1.R;�/ a:e: on R:

Therefore, since � 2MC.R/ and hence xnC1 2 L1.R; �/, Lebesgue’s dominated
convergence theorem applies and yields
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lim
h!0

g.n/.tC h/� g.n/.t/

h
D lim

h!0

Z
R

 h.x/d�.x/ D
Z
R

.ix/nC1eitx�.x/d�.x/;

which gives (4.9) for nC 1. ut
An immediate consequence of Lemma 4.8 is the following

Corollary 4.9 Let � 2 MC.R/. Then the Fourier transform f�.t/ WDR
R
e�itxd�.x/ of � is in C1.R/ and

f .n/� .t/ D
Z
R

.�ix/neitxd�.x/ for n 2 N0; t 2 R: (4.10)

In particular,

sn.�/ D
Z
R

xnd� D .�i/nf�.0/ for n 2 N0: (4.11)

Proof of Theorem 4.3 By Hamburger’s theorem 3.8 and Stieltjes’ theorem 3.12 it
suffices to prove the the assertions about the determinacy.

(i) Suppose that �1; �2 2 Ms and set f WD f�1 � f�2 . Then f 2 C1.R/ by
Corollary 4.9. Define mn D supt2R j f .n/.t/j for n 2 N0. By (4.10),

m2n � sup
t2R

.j f .2n/�1
.t/j C j f .2n/�2

.t/j/ �
Z
R

x2nd�1.x/C
Z

x2nd�2.x/ D 2s2n

for n 2 N. Hence condition (4.6) is fulfilled, since

1X
nD1

m�1=n
n �

1X
nD1

m�1=2n
2n �

1X
nD1

2�1=2ns�1=2n
2n � 1

2

1X
nD1

s�1=2n
2n D1:

Applying again (4.10) we obtain for n 2 N0,

f .n/.0/ D f .n/�1
.0/� f .n/�2

.0/ D
Z
.ix/nd�1.x/�

Z
.ix/nd�2.x/ D insn � insn D 0:

Thus the assumptions of Corollary 4.5 are satisfied. Therefore, f .t/ � 0, hence
f�1.t/ � f�2.t/, on R. Since the Fourier transform uniquely determines a finite
measure, we get �1 D �2. This shows that s is determinate.

(ii) Let �1 and �2 be two solutions of the Stieltjes moment problem for s.
Define symmetric measures �j D �

sym
j ; j D 1; 2, on R by (3.26). Then, by

Proposition 3.18, �j 2 MC.R/ has the moment sequence Os D .Osn/n2N0 ,
where Os2n D sn and Os2nC1 D 0 for n 2 N0. In particular, �1 and �2 are
representing measures of Os. Since Os2n D sn, it follows from assumption (4.3)
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that Os satisfies (4.2). Hence, by (i), the moment problem for Os is determinate.
Therefore, �1 D �2 and hence �1 D �2. ut

Corollary 4.10 Suppose that s D .sn/n2N0 is a positive semidefinite sequence.

(i) If there is a constant M > 0 such that

s2n � Mn.2n/Š for n 2 N; (4.12)

then Carleman’s condition (4.2) holds and s is a determinate moment sequence.
(ii) If Es D .snC1/n2N0 is also positive semidefinite and there is an M > 0 such that

sn � Mn.2n/Š for n 2 N; (4.13)

then s is a determinate Stieltjes moment sequence.

Proof

(i) For n 2 N we have .2n/Š � .2n/2n. It follows that Œ.2n/Š�1=2n � 2n and hence
1
2n � Œ.2n/Š��1=2n, so that

M�1=2 1
2n
� M�1=2Œ.2n/Š��1=2n � s�1=2n

2n ; n 2 N:

Therefore, Carleman’s condition (4.2) is satisfied, so that Theorem 4.3(i)
applies. (As noted in Example 4.6, in this case the Denjoy–Carleman theorem
is not needed.)

(ii) follows from Theorem 4.3(ii) by the same reasoning. ut
Corollary 4.11

(i) Let � 2 MC.R/. If there exists an " > 0 such that
Z
R

e"jxj d�.x/ <1; (4.14)

then� 2MC.R/, condition (4.12) holds, and the Hamburger moment problem
for � determinate.

(ii) Suppose that � 2 MC.Œ0;C1//. If there exists an " > 0 such that
Z
R

e"
pjxj d�.x/ <1; (4.15)

then � 2MC.Œ0;C1//, condition (4.13) is satisfied, and the Stieltjes moment
problem for � is determinate.
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Proof

(i) Let n 2 N0 and x 2 R: Clearly, we have e"jxj � ."x/2n 1
.2n/Š . Hence

x2ne�"jxj � "�2n.2n/Š (4.16)

and thereforeZ
R

x2nd�.x/ D
Z
R

x2ne�"jxje"jxjd�.x/ � "�2n.2n/Š
Z
R

e"jxjd�.x/: (4.17)

Thus, by the assumption (4.14), we have
R
x2nd�.x/ < 1 for n 2 N0 and

hence
R jxkjd�.x/ < 1 for all k 2 N0, so that � 2 MC.R/: Further, (4.17)

implies that s2n � Mn.2n/Š for n 2 N0 and some constant M > 0. Thus (4.12)
is satisfied and the assertion follows from Corollary 4.10(i).

(ii) follows in a similar manner with x 2 Œ0;C1/ and using Corollary 4.10(ii). ut
In probability theory the sufficient determinacy conditions (4.14) and (4.15) are

called Cramer’s condition and Hardy’s condition, respectively.
The examples treated below indicate that Carleman’s condition (4.2) is an

extremely powerful sufficient condition for determinacy. Nevertheless, this condi-
tion is not necessary, as shown by Example 4.18 and also by Remark 7.19.

Remark 4.12 L.B. Klebanov and S.T. Mkrtchyan [KlM] proved the following:

Let s D .sn/n2N0 ; s0 D 1, be a Hamburger moment sequence. Set Cm WDPm
nD1 s

� 1
2n

n .
If � and � are representing measures of s, then

L.�; �/ � c.s2/ C
�1=4
m log.1C Cm/ for m 2 N; (4.18)

where c.s2/ > 0 is a constant depending only on s2 and L.�; �/ denotes the Levy
distance of � and � (see e.g. [Bl]).

If Carleman’s condition (4.2) holds, then limm!1 Cm D C1, hence (4.18)
implies L.�; �/ D 0, so that � D �. This is another proof of Carleman’s
Theorem 4.3(i). ı
Remark 4.13 C. Berg and J.P.R. Christensen [BC1] proved that Carleman’s con-
dition (4.2) implies the denseness of CŒx� in Lp.R; �/ for p 2 Œ1;C1/; where
� is the unique representing measure of s. We sketch a proof of this result in
Exercise 4.7. ı

4.3 Krein’s Condition

The following theorem of Krein shows that, for measures given by a density, the
so-called Krein condition (4.19) is a sufficient condition for indeterminacy.

Theorem 4.14 Let f be a nonnegative Borel function on R. Suppose that the
measure � defined by d� D f .x/dx is in MC.R/, that is, � has finite moments
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sn WD
R
xnd�.x/ for all n 2 N0. If

Z
R

ln f .x/

1C x2
dx > �1; (4.19)

then the moment sequence s D .sn/n2N0 is indeterminate.Moreover, the polynomials
CŒx� are not dense in L2.R; �/.

Proof The proof makes essential use of some fundamental results on boundary
values of analytic functions in the upper half plane. (All facts needed for this proof
can be found e.g. in [Gr]). Recall that the Hardy space H1.R/ consists of all analytic
functions h in the upper half-plane satisfying

sup
y>0

Z
R

jh.xC iy/jdx <1:

Each h.z/ 2 H1.R/ has a nontangential limit function h.x/ 2 L1.R/ [Gr, Theorem
3.1]. From assumption (4.19) it follows that there is an h 2 H1.R/ such that jh.x/j D
f .x/ a.e. on R [Gr, Theorem 4.4]. (In fact, (4.19) implies that the Poisson integral

u.z/ D u.xC iy/ D 1

�

Z
R

y

.x � t/2 C y2
ln f .t/ dt

of the function ln f .x/ exists. The corresponding function is h.z/ D eu.z/Civ.z/, where
v is harmonic conjugate to u.) Since h 2 H1.R/, it follows from a theorem of Paley–
Wiener [Gr, Lemma 3.7 or p. 84] that

Z
R

eitxh.x/dx D 0 for t � 0: (4.20)

Set �.x/ D h.x/f .x/�1 if f .x/ ¤ 0 and �.x/ D 0 if f .x/ D 0. Then j�.x/j � 1 on
R and d� D fdx, so Lemma 4.8 applies to the function

g.t/ WD
Z
R

eitxh.x/dx D
Z
R

eitx�.x/d�.x/:

Recall that g.t/ D 0 for t � 0 by (4.20). Therefore, by formula (4.9) in Lemma 4.8,

.�i/ng.n/.0/ D
Z
R

xn�.x/d�.x/ D
Z
R

xnh.x/dx D 0 for n 2 N0: (4.21)

Let h1.x/ WD Re h.x/ and h2.x/ WD Im h.x/. From (4.21) we obtain

Z
R

xnh1.x/dx D
Z
R

xnh2.x/dx D 0 for n 2 N0: (4.22)
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Since f ¤ 0 by (4.19) and jh.x/j D f .x/ a.e. on R, h1 or h2 is nonzero, say hj, and
we have f .x/ � hj.x/ � 0 on R. Hence the positive Radon measure � on R given
by d� WD . f .x/ � hj.x//dx has the same moments as � by (4.22). But � is different
from �, because hj ¤ 0.

Since h is nonzero, so is �. By (4.21), � 2 L2.R; �/ is orthogonal to CŒx� in
L2.R; �/. Hence CŒx� is not dense in L2.R; �/. ut

Let us briefly discuss the Krein condition (4.19). First we note that (4.19) implies
that f .x/ > 0 a.e. (Indeed, if f .x/ D 0, hence ln f .x/ D �1, on a set with nonzero
Lebesgue measure, then the integral in (4.19) is �1.)

We set lnCx WD max .ln x; 0/ and ln�x WD �min .ln x; 0/ for x � 0. Then
ln�x � 0 and ln x D lnCx � ln�x: Since f .x/ � 0 and hence lnC f .x/ � f .x/, we
have

0 �
Z
R

lnC f .x/

1C x2
dx �

Z
R

f .x/

1C x2
dx �

Z
R

f .x/ dx D s0 < C1:

Therefore, (4.19) is equivalent to

Z
R

ln� f .x/

1C x2
dx < C1:

Remark 4.15 In the literature, the integral

1

�

Z
R

ln f .x/

1C x2
dx

is often called the entropy integral or logarithmic integral, see [Ks]. ı
Remark 4.16 An interesting converse of the preceding theorem was proved by J.-
P. Gabardo [Gb]. Suppose that s is an indeterminate moment sequence. Then there
exists a solution of the moment problem for s given by a density f .x/ such that
(4.19) holds and the entropy integral is maximal among all densities of absolutely
continuous solutions of the moment problem. ı

The next theorem is about Krein’s condition for the Stieltjes moment problem.

Theorem 4.17 Let f , �, and s be as in Theorem 4.14. If the measure � 2MC.R/
is supported on Œ0;C1/ and

Z
R

ln f .x2/

1C x2
dx �

Z 1

0

ln f .x/

.1C x/

dxp
x
> �1; (4.23)

then the Stieltjes moment problem for s is indeterminate.
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Proof Note that d� D f . y/dy and � 2 MC.RC/. We define a symmetric measure
� 2 Msym

C .R/ by d� D jxj f .x2/dx and we compute for h 2 Cc.RC/,
Z 1

0

h. y/ d�. y/ D 2
Z 1

0

h.x2/xf .x2/ dx D
Z
R

h.x2/jxj f .x2/ dx D
Z
R

h.x2/ d�.x/:

Comparing this equality with (3.27) we conclude that � D �sym, that is, �sym has
the density jxj f .x2/. By assumption (4.23), we have

Z
R

ln jxj f .x2/
1C x2

dx D
Z
R

ln jxj
1C x2

dxC
Z 1

0

ln f . y/

.1C y/

dyp
y
> �1:

Therefore, by Theorem 4.14, the Hamburger moment sequence of�sym is indetermi-
nate, so the Stieltjes moment sequence s is indeterminate by Proposition 3.19. ut

We apply the preceding criteria to treat a number of examples.

Example 4.18 (The Hamburger moment problem for d� D e�jxj˛dx, ˛ > 0)
Clearly, � 2 MC.R/. If 0 < ˛ < 1, Krein’s condition (4.19) is satisfied,

since

Z
R

ln e�jxj˛

1C x2
dx D

Z
R

�jxj˛
1C x2

dx > �1:

Therefore, the Hamburger moment problem for � is indeterminate.
If ˛ � 1, then

sn D
�Z 1

�1
C
Z

jxj�1

�
xne�jxj˛dx � 2C

Z
R

xne�jxjdx D 2C 2nŠ � 2nnŠ: (4.24)

Hence, by Corollary 4.10(i), the Hamburger moment problem for � is determinate.
ı

Example 4.19 (The Stieltjes moment problem for d� D �Œ0;1/.x/e�jxj˛dx, ˛ > 0)
If 0 < ˛ < 1=2, then (4.23) holds, so the Stieltjes moment problem is

indeterminate. If ˛ � 1=2, then 2˛ � 1 and hence by (4.24),

sn D
Z 1

0

xnd�.x/ D
Z 1

0

.x2/nd�.x2/ D
Z 1

0

x2ne�jxj2˛dx � 4n.2n/Š :

Thus, by Corollary 4.10(ii), the Stieltjes moment problem is determinate. Since �
has no atom at 0, it follows from Corollary 8.9 proved in Chap. 8 that the Hamburger
moment problem for s is also determinate if ˛ � 1=2.

By some computations it can be shown that the moments of � are

sn D � ..nC 1/=˛/ for n 2 N0:
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The Gamma function has an asymptotics � .x/ � p2�e�xxxC1=2 as jxj ! 1, see
e.g. [RW, p. 279]. From this it follows that we have an asymptotics s1=nn � cn1=˛ for

some c > 0. Hence
P1

nD1 s
� 1
2n

2n <1 for 0 < ˛ < 1.
Therefore, by the preceding, if 1=2 � ˛ < 1, then the Hamburger moment

sequence s is determinate, but Carleman’s condition (4.2) is not satisfied! Another
example of this kind can be found in Remark 7.19 in Sect. 7. ı
Example 4.20 d� D 1

2
e�jxjdx and d�.x/ D 1

2
�Œ0;C1/.x/ e�p

xdx.
The moments of the measures � and � are easily computed. They are

sn D 1

2

Z
R

xne�jxjdx D .2n/Š ; tn D 1

2

Z 1

0

xne�p
xdx D .2nC 1/Š ; n 2 N0;

so the sequences s and t satisfy conditions (4.12) and (4.13), respectively. Therefore,
by Corollary 4.10 (i) and (ii), the Hamburger moment problem for � is determinate
and the Stieltjes moment problem for � is determinate. Note that in both cases the
corresponding Krein conditions (4.19) and (4.23) are violated. ı
Example 4.21 d�.x/ D �.0;C1/.x/x˛e�x2dx, where ˛ > �1.

In this case we calculate

sn D
Z 1

0

xnx˛e�x2dx D � ..nC ˛ C 1/=2/; n 2 N0: (4.25)

Then Corollary 4.11 applies and implies that s is determinate. ı
Example 4.22 (Lognormal distribution) The first examples of indeterminate mea-
sures were given by T. Stieltjes in his memoir [Stj]. He showed that the log-normal
distribution d� D f .x/dx with density

f .x/ D 1p
2�

�.0;C1/.x/x
�1exp.�.ln x/2=2/

is indeterminate. We carry out his famous classical example in detail.
Let n 2 Z. Substituting y D ln x and t D y � n, we compute

sn D
Z
R

xn d�.x/ D 1p
2�

Z 1

0

xn�1e�.ln x/2=2 dx D 1p
2�

Z
R

enye�y2=2 dy

D 1p
2�

Z
R

e�. y�n/2=2en
2=2 dy D en

2=2 1p
2�

Z
R

et
2=2 dt D en

2=2;

so that s D .en2=2/n2N0 . This proves � that finite moments, that is, � 2MC.R/.
For arbitrary c 2 Œ�1; 1� we define a positive (!) measure �c by

d�c.x/ D Œ1C c sin .2� ln x/� d�.x/:
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Clearly,�c 2MC.R/; since � 2MC.R/: For n 2 Z, a similar computation yields

Z
R

xnsin .2� ln x/ d�.x/ D 1p
2�

Z
R

eny .sin 2�y/ e�y2=2dy

D 1p
2�

Z
R

e�. y�n/2=2en
2=2sin 2�y dy D 1p

2�
en
2=2

Z
R

e�t2=2sin 2�.tC n/ dt D 0;

where we used that the function sin 2�.tC n/ is odd. From the definition of �c and
the preceding equality it follows at once that �c has the same moments as �: (This
was even shown for all moments sn with n 2 Z.) Hence � is indeterminate. ı
Example 4.23 (Lognormal distributions (continued)) Let ˛ 2 R and r > 0 be
arbitrary. Then the function

f .x/ D 1

r
p
2�

�.0;1/.x/ x
�1 e� .lnx�˛/2

2r2

defines a probability measure � on R by d� D f .x/dx: This measure � is

indeterminate and it has the moments sn D en˛Cn2 r2
2 for n 2 N0: ı

4.4 Exercises

1. Show that each Stieltjes moment sequence s D .sn/ satisfying

1X
nD1

s
� 1
2n

n D C1

is determinate as a Hamburger moment sequence.
2. Suppose that .an/n2N0 is a sequence of positive numbers such that

2 ln a2n � ln anC1 C ln an�1 for n 2 N:

a. Show that n
p
an nC1
p
a0 � nC1

p
anC1 n
p
a0 for n 2 N0:

b. Suppose that a0 D 1. Show that . n
p
an/n2N0 is monotone increasing.

3. Show that for a moment sequence s D .sn/ the following are equivalent:

(i) s satisfies Carleman’s condition (4.2).
(ii)

P1
nD1 s

�1=.4n/
4n D1:

(iii)
P1

nD1 s
�1=.4nC2/
4nC2 D 1:

(iv)
P1

nD1 s
�1=.2knC2l/
2knC2l D 1 for some (and then for all) k 2 N; l 2 N0.

4. Prove that the moment sequence (4.25) in Example 4.21 is determinate.
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5. Prove that the measure in Example 4.23 is indeterminate.
6. Let� 2 MC.R/. Suppose that

R
R
x2ne"x

2
d� < C1 for some " > 0 and n 2 N0.

Show that � 2MC.R/ and the moment sequence of � is determinate.
7. (Carleman’s condition implies denseness of CŒx� in Lp.R; �/; p 2 Œ1;C1/

[BC2])
Let � 2 MC.R/. Suppose the moment sequence of � satisfies Carleman’s
condition (4.2). Prove that CŒx� is dense in Lp.R; �/ for any 1 � p < C1.

Sketch of proof It suffices to prove the denseness for p D 2k; k 2 N: We
mimic the proof of Lemma 4.8. Let � 2 Lp.R; �/0 Š Lq.R; �/, 1

p C 1
q D 1;

be such that
R
�.x/f .x/d� D 0 for all f 2 CŒx�. Define g.t/ by (4.8). As in the

proof of Lemma 4.8, we show that g 2 C1.R/ and that Eq. (4.9) holds. SinceR
�.x/f .x/d� D 0 for f 2 CŒx�, g.n/.0/ D 0 for n 2 N0 by (4.9). Applying the

Hölder inequality to (4.9) we obtain jg.n/.t/j � s�1=.2k/
2kn k�kLq.R;�/. By Exercise

4.3, (4.2) implies
P1

nD1 s
�1=.2kn/
2kn D C1. Thus, Corollary 4.5 applies with

mn D s1=.2k/2kn , t0 D 0; and yields g.t/ � 0. Hence � D 0, so CŒx� is dense in
Lp.R; �/.

8. (Moment generating function)
Let � 2 MC.R/ and c > 0. Suppose that the function x 7! etx is �-integrable
for jtj < c. Then g.t/ WD R

R
etxd�.x/ is called the moment generating function

of �.

a. Show that � 2 MC.R/; that is, � has finite moments sn D
R
xnd� for

n 2 N0.
b. Show that sn D g.n/.0/ for n 2 N0.
c. Show that g.t/ DP1

nD0 tn

nŠ sn for t 2 .�c; c/:

4.5 Notes

Carleman’s condition and Theorem 4.3(i) are due to T. Carleman [Cl].
Theorem 4.14 is stated in [Ak, Exercise 14 on p. 87] where it is attributed to

M.G. Krein. It follows from Krein’s results in [Kr1]. Our proof based on boundary
values of analytic functions is from [Lin1] and [Sim1]. Another proof using Jensen’s
inequality is given in [Be, Theorem 4.1]. A generalization of Krein’s condition
and a discrete analogue were obtained by H.L. Pedersen [Pd2]. The denseness of
polynomials in Lp.R; �/ and Carleman’s condition are studied in [BC1], [BC2],
[Ks], [KMP], [Bk1]. [BR], [If]. An index of determinacy for determinate measures
is defined in [BD]. Further elaborations of the determinacy problem can be found in
[Lin2], [Stv], [SKv].

An interesting characterization of determinacy was discovered by C. Berg, Y.
Chen, and M.E.H. Ismail [BCI], see also [BS1] for more refined results: Let �n
denote the smallest eigenvalue of the Hankel matrix Hn.s/ of a moment sequence s.
Then s is determinate if and only if limn!1 �n D 0.



Chapter 5
Orthogonal Polynomials and Jacobi Operators

In the preceding chapters we derived basic existence and uniqueness results for
moment problems. In this chapter we develop two powerful tools for a “finer”
study of one-dimensional moment problems: orthogonal polynomials and Jacobi
operators.

Throughout this chapter we assume that s D .sn/n2N0 is a fixed positive
definite moment sequence. The positive definiteness is crucial for the construction
of orthogonal polynomials and subsequent considerations. By Proposition 3.11 a
moment sequence s is positive definite if and only if all Hankel determinants

Dn � Dn.s/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 s2 : : : sn
s1 s2 s3 : : : snC1
s2 s3 s4 : : : snC2
: : : : : : : : : : : : : : :

sn snC1 snC2 : : : s2n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
; n 2 N0; (5.1)

are positive. We shall retain the notation (5.1) in what follows.
In Sect. 5.1 we define and study orthogonal polynomials associated with s.

There are two distinguished sequences of orthogonal polynomials, the sequence
. pn/n2N0 of orthonormal polynomials with positive leading coefficients (5.3) and
the sequence .Pn/n2N0 of monic orthogonal polynomials (5.6). In Sect. 5.2 we
characterize these sequences in terms of three term reccurence relations and derive
Favard’s theorem (Theorem 5.10). The three term reccurence relation for . pn/n2N0

implies that the multiplication operator X is unitarily equivalent to a Jacobi operator
(Theorem 5.14). The interplay of moment problems and Jacobi operators is studied
in Sect. 5.3.

Orthogonal polynomials of the second kind are investigated in Sect. 5.4. In
Sect. 5.5 the Wronskian is defined and some useful identities on the orthogonal
polynomials are derived. Section 5.6 contains basic results about zeros of orthogonal
polynomials, while Sect. 5.7 deals with symmetric moment problems.

© Springer International Publishing AG 2017
K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics 277,
DOI 10.1007/978-3-319-64546-9_5

93



94 5 Orthogonal Polynomials and Jacobi Operators

The study of orthogonal polynomials is an important subject that is of interest in
itself. We therefore develop some of the beautiful classical results and formulas in
this chapter, even if not all of them are used for the moment problem.

5.1 Definitions of Orthogonal Polynomials
and Explicit Formulas

Since the sequence s is positive definite, the equation

h p; qis WD Ls. p q/; p; q 2 CŒx�; (5.2)

defines a scalar product h�; �is on the vector space CŒx�. (Indeed, it is obvious that
h�; �is is a positive semidefinite sesquilinear form. If h p; pis DPk;l skClckcl D 0 for
some p.x/ D P

k ckx
k 2 CŒx�, then ck D 0 for all k and hence p D 0, since s is

positive definite. This proves that h�; �is is a scalar product.)
Note that h p; qis is real for p; q 2 RŒx�, because the sequence s D .sn/ is real.
The following orthonormal basis of the unitary space .CŒx�; h�; �is/ will play a

crucial role in what follows.

Proposition 5.1 There exists an orthonormal basis . pn/n2N0 of the unitary space
.CŒx�; h�; �is/ such that each polynomial pn has degree n and a positive leading coef-
ficient. The basis . pn/n2N0 is uniquely determined by these properties. Moreover,
pn 2 RŒx�.

Proof For the existence it suffices to apply the Gram–Schmidt procedure to the basis
f1; x; x2; : : : g of the unitary space .CŒx�; h�; �is/. Since the scalar product is real on
RŒx�, we obtain an orthonormal sequence pn 2 RŒx� such that deg . pn/ D n. Upon
multiplying by �1 if necessary the leading coefficient of pn becomes positive. The
uniqueness assertion follows by a simple induction argument. ut

That the sequence . pn/n2N0 is orthonormal means that

h pk; pnis D ık;n for k; n 2 N0:

Definition 5.2 The polynomials pn; n 2 N0; are called orthogonal polynomials
of the first kind, or orthonormal polynomials, associated with the positive definite
sequence s.

The existence assertion from Proposition 5.1 will be reproved by Proposition 5.3.
We have included Proposition 5.1 in order to show that proofs are often much shorter
if no explicit formulas involving the moments are required. This is true for many
other results as well, such as the recurrence relations (5.9) and (5.11). But our aim
in this book is to provide explicit formulas for most quantities if possible.
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Proposition 5.3 Set D�1 D 1. Then p0.x/ D 1p
s0
and for n 2 N and k 2 N0,

pn.x/ D 1p
Dn�1Dn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 s2 : : : sn

s1 s2 s3 : : : snC1
s2 s3 s4 : : : snC2
: : :

sn�1 sn snC1 : : : s2n�1
1 x x2 : : : xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

; (5.3)

hxn; pnis D
p
Dn=Dn�1 and hxk; pnis D 0 if k < n: (5.4)

The leading coefficient of pn is
p
Dn�1=Dn . In particular, p1.x/ D s0x�s1p

s0.s0s2�s21/
.

Proof Obviously, p0.x/ D 1p
s0
: In this proof let pn denote the polynomial (5.3).

First we verify (5.4). The polynomial xkpn.x/ is obtained by multiplying the last
row of the determinant in (5.3) by xk. Applying the functional Ls to xkpn means that
each terms xkCj in the last row has to be replaced by skCj. Thus,

hxk; pnis D Ls.x
kpn/ D 1p

Dn�1Dn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 s2 : : : sn

s1 s2 s3 : : : snC1
s2 s3 s4 : : : snC2
: : :

sn�1 sn snC1 : : : s2n�1
sk skC1 skC2 : : : skCn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

: (5.5)

If k < n, the last row coincides with the .kC1/-th row in (5.5), so that hxk; pnis D 0.
If k D n, the determinant in (5.5) is just the Hankel determinant Dn, that is,

hxn; pnis D 1p
Dn�1Dn

Dn D
p
Dn=Dn�1;

which completes the proof of (5.4).
Next we prove that h pk; pnis D ıkn. First let k < n. Since deg pk D k < n, we

conclude from (5.4) that h pk; pnis D 0. Similarly, h pk; pnis D 0 for k > n. Now let
k D n. Since hxj; pnis D 0 for j < n, h pn; pnis is equal to hxn; pnis multiplied by
the leading coefficient of pn. From (5.3) it follows that pn has the leading coefficient

1p
Dn�1Dn

Dn�1 D
p
Dn�1=Dn. Since hxn; pnis D

p
Dn=Dn�1 by (5.4), this yields

h pn; pnisD1.
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From the uniqueness assertion of Proposition 5.1 it follows that the polynomial
pn defined by (5.3) concides with the polynomial pn in Proposition 5.1. ut

We now define the general notion of orthogonal polynomials.

Definition 5.4 A sequence .Rn/n2N0 is called a sequence of orthogonal polynomi-
als, briefly an OPS, with respect to s if Rn 2 RŒx�, degRn D n, and

hRk;Rnis D 0 for k ¤ n; k; n 2 N0:

Let .Rn/n2N0 be an OPS. Then kRnks ¤ 0, since h�; �is is a scalar product, and
�nRn has positive leading term for �n D C or �n D �. Hence, by the uniqueness of
the orthonormal sequence . pn/, we have �nkRnk�1n Rn D pn for all n 2 N0.

While there are many OPS for a given s, there is a unique OPS consisting of
monic polynomials. Such an OPS will be called monic. Recall that a polynomial
P of degree n is monic if its coefficient of xn is 1. Since pn has the leading termp
Dn�1=Dn; the polynomial

Pn.x/ WD
p
Dn=Dn�1 pn.x/ D 1

Dn�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 s2 : : : sn

s1 s2 s3 : : : snC1
s2 s3 s4 : : : snC2
: : :

sn�1 sn snC1 : : : s2n�1
1 x x2 : : : xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

; n 2 N; (5.6)

is monic. Set P0.x/ D 1. Then .Pn/n2N0 is the unique monic OPS for s. Thus, there
are two distinguished sequences of orthogonal polynomials associated with s, the
orthonormal sequence . pn/n2N0 and the monic OPS .Pn/n2N0 given by the above
formulas (5.3) and (5.6), respectively.

We close this section with a beautiful classical formula for the polynomial Pn. It
will be not used later in this book. Another formula for Pn is given in Lemma 6.27(i).

Proposition 5.5 (Heine Formulas) Suppose that � 2Ms. Then, for n 2 N, n � 2,
we have

Pn.x/ D 1

nŠ Dn�1

Z
Rn

nY
jD1
.x � xj/

Y
1�k<l�n

.xk � xl/
2 d�.x1/ : : : d�.xn/; (5.7)

Dn�1 D 1

nŠ

Z
Rn

Y
1�k<l�n

.xk � xl/
2 d�.x1/ : : : d�.xn/: (5.8)

Proof Let us abbreviate QPn.x/ WD Dn�1pn.x/.
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If � is a permutation of f0; 1; : : : ; n � 1g, we compute

QPn.x/ D
Z
Rn

d�.x�.0// : : : d�.x�.n�1//

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 x1
�.0/ : : : xn�.0/

x1�.1/ x2�.1/ : : : xnC1
�.1/

: : : : : : : : : : : :

xn�1
�.n�1/ x

n
�.n�1/ : : : x2n�1

�.n�1/
1 x : : : xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D
Z

d�.x�.0// : : : d�.x�.n�1//

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 x1�.0/ : : : xn�.0/
1 x1�.1/ : : : xn�.1/
: : : : : : : : : : : :

1 x1�.n�1/ : : : xn�.n�1/
1 x : : : xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
x0�.0/x

1
�.1/ : : : x

n�1
�.n�1/

D
Z

d�.x0/ : : : d�.xn�1/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 x10 : : : xn0
1 x11 : : : xn1
: : : : : : : : : : : :

1 x1n�1 : : : xnn�1
1 x : : : xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
.sign �/x0�.0/x

1
�.1/ : : : x

n�1
�.n�1/:

Here the first equality follows from formula (5.6) by replacing the moments sl in row
jC1 by

R
R
xl�. j/ d�.x

l
�. j// and using the multilinearity of the determinant. For the

third equality the rows in the determinant are permuted and the integration variables
are changed to x0; : : : ; xn�1.

Summing over all nŠ permutations � of f0; 1; : : : ; n � 1g and inserting the
determinant definition it follows that the polynomial nŠ QPn.x/ is equal to

Z
Rn

d�.x0/ : : : d�.xn�1/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 x10 : : : xn0
1 x11 : : : xn1
: : : : : : : : : : : :

1 x1n�1 : : : xnn�1
1 x : : : xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
�

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x10 : : : xn�1
0

1 x11 : : : xn�1
1

: : : : : : : : : : : :

1 x1n�1 : : : xnn�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ :

Both determinants under the integral are Vandermonde determinants. The formula

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 y10 : : : ym0
1 y11 : : : ym1
: : : : : : : : : : : :

1 y1m : : : ymm

ˇ̌
ˇ̌
ˇ̌
ˇ̌ D

Y
0�k<l�m

.yk � yl/
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for a Vandermonde determinant implies that these determinants are

n�1Y
jD0
.x � xj/

Y
0�k<l�n�1

.xk � xl/ and
Y

0�k<l�n�1
.xk � xl/;

respectively. Changing the variables from x0; : : : ; xn�1 to x1; : : : ; xn and inserting the
preceding expressions shows that nŠ QPn.x/ D nŠDn�1pn.x/ is equal to the integral in
(5.7). This proves (5.7). Comparing the coefficients of xn in (5.7) gives (5.8). ut

5.2 Three Term Recurrence Relations

Orthogonal polynomials can be characterized and studied by means of three term
recurrence relations. We begin with the orthonormal sequence . pn/n2N0 .

Proposition 5.6 Set an D pDn�1DnC1D�1
n and bn D Ls.xp2n/ for n 2 N0. Then we

have an > 0 and bn 2 R for n 2 N0, and

xpn.x/ D anpnC1.x/C bnpn.x/C an�1pn�1.x/; n 2 N0; (5.9)

where a�1 WD 1 and p�1.x/ WD 0. In particular, p0.x/ D s�1=2
0 ,

p1.x/ D s�1=2
0 a�1

0 .x�b0/; p2.x/ D s�1=2
0 .a�1

0 a�1
1 .x�b0/.x�b1/� a0a

�1
1 /:

Proof Since Dk > 0 and pk 2 RŒx� for all k, we have an > 0 and bn 2 R.
Since xpn.x/ has degree nC1 and f p0; : : : ; pnC1g is a basis of the space of real

polynomials of degree less than or equal to nC1, there are reals cnk such that
xpn.x/ D PnC1

kD0 cnkpk.x/. Comparing the coefficients of xnC1, it follows that cn;nC1
is the quotient of the leading coefficients of pn and pnC1. By Proposition 5.3 this
yields cn;nC1 D an. Because the basis f pkg is orthonormal, we have

cnk D hxpn; pkis D Ls.xpnpk/ D h pn; xpkis; k D 0; : : : ; nC 1: (5.10)

Since xpk is in the span of p0; : : : ; pkC1, (5.10) implies that cnk D 0 when kC1 < n.
Further, cn;n D Ls.xp2n/ D bn by (5.10). Using that cn�1;n is real we derive

cn;n�1 D h pn; xpn�1is D
˝
pn;

nX
kD0

cn�1;kpk
˛
s
D cn�1;n:

Hence an�1 D cn;n�1. Putting the preceding together we have proved (5.9).
The formulas for p1 and p2 are easily computed from (5.9). ut

Corollary 5.7 The leading term of pn.x/ is
q

Dn�1

Dn
D s�1=2

0

Qn�1
kD0 a�1

k for n 2 N.
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Proof We proceed by induction using the relation ak D pDk�1DkC1 D�1
k , k 2 N0.

For n D 1 we have
q

D0
D1
D D�1=2

0 .
p
D�1D1D�1

0 /
�1 D s�1=2

0 a�1
0 .

If the assertion holds for n 2 N, then

s
Dn

DnC1
D Dnp

Dn�1DnC1

s
Dn�1
Dn
D a�1

n s�1=2
0

n�1Y
kD0

a�1
k D s�1=2

0

nY
kD0

a�1
k : ut

Equation (5.9) is a three term recurrence relation for the polynomials pn, that is,
the polynomial pnC1 is determined by

pnC1.x/ D .x � bn/a
�1
n pn.x/� an�1a�1

n pn�1.x/; n 2 N0; (5.11)

where a�1 WD 1 and p�1.x/ WD 0. Hence, if pj�1.x/ and pj.x/ are given, then
Eq. (5.9) (and likewise (5.11)) determines all polynomials pn.x/; n � jC1; uniquely.
This property of a three term reccurance relation will often be used.

The formula an D pDn�1DnC1D�1
n expresses an in terms of determinants

involving only the moments. To derive a similar result for the numbers bn we set

�n D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 s2 : : : sn�1 snC1
s1 s2 s3 : : : sn snC2
s2 s3 s4 : : : snC1 snC3
: : :

sn snC1 snC2 : : : s2n�1 s2nC1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
; n 2 N; and �0 D s1; (5.12)

that is, �n is obtained from the Hankel determinant Dn (see (5.1)) by adding 1 to all
indices in the last column.

Proposition 5.8 For any n;m 2 N0, we have

bnC1 D �nC1
DnC1

� �n

Dn
and

mX
nD0

bn D �m

Dm
: (5.13)

Proof First let m D 0. Then .x � b0/p0 D a0p1 by (5.6). Since Ls. p1/ D 0, we get
p0s1 D Ls. p0x/ D Ls. p0b0/ D p0b0s0 and hence b0 D s1s�1

0 D �0D�1
0 .

Let n 2 N. By developing the determinant in (5.3) after the last row it follows
that the coefficients of xn and xn�1 are Dn and��n�1, respectively, so the coefficient

of xn and xn�1 in pn are 1p
Dn�1Dn

Dn D
q

Dn�1

Dn
; and � 1p

Dn�1Dn
�n�1, respectively.

Recall that an D pDn�1DnC1D�1
n by Proposition 5.6. Comparing the coeffients of

xn on both sides of the Eq. (5.9) and inserting an D pDn�1DnC1D�1
n we obtain

� 1p
Dn�1Dn

�n�1 D �
p
Dn�1DnC1

Dn

1p
DnDnC1

�n C bn

s
Dn�1
Dn

:
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From this equation it follows that

bn D �n

Dn
� �n�1

Dn�1
for n 2 N;

which proves the first equality of (5.13). Therefore, since b0 D �0D�1
0 , we derive

mX
nD0

bn D b0 C
mX

nD1

�
�n

Dn
� �n�1

Dn�1

�
D b0 C �m

Dm
� �0

D0
D �m

Dm
: ut

The next proposition contains the three term recurrence relation for the monic
OPS. Using the formula Pn D

p
Dn=Dn�1 pn (by (5.6)) it is easily derived from the

recurrence relation (5.9) for pn. We omit the details of these simple computations.

Proposition 5.9 Let .Pn/n2N0 be the monic OPS for s, see (5.6). Let an�1 and bn be
as in Proposition 5.6 and P�1 WD 0. Then

PnC1.x/ D .x � bn/Pn.x/� a2n�1Pn�1.x/; n 2 N0: (5.14)

In particular, P0.x/ D 1, P1.x/ D x � b0, and P2.x/ D .x � b0/.x � b1/� a20:

The next result is Favard’s theorem. It is a converse to Proposition 5.9. Its main
direction states that for each set of parameters fan; bn W n 2 N0g with an > 0 and
bn 2 R the recurrence relation (5.14) defines a monic OPS of some positive definite
sequence s and hence of some measure � 2Ms:

Theorem 5.10 Let .˛n/n2N0 and .ˇn/n2N0 be complex sequences and set ˛�1 WD
1. Let .Rn/n2N0 denote the sequence of monic polynomials Rn which is uniquely
determined by the relations

RnC1.x/ D .x � ˇn/Rn.x/� ˛n�1Rn�1.x/; n 2 N0; (5.15)

R�1.x/ D 0 and R0.x/ D 1: (5.16)

There exists a positive definite real sequence s such that .Rn/n2N0 is the monic OPS
for s if and only if ˛n > 0 and ˇn 2 R for all n 2 N0. If s0 is a given positive
number, then this sequence s D .sn/n2N0 is uniquely determined.

Further, if ˛n > 0 and ˇn 2 R for n 2 N0 and s0 > 0 are given, then there exists
a measure � 2Ms such that �.R/ D s0 and for j; k 2 N0, j ¤ k, and n 2 N,

Z
R

Rj.x/Rk.x/ d�.x/ D 0 ;
Z

R2n.x/d�.x/ D ˛n�1˛n�2 : : : ˛0s0: (5.17)

Proof First note that the sequence .Rn/ is indeed uniquely determined by (5.15) and
(5.16). Clearly, Rn is monic and has degree n. Hence .Rn/n2N0 is a vector space basis
of CŒx�, so we can define a linear functional L on

L.R0/ D L.1/ D s0 and L.Rn/ D 0 for n 2 N: (5.18)
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Applying L to both sides of (5.15) we get L.xRn/ D 0 for n � 2. Multiplying (5.15)
by x, applying L again by using the latter equality, we obtain L.x2Rn/ D for n � 3.
Proceeding in this manner we derive

L.xjRn/ D 0 for j D 0; : : : ; n � 1; n 2 N: (5.19)

Since degRm D m, (5.19) implies that

L.RjRk/ D 0 for j; k 2 N0; j ¤ k: (5.20)

Multiplying (5.15) by xn�1 and applying L by using (5.19) again we get L.xnRn/ D
˛n�1L.xn�1Rn�1/ and hence L.xnRn/ D ˛n�1˛n�2 : : : ˛0s0, because L.R0/ D s0.
Since Rn is monic, the preceding combined with (5.19) yields

L.R2n/ D ˛n�1˛n�2 : : : ˛0s0; n 2 N: (5.21)

After all these technical preparations we are able to prove the assertions.
First suppose that .Rn/ is an OPS for some positive definite real sequence s.

Then Ls is equal to the functional L defined by (5.18) with s0 D Ls.1/ > 0, since
hRn;R0is D Ls.Rn/ D 0 for n 2 N. By the definition of an OPS, Rn 2 RŒx�, so that
hRn;Rnis D Ls.R2n/ > 0 for n 2 N. Hence, by (5.21), ˛n > 0 for all n 2 N. Since
˛n > 0 and Rn 2 RŒx�, it follows from (5.15) that ˇn is real.

Conversely, assume that ˛n > 0 and ˇn 2 R for n 2 N0. Let s0 > 0 be arbitrary.
Then Rn 2 RŒx� and L.R2n/ > 0 by (5.21). Combined with (5.20) the latter implies
that the linear functional L defined by (5.18) is a positive functional on CŒx� such
that L. pp/ > 0 for all p 2 CŒx�, p ¤ 0. Therefore, setting sn WD L.xn/, n 2 N0, we
get a positive definite sequence s D .sn/n2N0 . By (5.20), .Rn/ is an OPS for s. Since
.Rn/ is monic, it is the unique monic OPS associated with s.

Further, by Theorem 3.8, there exists a measure � 2 MC.R/ such that sn DR
xnd� for n 2 N0. Then �.R/ D L.1/ D s0: Since L D Ls and � is a representing

measure for s, the equations (5.17) follow from (5.20) and (5.21). ut
Remark 5.11

1. Clearly, if .Rn/ is the monic OPS for a positive definite sequence s, so it is for
each positive multiple of s. Hence the number s0 D Ls.1/ cannot be determined
from the monic OPS .Rn/.

2. Favard’s theorem for the recurrence relation (5.7) is contained in Theorem 5.14
below, see e.g. Remark 5.15 in the next section. ı
Comparing (5.14) and (5.15) shows that ˛n D a2n for the monic OPS .Pn/, so

(5.21) yields the following formula. It also follows from Corollary 5.7.

Corollary 5.12 kPnk2s D Ls.P2n/ D a2n�1a2n�2 : : : a20s0 for n 2 N.



102 5 Orthogonal Polynomials and Jacobi Operators

5.3 The Moment Problem and Jacobi Operators

The three term recurrence relation (5.9) links the moment problem to Jacobi
operators. These operators are the basic objects for the operator-theoretic approach
to the moment problem. This approach will be elaborated in the subsequent chapters.

Let Hs denote the Hilbert space completion of the unitary space .CŒx�; h�; �is/ and
X the multiplication operator by the variable x with domain CŒx� on Hs :

Xp.x/ WD xp.x/ for p 2 D.X/ WD CŒx�:

Then X is a densely defined symmetric operator with domain CŒx� on the Hilbert
space Hs, since

hXp; qis D Ls.xp q/ D Ls. p xq/ D h p;Xqis for p; q 2 CŒx�:

Let fen W n 2 N0g be the standard orthonormal basis of the Hilbert space l2.N0/

given by enWD.ıkn/k2N0 . Since f pn W n 2 N0g is an orthonormal basis of Hs, there is
a unitary isomorphism U of Hs onto l2.N0/ defined by Upn D en. Then, by (5.9),
T WD UXU�1 is a symmetric operator on l2.N0/ which acts by

Ten D anenC1 C bnen C an�1en�1; n 2 N0; (5.22)

where e�1 WD 0. The domain D.T/ D U.CŒx�/ is the linear span of vectors en, that
is, D.T/ is the vector space d of finite complex sequences .�0; : : : ; �n; 0; : : : /. For
any finite sequence � D .�n/ 2 d we obtain

T
�X

n
�nen

� DX
n
�n.anenC1 C bnen C an�1en�1/

D
X

n
.�n�1an�1 C �nbn C �nC1an/en

D
X

n
.an�nC1 C bn�n C an�1�n�1/en ;

where we have set ��1 WD 0. That is,

.T�/0 D a0�1 C b0�0; .T�/n D an�nC1 C bn�n C an�1�n�1; n 2 N: (5.23)

Equation (5.23) means that the operatorT acts on a sequence � 2 d by multiplication
with the infinite matrix

J D

0
BBBBB@

b0 a0 0 0 0 : : :

a0 b1 a1 0 0 : : :

0 a1 b2 a2 0 : : :

0 0 a2 b3 a3 : : :

: : : : : :
: : :

: : :
: : :

1
CCCCCA
: (5.24)
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A matrix J of this form is called a (semi-finite) Jacobi matrix. It is symmetric and
tridiagonal. The corresponding operator T � TJ (likewise its closure) is called a
Jacobi operator. Thus we have shown that the multiplication operator X is unitarily
equivalent to the Jacobi operator TJ for the matrix (5.24).

The numbers sns�1
0 can be recovered from the Jacobi operator T by

sns
�1
0 D s�1

0 hxn1; 1is D h.X/np0; p0is D hTne0; e0i; n 2 N0: (5.25)

That is, sns�1
0 is the entry in the left upper corner of the matrix Jn. Thus, if s0 D 1,

then all moments sn are uniquely determined from the Jacobi matrix. In particular,

s1s
�1
0 D hTe0; e0i D b0; s2s

�1
0 D hT2e0; e0i D b20 C a20;

s3s
�1
0 D hT3e0; e0i D b30 C 2a20b0 C a20b1:

Remark 5.13 Let Qs D cs, where c > 0, be a multiple of the positive definite
sequence s. Then s and Qs have the same Jacobi matrix J (see Exercise 5.1) and
the same Jacobi operator T. Also, the multiplication operators X for Qs and s are
unitarily equivalent and we have � 2 Ms if and only if c� 2 MQs. Thus for all
self-adjointness problems of X and T and for the determinacy of s we could assume
that s0 D 1. ı

Conversely, let a Jacobi matrix (5.24) be given, where an; bn 2 R and an > 0.
We define a linear operator T with domain D.T/ D d on the Hilbert space l2.N0/

by (5.23). Clearly, T is a symmetric operator and TD.T/ 	 D.T/. Set

s D .snWDhTne0; e0i/n2N0 : (5.26)

We prove that the sequence s is a positive definite. For �0; : : : ; �n 2 C and n 2 N0,

nX
k;lD0

skCl�k�l D
nX

k;lD0
hTkCle0; e0i�k�l D

����
nX

lD0
�lT

le0

����
2

� 0: (5.27)

Hence s is positive semidefinite. By a simple induction argument we show that
Tle0 � a0 : : : al�1el 2 Lin fe0; : : : ; el�1g for l 2 N. Therefore, if the expression
in (5.27) is zero, we conclude that all �n are zero, since aj ¤ 0 for all j. Thus, s is a
positive definite real sequence. By (5.26) we have s0 D hT0e0; e0is D 1.

Recall that U is the unitary of Hs onto l2.N0/ defined by Upn D en; n 2 N0.
Put Qpn WD U�1en for n 2 N0. Clearly, (5.23) implies (5.22), so the polynomials
Qpn satisfy the recurrence relation (5.9). Since an > 0 and bn 2 R by assumption,
it follows from (5.9) that Qpn 2 RŒx� has degree n and positive leading term. The
polynomials Qpn are orthonormal in Hs, since the vectors en are in l2.N0/. Therefore,
the Qpn are the polynomials of the first kind for s, that is, pn D Qpn for n 2 N0. Hence
T is the Jacobi operator associated with s according to the preceding construction.
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Summarizing, we have proved the following

Theorem 5.14 The preceding construction provides a one-to-one correspondence
between positive definite sequences s satisfying s0 D 1 and Jacobi matrices J of the
form (5.24), where bn 2 R and an > 0 for n 2 N0, and a unitary equivalence
between the multiplication operator X and the Jacobi operator T � TJ given by
a unitary U such that Upn D en; n 2 N0. The Jacobi parameters an and bn in the
matrix (5.24) are the numbers occuring in the three term recurrence relation (5.9).

For notational simplicity we identify the operators X and T D UXU�1 in what
follows, where U is the unitary of Hs onto l2.N0/ defined by Upn D en, n 2 N0.

Thus, by Theorem 5.14, for any positive definite sequence s the multiplication
operator X is unitarily equivalent to the Jacobi operator TJ of the matrix (5.24),
where an > 0 and bn 2 R are as in Proposition 5.6. Conversely, if J is a Jacobi
matrix (5.24) with an > 0 and bn 2 R, then (5.26) is a positive definite sequence for
which the above procedure leads again to the matrix (5.24).

Remark 5.15 Theorem 5.14 can be considered as Favard’s theorem. Indeed, sup-
pose that numbers bn 2 R and an > 0, n 2 N0; are given. Then, by Theorem 5.14,
there is a positive definite sequence s with s0 D 1 such that the Jacobi operator
T D TJ is unitarily equivalent to the multiplication operator X in .CŒx�; h�; �is/ and
the polynomials pn defined by (5.7) form the corresponding orthonormal OPS for s.
Further, by Hamburger’s Theorem 3.8, there is a Radon measure � 2MC.R/ such
that sn � hTne0; e0i D

R
xn d� for n 2 N0. ı

5.4 Polynomials of the Second Kind

In this section, we assume that an and bn, n 2 N0, denote the Jacobi parameters of
the positive definite sequence s and we set a�1 WD 1. Our aim is to develop another
sequence .qn/n2N0 of polynomials associated with s.

For a complex sequence � D .�n/n2N0 we define a complex sequence T � by

.T �/n D an�nC1 C bn�n C an�1�n�1 for n 2 N0; where ��1 WD 0: (5.28)

Then T is a linear mapping of the vector space of all complex sequences. For � 2 d,
it is obvious that T � 2 d and T � D T� , where T D TJ is the Jacobi operator.

Suppose that z 2 C and consider the three term recurrence relation

.T �/n � an�nC1 C bn�n C an�1�n�1 D z�n; (5.29)

where ��1 WD 0, for an arbitrary complex sequence � D .�n/n2N0 . Clearly, since
an > 0, if we fix two initial data �k�1 and �k and assume that the relation (5.29) is
satisfied for all n � k, all terms �n, where n � kC 1, are uniquely determined.
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We set ��1 D 0, �0 D s�1=2
0 and assume that (5.29) holds for all n 2 N0.

Comparing (5.29) with (5.9) by using that p�1.z/ D 0 and p0.z/ D s�1=2
0 we

conclude that �n is the value pn.z/ of the polynomial pn from Proposition 5.1. We
abbreviate

pz WD . p0.z/; p1.z/; p2.z/; : : : /; z 2 C: (5.30)

Now we set �0 D 0, �1 D a�1
0 s1=20 and suppose that (5.29) holds for all n 2 N.

(Note that we do not assume (5.29) for n D 0.) The numbers �n are then uniquely
determined and we denote �n by qn.z/, n 2 N0. Clearly, the same solution is
obtained if we start with the initial data ��1 D �s1=20 , �0 D 0 and require (5.29)
for all n 2 N0.

Using relation (5.29) it follows easily by induction on n that qn.z/, n 2 N, is a
polynomial in z of degree n�1. We denote the corresponding sequence by

qz WD .q0.z/; q1.z/; q2.z/; : : : /; z 2 C: (5.31)

By definition, q0.z/ D 0 and q1.z/ D a�1
0 s1=20 . Further, q2.z/ D .z�b1/.a0a1/�1s1=20 :

It should be emphasized that the numbers an; bn and the polynomials pn; qn
depend only on the sequence s, but not on any representing measure.

Lemma 5.16 T pz D zpz and T qz D s1=20 e0 C zqz for all z 2 C.

Proof By the recurrence relations we have .T pz/n D zpn.z/ � .zpz/n for n 2 N0

and .T qz/n D zqn.z/ � .zqz/n for n 2 N. Using that �0D0 and �1Da�1
0 s1=20 we

compute the zero component .T qz/0 by

.T qz/0 D a0�1 C b0�0 D a0a
�1
0 s1=20 C 0 D s1=20 C z�0 D s1=20 C zq0.z/: ut

Definition 5.17 The polynomials qn.z/; n 2 N0; are the orthogonal polynomials
of the second kind associated with the positive definite sequence s.

From the defining relations and intial data for qn.z/ it follows that the polynomi-
alsepn.z/ WD s�1=2

0 a0qnC1.z/ satisfy the recurrence relation (5.29) with an replaced
byean WD anC1 and bn byebn WD bnC1 and the initial dataep�1 D 0,ep0 D 1. Therefore,
by Theorem 5.14, the polynomialsepn.z/, n 2 N0, are the orthonormal polynomials
of first kind with respect to the shifted Jacobi matrix

eJ D

0
BBBBB@

b1 a1 0 0 0 : : :

a1 b2 a2 0 0 : : :

0 a2 b3 a3 0 : : :

0 0 a3 b4 a4 : : :

: : : : : :
: : :

: : :
: : :

1
CCCCCA
: (5.32)
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The corresponding positive definite sequence ises D .esn/, whereesnDheTne0; e0i andeT is the Jacobi operator corresponding to the Jacobi matrixeJ. Hence qn; n 2 N; are
orthogonal polynomials (according to Definition 5.4) for the sequence Qs.

The next proposition contains another useful description of the polynomials qn.
Let r.x/ DPn

kD0 �kxk 2 CŒx�, n 2 N, be a polynomial. For any fixed z 2 C,

r.x/� r.z/

x � z
D

nX
kD0

�k
xk � zk

x � z
D

nX
kD1

k�1X
lD0

�kz
k�lxl

is also a polynomial in x, so we can apply the functional Ls to it. We shall write Ls;x
to indicate that x is the corresponding variable.

Proposition 5.18 qn.z/ D Ls;x
�
pn.x/�pn.z/

x�z



for n 2 N0 and z 2 C.

Proof Let us denote the polynomial on the right-hand side by rn.z/. From the
recurrence relation (5.9) we obtain for n 2 N,

an
pnC1.x/ � pnC1.z/

x � z
C bn

pn.x/� pn.z/

x � z
C an�1

pn�1.x/ � pn�1.z/
x � z

D xpn.x/� zpn.z/

x � z
D z

pn.x/ � pn.z/

x � z
C pn.x/:

Applying the functional Ls;x to this identity and using the orthogonality relation
0 D h pn; 1is D Ls;x. pn/ for n � 1 we get

anrnC1.z/C bnrn.z/C an�1rn�1.z/ D zrn.z/ for n 2 N:

Since p1.x/ D s�1=2
0 a�1

0 .x�b0/ and p0 D s�1=2
0 by Proposition 5.6, we have r0.z/ D

Ls;x.0/ D 0 D q0.z/ and

r1.z/ D Ls;x

�
p1.x/ � p1.z/

x � z

�
D s�1=2

0 a�1
0 Ls;x

�
x � z

x � z

�
D s�1=2

0 a�1
0 s0 D q1.z/:

This shows that the sequence .rn.z// satisfies the same recurrence relation and initial
data as .qn.z//. Therefore, rn.z/ D qn.z/ for n 2 N0. ut

The next corollary expresses the polynomials qn in terms of the moments.

Corollary 5.19 Set qn;k.z/ DPk�1
lD0 sk�l�1zl for k � 1 and qn;0 D 0. For n 2 N,

qn.z/ WD 1p
Dn�1Dn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 s2 : : : sn
s1 s2 s3 : : : snC1
s2 s3 s4 : : : snC2
: : :

sn�1 sn snC1 : : : s2n�1
qn;0.z/ qn;1.z/ qn;2.z/ : : : qn;n.z/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

; z 2 C: (5.33)
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Proof From (5.3) it follows that pn.x/�pn.z/
x�z is given by the same expression as in

(5.3) when the entries xk of the last row are replaced by xk�zk

x�z D
Pk�1

lD0 xk�l�1zl:
Applying the functional Ls;x to this determinant gives the determinant in (5.33). By
Proposition 5.18, the corresponding polynomial in z is qn.z/. ut
Corollary 5.20 The monic polynomial associated with qn.z/ is

Qn.z/ WD s�1
0 Ls;x

�
Pn.x/ � Pn.z/

x � z

�
for n 2 N0: (5.34)

Further, for n 2 N and z 2 C we have

Pn.z/ D s1=20 a0a1 : : : an�1pn.z/; Qn.z/ D s�1=2
0 a0a1 : : : an�1qn.z/; (5.35)

qn.z/

pn.z/
D s0

Qn.z/

Pn.z/
: (5.36)

Proof Let cnxn be the leading term of pn.x/. Then Pn D c�1
n pn. Therefore, by

(5.34) and Proposition 5.18, Qn.z/ D s�1
0 c�1

n qn.z/. Since xn�zn

x�z D
Pn�1

lD0 xn�l�1zl;
the leading term of qn is zn�1cnLs;x.1/ D cns0zn�1. Hence Qn.z/ D s�1

0 c�1
n qn.z/ is

monic.
By Corollary 5.7, c�1

n D s1=20 a0a1 : : : an�1. Since Pn D c�1
n pn and Qn D

s�1
0 c�1

n qn, this implies (5.35) and hence also (5.36). ut
In what follows we will often use the function fz and the Stieltjes transform I�

(see Appendix A.2) of a finite Radon measure � on R. They are defined by

fz.x/ WD 1

x � z
and I�.z/ WD

Z
R

1

x � z
d�.x/; z 2 CnR: (5.37)

Proposition 5.21 Suppose that � 2Ms. For z 2 CnR and n 2 N0,

h fz; pniL2.R;�/ D qn.z/C I�.z/pn.z/; (5.38)

kqz C I�.z/pzk2 D
1X
nD0
jqn.z/C I�.z/pn.z/j2 � Im I�.z/

Im z
: (5.39)

In particular, qzC I�.z/pz 2 l2.N0/. Moreover, we have equality in the inequality of
(5.39) if and only if the function fz is inHs.

Proof Clearly, the bounded function fz.x/ D 1
x�z is in L2.R; �/. We compute

h fz; pniL2.R;�/ D
Z
R

pn.x/�pn.z/
x�z d�.x/C

Z
R

pn.z/

x�z d�.x/

D Ls;x

�
pn.x/�pn.z/

x�z
�
C pn.z/I�.z/ D qn.z/C I�.z/pn.z/;
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which proves (5.38). Here the equality before last holds, since � is a representing
measure for s, and the last equality follows from Proposition 5.18.

The equality in (5.39) is merely the definition of the norm of l2.N0/. Since
.CŒx�; h�; �is/ is a subspace of L2.R; �/, f pn W n 2 N0g is an orthonormal subset
of L2.R; �/. The inequality in (5.39) is just Bessel’s inequality for the Fourier
coefficients of fz with respect to this orthonormal set, because

k fzk2L2.R;�/ D
Z

1

jx�zj2 d�.x/ D
Z

1

z�z
�
1

x�z �
1

x�z
�
d�.x/ D Im I�.z/

Im z
:

By an elementary fact from Hilbert space theory, equality in Bessel’s inequality
holds if and only if fz belongs to the closed subspace generated by the polynomials
pn, that is, fz 2 Hs. ut
Corollary 5.22 pz 2 l2.N0/ if and only if qz 2 l2.N0/ for z 2 CnR.

Proof Let z 2 CnR. Since then I�.z/ ¤ 0 and qz C I�.z/pz 2 l2.N0/ by
Proposition 5.21, it is clear that pz 2 l2.N0/ is equivalent to qz 2 l2.N0/. ut

5.5 The Wronskian and Some Useful Identities

Suppose that � D .�n/n2N0 and ˇ D .ˇn/n2N0 are complex sequences. We define
their Wronskian as the sequence W.�; ˇ/ D .W.�; ˇ/n/n2N0 with terms

W.�; ˇ/n WD an.�nC1ˇn � �nˇnC1/; n 2 N0; (5.40)

Let T be the linear mapping of complex sequences defined by (5.28), that is,

.T �/n D an�nC1 C bn�n C an�1�n�1 for n 2 N0; where ��1 WD 0:

The following lemma on the Wronskian is the crux for several applications. It will
play an essential role in the study of the adjoint of the Jacobi operator in Sect. 6.2.

Lemma 5.23 Let � D .�n/n2N0 , ˇ D .ˇn/n2N0 be sequences, and x; z 2 C. Then

nX
kD0

�
.T �/kˇk � �k.T ˇ/k/

� D W.�; ˇ/n for n 2 N0: (5.41)

Let m; n 2 N0; n > m: If .T �/k D x�k and .T ˇ/k D zˇk for k D mC1; : : : ; n, then

.x � z/
nX

kDmC1
�kˇk D W.�; ˇ/n �W.�; ˇ/m: (5.42)
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In particular, if x D z in this case, then

W.�; ˇ/n D W.�; ˇ/m: (5.43)

Proof We prove the first identity (5.41) by computing

nX
kD0

Œ.T �/kˇk � �k.T ˇ/k/�

D .a0�1 C b0�0/ˇ0 � �0.a0ˇ1 C b0ˇ0/

C
nX

kD1
Œ.ak�kC1Cbk�kCak�1�k�1/ˇk � �k.akˇkC1CbkˇkCak�1ˇk�1/�

D a0.�1ˇ0 � �0ˇ1/C
nX

kD1
Œ.ak.�kC1ˇk��kˇkC1/ � ak�1.�kˇk�1��k�1ˇk/�

DW.�; ˇ/0 C
nX

kD1
ŒW.�; ˇ/k �W.�; ˇ/k�1� D W.�; ˇ/n:

Equation (5.42) is obtained by applying (5.41) to n and m and taking the
difference of both sums. Setting x D z in (5.42) yields (5.43). ut

Now we use Lemma 5.23 to derive some important identities on the polynomials
pn; qn. Further, we define four polynomials An;Bn;Cn;Dn that will be used later in
Sect. 7.1. Equation (5.47) is called the Christoffel–Darboux formula.

Proposition 5.24 For x; z 2 C and n 2 N0, we have

An.x; z/ WD .x�z/
nX

kD0
qk.x/qk.z/ D an.qnC1.x/qn.z/�qn.x/qnC1.z//; (5.44)

Bn.x; z/ WD �1C .x�z/
nX

kD0
pk.x/qk.z/ D an. pnC1.x/qn.z/�pn.x/qnC1.z//;

(5.45)

Cn.x; z/ WD 1C .x�z/
nX

kD0
qk.x/pk.z/ D an.qnC1.x/pn.z/�qn.x/pnC1.z//;

(5.46)

Dn.x; z/ WD .x�z/
nX

kD0
pk.x/pk.z/ D an. pnC1.x/pn.z/�pn.x/pnC1.z//: (5.47)

Proof All four identities are derived from Eq. (5.42). As samples we verify (5.45)
and (5.47). Recall that the sequences px D . pn.x//, qz D .qn.z//, and qz D .qn.z//
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satisfy the relations

.T px/n D xpn.x/; .T qz/n D zqn.z/; .T pz/n D zpn.z/ for n 2 N: (5.48)

Hence the assumptions of Eq. (5.42) in Lemma 5.23 with ˛ D px, ˇ D qz; pz, and
m D 0 are satisfied. Inserting p0.x/ D s�1=2

0 , p1.x/ D s�1=2
0 a�1

0 .x�b0/, q0.z/ D 0,

and q1.z/ D a�1
0 s1=20 , we compute

W.px; qz/0 D a0. p1.x/q0.z/�p0.x/q1.z// D �1; (5.49)

W.px; pz/0 D a0. p1.x/p0.z/�p0.x/p1.z// D .x � z/s�1
0 : (5.50)

For n D 0 the right-hand sides of (5.45) and (5.47) are just W.px; qz/0 and
W.px; pz/0, respectively, so these equations hold by (5.49) and (5.50). Now suppose
that n 2 N. Then (5.42) applies with m D 0.

From equations (5.42) with ˛ D px; ˇ D qz by using (5.49) and (5.40) we derive

.x�z/
nX

kD0
pk.x/qk.z/ D .x�z/

nX
kD1

pk.x/qk.z/

D W.px; qz/n�W.px; qz/0 D an. pnC1.x/qn.z/�pn.x/qnC1.z//C 1:

Applying (5.42) with ˛ D px; ˇ D pz combined with (5.50) and (5.40) yields

.x�z/
nX

kD0
pk.x/pk.z/ D .x�z/s�1

0 C .x�z/
nX

kD1
pk.x/pk.z/

D .x � z/s�1
0 CW.px; pz/n�W.px; pz/0 D an. pnC1.x/pn.z/�pn.x/pnC1.z//:

This proves (5.45) and (5.47). ut
Corollary 5.25 Let x 2 C and n 2 N0. Then

nX
kD0

pk.x/
2 D an

�
p0
nC1.x/pn.x/� p0

n.x/pnC1.x/
�
; (5.51)

1

an
D pn.x/qnC1.x/ � pnC1.x/qn.x/: (5.52)

Proof From the identity (5.47) it follows that

nX
kD0

pk.x/pk.z/ D an
ŒpnC1.x/ � pnC1.z/�pn.z/�Œpn.x/� pn.z/�pnC1.z/

x � z
:
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Letting z ! x we obtain (5.51). Equation (5.52) is obtained by setting x D z in
(5.46). ut
Corollary 5.26 For x; z 2 C and n 2 N0,

pnC1.x/ � pnC1.z/ D .x � z/
nX

kD0
Œpk.z/qnC1.z/ � pnC1.z/qk.z/�pk.x/; (5.53)

qnC1.x/ � qnC1.z/ D .x � z/
nX

kD0
Œpk.z/qnC1.z/ � pnC1.z/qk.z/�qk.x/: (5.54)

Proof First we prove (5.53). We multiply (5.47) by qnC1.z/ and (5.45) by �pnC1.z/
and add both equations. On the right we get

an
�
qnC1.z/ŒpnC1.x/pn.z/ � pn.x/pnC1.z/� � pnC1.z/ŒpnC1.x/qn.z/ � pn.x/qnC1.z/�

�
DpnC1.x/ anŒqnC1.z/pn.z/� qn.z/pnC1.z/�

DpnC1.x/W.qz; pz/n D pnC1.z/W.qz; pz/0 D pnC1.x/: (5.55)

Here for the first equality the term pn.x/pnC1.z/qnC1.z/ cancels, while the second
is just the definition of W.qz; pz/n. By (5.48) the assumptions of Lemma 5.23 are
satisfied, so (5.43) yields W.qz; pz/n D W.qz; pz/0 for n 2 N. For n D 0 this is
trivial. This gives the third equality. Since W.qz; pz/0 D 1, the last equality in (5.55)
holds.

On the left we obtain

.x�z/
nX

kD0
qnC1.z/pk.x/pk.z/C pnC1.z/ � .x � z/

nX
kD0

pnC1.z/pk.x/qk.z/

D pnC1.z/C .x � z/
nX

kD0
Œpk.z/qnC1.z/� pnC1.z/qk.z/�pk.x/: (5.56)

Comparing (5.55) and (5.56) we obtain (5.53).
The proof of (5.54) is very similar by using (5.46) and (5.44) instead of (5.47)

and (5.45). First we multiply (5.46) by qnC1.z/ and (5.44) by�pnC1.z/. Adding both
equations, on the right-hand side we derive

an
�
qnC1.z/ŒqnC1.x/pn.z/ � qn.x/pnC1.z/� � pnC1.z/ŒqnC1.x/qn.z/ � qn.x/qnC1.z/�

�
DqnC1.x/anŒqnC1.z/pn.z/� qn.z/pnC1.z/�

DqnC1.x/W.qz; pz/n D qnC1.x/W.qz; pz/0 D qnC1.x/:
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The left-hand side gives

qnC1.z/C .x � z/
nX

kD0
qnC1.z/qk.x/pk.z/� .x � z/

nX
kD0

pnC1.z/qk.x/qk.z/

D qnC1.z/C .x � z/
nX

kD0
Œpk.z/qnC1.z/� pnC1.z/qk.z/�qk.x/:

Now (5.54) follows by comparing the results on both sides. ut
Corollary 5.27 For any x; z 2 C and n 2 N0, we have

An.x; z/Dn.x; z/� Bn.x; z/Cn.x; z/ D 1; (5.57)

Dn.x; 0/Bn.z; 0/ � Bn.x; 0/Dn.z; 0/ D �Dn.x; z/: (5.58)

Proof Inserting the identities (5.44)–(5.47) from Proposition 5.24 we compute

An.x; z/Dn.x; z/ � Bn.x; z/Cn.x; z/

D anŒqnC1.x/qn.z/�qn.x/qnC1.z/� anŒ. pnC1.x/pn.z/�pn.x/pnC1.z/�

�anŒpnC1.x/qn.z/�pn.x/qnC1.z/� anŒqnC1.x/pn.z/�qn.x/pnC1.z/�

D a2n ŒpnC1.x/qn.x/� pn.x/qnC1.x/� ŒpnC1.z/qn.z/ � qnC1.z/pn.z/�

D Bn.x; x/Bn.z; z/ D .�1/.�1/ D 1:

Likewise, we derive

Dn.x; 0/Bn.z; 0/ � Bn.x; 0/Dn.z; 0/

D anŒpnC1.x/pn.0/�pn.x/pnC1.0/� anŒpnC1.z/qn.0/�pn.z/qnC1.0/�

�anŒpnC1.x/qn.0/�pn.x/qnC1.0/� anŒpnC1.z/pn.0/�pn.z/pnC1.0/�

D a2n ŒpnC1.x/pn.z/ � pn.x/pnC1.z//. pnC1.0/qn.0/� pn.0/qnC1.0/�

D Dn.x; z/Bn.0; 0/ D �Dn.x; z/: ut

5.6 Zeros of Orthogonal Polynomials

In this section, we derive a number of interesting results about zeros of the
orthogonal polynomials .

Proposition 5.28 Suppose that p 2 RŒx� has degree m 2 N and h p.x/; xjis D 0

for j 2 N0; j � m � 2: Then the polynomial p.x/ has m distinct real zeros.
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More precisely, if � is a solution of the moment problem for s and J is a closed
interval containing supp�, then all zeros of p lie in the interior of J.

Proof First we recall that by Theorem 3.8 there exists a solution � of the moment
problem for s. Let �1; : : : ; �k denote the distinct real points in the interior of J,
where p changes sign, and put r.x/ D .x � �1/ : : : .x � �k/. If there is no such
�j, we set rD1. Then the polynomial r.x/p.x/ does not change sign on J. Hence
q.x/ WD �r.x/p.x/ � 0 on J for �D1 or �D� 1.

We shall prove that k D m. Assume to the contrary that k < m.
If k D m � 1, then p is a real polynomial of degree m which has m � 1 distinct

real zeros. The latter is only possible if k D m, which is a contradiction. Hence
k � m� 2. But then h p; ris D 0 by assumption, so that

Z
J
q.x/ d�.x/ D �

Z
J
p.x/r.x/ d�.x/ D �h p; ris D 0:

Since q.x/ � 0 on J, this implies that� has a finite support. But then s is not positive
definite, which contradicts our standing assumption.

This proves that k D m. Thus p has m distinct real zeros �1; : : : ; �m: ut
In particular, Proposition 5.28 applies orthogonal polynomials and yields

Corollary 5.29 If .Rn/n2N0 is an OPS, then Rn.x/ has n distinct real zeros.

Clearly, Corollary 5.29 holds for the polynomials pn. As noted in Sect. 5.4, the
polynomialsepn.x/ D s�1=2

0 a0qnC1.x/, n 2 N0, are orthonormal polynomials for the
positive definite sequence obtained from the shifted Jacobi matrix (5.32). Therefore,
Corollary 5.29 applies toepn, hence also to qnC1, and we have the following

Corollary 5.30 For n 2 N, the polynomials pn.x/ and qnC1.x/ have n distinct real
zeros.

The following corollary plays an essential role in the proof of Lemma 7.1 below.

Corollary 5.31 Let n 2 N0 and z; z0 2 C. If jIm zj � jIm z0j, then

jpn.z/j � jpn.z0/j and jqn.z/j � jqn.z0/j: (5.59)

Proof Let r be a polynomial of degree n 2 N which has n distinct real zeros, say
x1; : : : ; xn. Then r.z/ D c.z�x1/ : : : .z�xn/ for some c 2 C. Therefore it is easily
seen that jr.z/j � jr.z0/j when jIm zj � jIm z0j. By Corollary 5.30 this applies to
pn and qnC1 for n 2 N and gives (5.59). For the constant polynomials p0; q0; q1 the
assertion (5.59) is trivial. ut

Let us denote the m zeros �.m/j of the polynomial pm in increasing order

�
.m/
1 < �

.m/
2 < � � � < �.m/m :
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Proposition 5.32 The zeros of pn.x/ and pnC1.x/ interlace strictly, that is,

�
.nC1/
1 < �

.n/
1 < �

.nC1/
2 < � � � < �.n/n < �

.nC1/
nC1 ; n 2 N: (5.60)

Proof Since p0.x/ D 1, it follows from Eq. (5.51) that

p0
nC1.x/pn.x/� p0

n.x/pnC1.x/ > 0 for x 2 R:

Setting x D �.nC1/
j therein we get

p0
nC1.�

.nC1/
j /pn.�

.nC1/
j / > 0 for j D 1; : : : ; nC 1: (5.61)

Since each zero �
.nC1/
j is simple and pnC1 has a positive leading coefficient,

we conclude that sign p0
nC1.�

.nC1/
j / D .�1/nC1�j: Therefore, sign pn.�

.nC1/
j / D

.�1/nC1�j by (5.61). Thus, by the mean value theorem, pn.x/ has at least one zero
in each of the n intervals .�.nC1/

j ; �
.nC1/
jC1 /. Since pn has only n zeros, we conclude

that there is precisely one zero in each of these intervals. ut
Corollary 5.33 The two limits ˛s WD limn!1 �

.n/
1 and ˇs WD limn!1 �

.n/
n exist

in R [ f�1g [ fC1g.
Proof By (5.60), the sequence .�.n/1 / is decreasing and the sequence .�.n/n / is
increasing. ut
Proposition 5.34 The zeros of qnC1.x/ and pnC1.x/ strictly interlace, that is, if


.nC1/
1 < 


.nC1/
2 < � � � < 
.nC1/

n are the zeros of qnC1, then

�
.nC1/
1 < 


.nC1/
1 < �

.nC1/
2 < � � � < �.nC1/

n < 
.nC1/
n < �

.nC1/
nC1 ; n 2 N:

Proof The proof is similar to the proof of Proposition 5.32. Setting x D �
.nC1/
j in

formula (5.52) of Corollary 5.25 we obtain

pn.�
.nC1/
j /qnC1.�.nC1/

j / D a�1
n > 0: (5.62)

By (5.60), pn has precisely one zero in each of the open intervals .�.nC1/
j ; �

.nC1/
jC1 / and

this zero is simple. Hence pn has different signs at the end points and so does qnC1
by (5.62). Therefore, qnC1 has at least one zero in .�.nC1/

j ; �
.nC1/
jC1 / for j D 1; : : : ; n.

Since qnC1 has n zeros, this gives the assertion. ut
Since Pn D

p
Dn=Dn�1 pn, the preceding assertions hold for the monic

polynomials Pn as well. In particular, the zeros of Pn and PnC1 strictly interlace.
The next proposition says that two arbitrary interlacing finite sequences are zero

sequences of some monic orthogonal polynomials.
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Proposition 5.35 Given real numbers �1; : : : ; �mC1; 
1; : : : ; 
m satisfying

�1 < 
1 < �2 < � � � < 
m < �mC1; (5.63)

there exists a positive definite sequence s D .sn/n2N0 such that s0 D 1 and a monic
OPS .Pn/n2N0 for s such that

Pm.x/ D .x � 
1/ � � � .x � 
m/ and PmC1.x/ D .x � �1/ � � � .x � �mC1/:
(5.64)

Proof By Favard’s Theorem 5.10, it suffices to show that there exist real sequences
.˛n/n2N0 and .ˇn/n2N0 such that ˛n > 0 for all n and a sequence .Pn/n2N0 of monic
real polynomials such that

PnC1.x/ D .x � ˇn/Pn.x/ � ˛nPn�1.x/; n 2 N0; (5.65)

where P�1.x/ D 0, P0.x/ D 1, and Pm and PmC1 are given by (5.64).
Since deg .PmC1 � xPm/ � m, there is unique real number ˇmC1 such that

Rm�1.x/ WD PmC1.x/� .x � ˇm/Pm.x/ (5.66)

has degree at most m � 1. From the assumption (5.63) it follows that Rm�1 changes
signs at the zeros of Pm. Hence there is at least one real zero of Rm�1 between
two zeros of Pm. Since deg Rm�1 � m � 1, there is precisely one zero of Rm�1
between two zeros of Pm. Since PmC1.
m/ < 0 by (5.63), we have Rm�1.
m/ < 0

by (5.66), so the leading coeefficient of Rm�1 is negative. Hence we can write
Rm�1 D �˛mPm�1 with ˛m > 0 for some unique monic real polynomialPm�1. Then,
by construction, (5.65) is satisfied for n D m and the zeros of Pm�1 and Pm strictly
interlace. Therefore, we can continue by induction and construct polynomials
Pm�2; : : : ;P1;P0 D 1 such that (5.65) is fulfilled for n D m� 1;m� 2; : : : ; 0:

To construct the polynomials Pn for n � m C 2 it suffices to choose numbers
˛n > 0 and ˇn 2 R and define Pn inductively by (5.65). ut
Corollary 5.36 For each monic polynomial P of degree m with m distinct real zeros
there exists a monic OPS .Pn/n2N0 for some positive definite sequence with s0 D 1

such that P D Pm.

5.7 Symmetric Moment Problems

As throughout, s D .sn/n2N0 is a real positive definite sequence.

Definition 5.37 We say that s is symmetric if s2nC1 D 0 for all n 2 N0. A measure
� on R is called symmetric if �.M/ D �.�M/ for all measurable sets M.
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Clearly, s is symmetric if and only if

Ls. p.x// D Ls. p.�x// for p 2 CŒx�: (5.67)

Further, if a measure � 2 MC.R/ is symmetric, its odd moments vanish, hence
its moment sequence is symmetric. Conversely, each symmetric positive definite
sequence s has a symmetric measure� 2Ms. (Indeed, if � 2Ms, then the measure
� defined by �.M/ D 1

2
.�.M/C �.�M// is symmetric and belongs to Ms.)

Proposition 5.38 Let s be a symmetric positive definite sequence. Then

pn.�x/ D .�1/npn.x/; qn.x/ D .�1/nC1qn.x/; bn D 0 for n 2 N0:

(5.68)

The operator V defined by .Vp/.x/ D p.�x/, p 2 CŒx�, extends to a self-adjoint
unitary operator on the Hilbert spaceHs and VXV�1 D �X.
Proof Let p; q 2 CŒx�. Using Eq. (5.67) we obtain

hVp; qis D Ls. p.�x/q.x// D Ls. p.x/q.�x// D h p;Vqis;
hVp;Vqis D Ls. p.�x/q.�x// D Ls. p.x/q.x// D h p; qis;

so V is a symmetric isometric linear operator on the dense subspace CŒx�. Hence V
extends by continuity to a self-adjoint unitary on Hs. Obviously, VXV�1 D �X.

Set Qpn WD .�1/nV. pn/. Since pn has degree n, Qpn has a positive leading coeffient.
Since V is unitary, .Qpn/n2N0 is an orthonormal basis of .CŒx�; h�; �is/. Therefore, by
the uniqueness assertion of Proposition 5.1, Qpn D pn, so that pn.�x/ D .�1/npn.x/.

Using Corollary 5.18 and Eq. (5.67) we derive for n 2 N0,

qn.�x/ D Ls;y

�
pn.y/� pn.�x/

y � .�x/
�
D �.�1/nLs;y

�
pn.�y/ � pn.x/

�y � x

�

D .�1/nC1Ls;y
�
pn.y/� pn.x/

y � x

�
D .�1/nC1qn.x/:

Finally, we prove that bn D 0. By (5.9) we have the three term recurrence relation

xpn.x/ D anpnC1.x/C bnpn.x/C an�1pn�1.x/:

Replacing x by �x, using that pk.�x/ D .�1/kpk.x/; and dividing by .�1/n we get

�xpn.x/ D �anpnC1.x/C bnpn.x/ � an�1pn�1.x/:

Adding both equations gives 2bnpn D 0. Hence bn D 0. ut
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5.8 Exercises

1. Let s be a positive definite real sequence and set Qs WD cs, where c > 0. Prove
the following for n 2 N0:

a. LQs D cLs and Dn.Qs/ D cnC1Dn.s/:
b. Qpn D c�1=2pn , Qqn D c1=2qn, and QPn D Pn, QQn D Qn.
c. Qan D an and Qbn D bn:
d. QAn.x; z/ D cAn.x; z/, QBn.x; z/ D Bn.x; z/, QCn.x; z/ D Cn.x; z/, QDn.x; z/ D

c�1Dn.x; z/.

Here all quantities with a tilde refer to the positive definite sequence Qs.
Hints: Use (5.3) for pn, Proposition 5.18 for qn; and Proposition 5.6 for an; bn.

2. Let T be a symmetric linear operator with domain D.T/ on a Hilbert space such
that TD.T/ 	 D.T/ and let e 2 D.T/. Define sn D hTne; ei for n 2 N0.

a. Show that s D .sn/n2N0 is a positive semidefinite sequence.
b. Show that there exists a positive Radon measure � 2M.R/ such that � 2

Ms.
c. Show that s is positive definite if and only if the span of vectors Tne; n 2 N0;

is infinite-dimensional.

3. What is the norm of the monic polynomial Pn.z/?
4. Let s be positive real sequence. Prove the following:

a. If pn.�x/ D .�1/npn.x/ for all n 2 N0, then s is symmetric.
b. If bn D 0 for all n 2 N0, then s is symmetric.

In the remaining exercises we develop important examples of orthogonal poly-
nomials. Detailed treatments can be found in standard books such as [Chi1] or [Is].

We begin with the Chebyshev polynomials Tn.

5. Show that for each n 2 N0 there is a unique polynomial Tn 2 RŒx� such that
Tn.x/ D cos.n arccos x/; x 2 R, or equivalently, Tn.cos �/ D cos.n�/; � 2 R.

6. Show that the polynomials Tn are uniquely defined by the recurrence relation
TnC1.x/ D 2xTn.x/� Tn�1.x/; n 2 N; with initial data T0.x/ D 1;T1.x/ D x:

7. Show that the leading coefficient of Tn is 2n�1 for n 2 N0.
8. Set s2n D .2n/Š

22n.nŠ/2
and s2nC1 D 0 for n 2 N0. Let � be the probability measure

on Œ�1; 1� defined by d�.x/ WD ��1.1 � x2/�1=2dx. Show that s D .sk/k2N0 is
a moment sequence with representing measure �.
Hint: Use [RW, p. 174 and p. 274].

9. Show that
R 1

�1 Tk.x/Tl.x/d�.x/ D 0 if k ¤ l,
R 1

�1 Tk.x/
2d�.x/ D 1

2
if k 2 N

and
R 1

�1 T0.x/
2d� D 1, that is, the orthonormal polynomials pn of the moment

sequence s are p0 D T0 and pn D
p
2Tn for n 2 N.
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Now we turn to the Hermite polynomials Hn. Define polynomials Hn by

HnC1.x/ D 2xHn.x/� 2nHn�1.x/; n 2 N; and H0.x/ D 1;H1.x/ D 2x:

10. Let s0 D 1, s2nC1 D 0; s2n D 2�n.2n� 1/ŠŠ WD 2�n � 1 � 3 � � � .2n� 1/ for n 2 N.
Let � be the probability measure on R given by d� D 1p

�
e�x2dx. Show that

s D .sk/k2N0 is a moment sequence with representing measure �.
11. Show that � is the unique representing measure of s.
12. Prove that

R
R
Hk.x/Hl.x/d�.x/ D 2kkŠıkl for k; l 2 N0; that is,

. 1p
2nnŠ

Hn.X//n2N0 is the sequence of orthonormal polynomials associated
with s.

13. Show that Hn.x/ D .�1/nex2 � d
dx

�n
e�x2 and d

dxHnC1.x/ D 2.nC 1/Hn.x/ for
n 2 N0:

Next we treat the Laguerre polynomials L˛n .x/, where ˛ > �1.
Define a sequence of polynomials L˛n by L˛0 D 1;L˛1 .x/ D �xC 1C ˛, and

L˛nC1.x/ D
�xC 2nC 1C ˛

nC 1 L˛n .x/�
nC ˛
nC 1 ; n 2 N:

14. Let sn D � .nC1C˛/
� .˛C1/ for 2 N0 and let � be the probability measure on Œ0;C1/

defined by d� D .� .˛ C 1//�1x˛e�xdx: Show that s is a moment sequence
with representing measure �.

15. Show that � is the only representing measure for s.
16. Show that

R1
0

L˛k .x/L
˛
l .x/d� D .˛C1/:::.˛Ck�1/

kŠ ıkl:

17. Show that L˛n .x/ D 1
nŠx

�˛ex
�
d
dx

�n
.xnC˛e�x/ for n 2 N0.

18. Show that the leading coefficient of L˛n .x/ is .�1/n
nŠ :

Finally, we develop the Legendre polynomials Rn.
Define a sequence of polynomials Rn by

.nC 1/PnC1.x/ D .2nC 1/xRn.x/ � nRn�1.x/; n 2 N; and R0.x/ D 1;R1.x/ D x:

19. Verify that the Lebesgue measure on the interval Œ�1; 1� has the moment
sequence s D .sk/k2N0 , where s2n D 2n

2nC1 and s2nC1 D 0.

20. Show that
R 1

�1 Rk.x/Rl.x/dx D 2
2kC1 ıkl for k; l 2 N0, that is,

pn.x/ D
q
kC 1

2
Rn.x/, n 2 N; are the orthonormal polynomials for s.

21. Show that Rn.x/ D .�1/n
2nnŠ

�
d
dx

�n
..1� x2/n/ for n 2 N0.
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5.9 Notes

The study of orthogonal polynomials is a large classical subject which is treated
in many books such as [Sz], [Chi1], [DX], [Is], [Sim2], [Sim3]. We do not make
an attempt to discuss the history of this subject and mention only a few highlights.
A number of formulas such as (5.6) and (5.7) go back to E. Heine (1878) [He].
Favard’s theorem is in [Fv], see [MA] for a discussion of the history of this result.
Proposition 5.35 was proved by B. Wendroff [Wen].



Chapter 6
The Operator-Theoretic Approach
to the Hamburger Moment Problem

In this chapter we begin the study of moment problems using self-adjoint operators
and self-adjoint extensions on Hilbert spaces. The operator-theoretic approach is a
powerful tool and it will be used in the next two chapters as well.

In Sect. 6.1, solutions of the Hamburger moment problem are related to spectral
measures of self-adjoint extensions of the multiplication operator X (Theorem 6.1).
In Sect. 6.3 we show that the moment problem is determinate if and only if the
operator X is essentially self-adjoint (Theorem 6.10) and we characterize von
Neumann solutions (Theorem 6.13). The multiplication operator X is unitarily
equivalent to the Jacobi operator T. In Sect. 6.2 the adjoint of the operator T is
analyzed, while in Sect. 6.4 various determinacy conditions (Theorem 6.16 and
Corollary 6.19) are derived. In Sect. 6.5, all self-adjoint extensions of the symmetric
operator T on the Hilbert space l2.N0/ are described (Theorem 6.23). In Sect. 6.6
we prove Markov’s theorem (Theorem 6.29) for determinate moment sequences.
Section 6.7 gives a short disgression into continued fractions.

Throughout this chapter, s D .sn/n2N0 is a positive definite real sequence.

6.1 Existence of Solutions of the Hamburger
Moment Problem

In this section we rederive the existence theorem for the Hamburger moment
problem from the spectral theorem for self-adjoint operators. This is not only the
shortest, but probably also the most elegant and natural approach to this result.

Theorem 6.1 Let s be a positive definite real sequence. Then the Hamburger
moment problem for s has a solution.

© Springer International Publishing AG 2017
K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics 277,
DOI 10.1007/978-3-319-64546-9_6
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Let A be a self-adjoint operator on a Hilbert space G such thatHs is a subspace
of G and X 	 A: If EA denotes the spectral measure of A, then

�A.�/ D hEA.�/1; 1iG (6.1)

is a representing measure for s: Every representing measure for s is of this form.

Proof Suppose that A is a self-adjoint extension of X on G. By the spectral theorem
(see Appendix A.7 or [Sm9]), A has a spectral measure EA. Since X 	 A and hence
.X/n 	 An, the polynomial 1 is in the domain D.An/ and we have

Z
R

xn d�A.x/ D
Z
R

xndhEA.x/1; 1i D hAn1; 1i D h.X/n1; 1is D hxn; 1is D Ls.x
n/ D sn

for n 2 N0. This shows that �A is a solution of the moment problem for s.
That each solution is of the form (6.1) follows from Proposition 6.2 below.
To prove that the moment problem for s has a solution it therefore suffices to show

that the symmetric operator X has a self-adjoint extension. Define .Jp/.x/ D p.x/,
p 2 CŒx�. Then J is a conjugation (see (A.28)) on CŒx� (that is, J is antilinear, J2 D I,
and hJp; Jqis D hq; pis for p; q 2 CŒx�) which commutes with X (that is, JXp D XJp
for p 2 CŒx�). Clearly, J extends by continuity to a conjugation on Hs. Hence, by
Proposition A.43, X has a self-adjoint extension on the Hilbert space Hs. ut
Proposition 6.2 Let � be a representing measure for s. Then

h p; qis D h p; qiL2.R;�/ for p; q 2 CŒx�:

The inclusion CŒx� 	 L2.R; �/ extends to a unitary operator of Hs on a closed
subspace of L2.R; �/: We identify Hs with this closed subspace via this unitary
mapping. Then the operator A� on L2.R; �/ defined by

.A� f /.x/ D xf .x/ for f 2 D.A�/ WD f f 2 L2.R; �/ W xf .x/ 2 L2.R; �/g (6.2)

is a self-adjoint extension of the symmetric operator X and

�.�/ D �A�.�/ � hEA�.�/1; 1iL2.R;�/:

Proof From � 2MC.R/ it follows that CŒx� 	 D.A�/. Obviously, X 	 A�. Since
� is a representing measure for s, we have Ls. f / D

R
f d� for f 2 CŒx�, so that

h p; qis D Ls. pq/ D
Z

p.x/q.x/ d� D h p; qiL2.R;�/:

Hence the inclusion CŒx� 	 L2.R; �/ can be extended by continuity to a unitary
embedding of Hs into G WD L2.R; �/.
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From Hilbert space operator theory it is known (see e.g. [Sm9, Example 5.2]) that
the operator A� is self-adjoint and that the spectral projection EA�.M/ acts as the
multiplication operator by the characteristic function �M of M on L2.R; �/. Hence
�.M/ D R �M.x/d� D hEA�.�/1; 1iL2.R;�/. The latter proves that � D �A� . ut

The following corollary reformulates the second assertion of Theorem 6.1 in
terms of the Jacobi operator T associated with s:

Corollary 6.3 The representing measures of s are precisely the measures of the
form

�B.�/ D s0hEB.�/e0; e0iF ; (6.3)

where B is a self-adjoint extension of T on a possibly larger Hilbert space F and
EB is the spectral measure of B.

Proof Recall from Sect. 5.3 that X D U�1TU, where U is the unitary of Hs onto
l2.N0/ defined by Upn D en, n 2 N0: The sets of self-adjoint extensions A of X
and B of T are in one-to-one correspondence by a unitary equivalence. It suffices
to extend U to a unitary, denoted again by U, of G onto F such that A D U�1BU.
Then EA D U�1EBU. Since p0.x/ D s�1=2

0 , we have U1 D s1=20 e0 and hence

�A.�/ D hEA.�/1; 1iG D hU�1EB.�/U 1; 1iG
D hEB.�/U1;U1iF D s0hEB.�/e0; e0iF D �B: ut

Note that the measure hEB.�/e0; e0iF in (6.3) is always a probability measure,
since e0 is a unit vector.

By Proposition 6.2, for each representing measure � the canonical Hilbert space
Hs is a closed subspace of L2.R; �/ and X is a restriction of the self-adjoint operator
A� on L2.R; �/. We shall see in Sect. 7.4 that for most solutions in the indeterminate
case Hs is a proper subspace of L2.R; �/.

The following definition gives a name for those solutions obtained from self-
adjoint extensions acting on the same Hilbert space Hs.

Definition 6.4 A measure� 2Ms is called a von Neumann solution of the moment
problem for s if CŒx� is dense in L2.R; �/, or equivalently, if the embedding of CŒx�
into L2.R; �/ extends to a unitary operator of Hs onto L2.R; �/.

6.2 The Adjoint of the Jacobi Operator

Recall from Sect. 5.3 that the Jacobi operator T � TJ is the symmetric linear
operator with dense domain d in the Hilbert space l2.N0/ given by

.T�/n D an�nC1 C bn�n C an�1�n�1; n 2 N0; (6.4)
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for .�n/ 2 d, where ��1 WD 0: The next proposition shows that the adjoint operator
T� is the “maximal operator” on l2.N0/ which acts by the same formula (6.4). For
this we essentially use the Wronskian defined by (5.40) and Lemma 5.23.

Proposition 6.5 The adjoint operator T� is given by

T�� D T � for � 2 D.T�/ D f� 2 l2.N0/ W T � 2 l2.N0/g:

For �; ˇ 2 D.T�/, the limit W.�; ˇ/1 WD limn!1 W.�; ˇ/n exists and

hT��; ˇi � h�;T�ˇi D W.�; ˇ/1 : (6.5)

Proof Let � 2 l2.N0/ be such that T � 2 l2.N0/. A straightforward computation
shows that hTˇ; �i D hˇ; T �i for ˇ 2 d. Therefore, � 2 D.T�/ and T�� D T � .

Conversely, let � 2 D.T�/ and n 2 N0. Using (6.4) (or (5.22)) we derive

hen;T��i D hTen; �i D an�nC1 C bn�n C an�1�n�1 D .T��/n;

so that T�� D T � . This proves the first assertion concerning T�.
Further, by (5.41) we have

nX
kD0

Œ.T �/kˇk � �k.T ˇ/k/� D W.�; ˇ/n:

Since �; ˇ; T �; T ˇ 2 l2.N0/, the limit n!1 in the preceding equality exists and
we obtain Eq. (6.5). ut
Proposition 6.6 Suppose that z 2 C.

(i) N .T��zI/ D f0g if pz … l2.N0/ andN .T��zI/ D C�pz if pz 2 l2.N0/.
(ii) If h 2 N .X��zI/ and hh; 1is D 0, then h D 0.
Proof

(i) From Proposition 6.5 it follows that a sequence � is in N .T��zI/ if and only if
� 2 l2.N0/, T � 2 l2.N0/ and the recurrence relation (5.29) holds for n 2 N0,
where ��1 D 0. Since ��1 D 0, any solution � of (5.29) is uniquely determined
by the number �0, so we have � D �0pz. This implies the assertions.

(ii) Passing to the unitarily equivalent operator T the assertion says that �0 D 0 and
� 2 N .T��zI/ imply � D 0. Since � D �0pz, this is indeed true. ut

Corollary 6.7 The symmetric operator T (or equivalently X) has deficiency indices
.0; 0/ or .1; 1/. The operator T (or X) is essentially self-adjoint if and only if pz is
not in l2.N0/, or equivalently

P1
nD0 jpn.z/j2 D1, for one (hence for all) z 2 CnR.

Proof Since pn.x/ 2 RŒx� and hence pn.z/ D pn.z/, we have pz 2 l2.N0/ if and
only if pz 2 l2.N0/ for z 2 C. Therefore, by Proposition 6.6(i), T has deficiency
indices .0; 0/ or .1; 1/ and T has deficiency indices .0; 0/ if and only if pz … l2.N0/

for some (then for all) z 2 CnR. ut
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6.3 Determinacy of the Hamburger Moment Problem

We begin with two technical lemmas which are used in the proofs of Theorems 6.10
and 6.13 below.

Lemma 6.8 If A and B are different self-adjoint extensions of the multiplication
operator X onHs, then h.A�zI/�11; 1is ¤ h.B�zI/�11; 1is for all z 2 CnR.

Proof Fix z 2 CnR and assume to the contrary that

h.A�zI/�11; 1is D h.B�zI/�11; 1is: (6.6)

Put f WD .A�zI/�11 � .B�zI/�11. Since X 	 A and X 	 B, we have A 	 X� and
B 	 X�. Hence f 2 D.X�/ and

.X��zI/f D .X��z/.A�zI/�11 � .X��zI/.B�zI/�11 D 1 � 1 D 0;

so f 2 N .X��zI/. Since h f ; 1is D 0 by (6.6), Proposition 6.6(ii) yields f D 0.
Set gWD.A�zI/�11. If g were in D.X /, then for h 2 N .X��zI/ we would get

0 D h.X� � zI/h; gis D hh; .X�zI/gis D hh; .A�zI/.A�zI/�11is D hh; 1is;

so h D 0; again by Proposition 6.6(ii). Thus, N .X��zI/ D f0g. This is a
contradiction, since X has two different self-adjoint extensions and hence its
deficiency indices are .1; 1/ by Proposition A.42 and Corollary 6.7. Hence g is not
in D.X /.

Let S denote the restriction of A to D.X/ C C�g. Then S is symmetric, because
A is self-adjoint. Since X, hence X, has deficiency indices .1; 1/ by Corollary 6.7
and g … D.X/, S has deficiency indices .0; 0/. Therefore S is self-adjoint and hence
S D A. (In fact, the operator S is closed, but this is not needed here.)

Since f D 0 and hence g D .B�zI/�11, the same reasoning with B in place of A
shows that S D B. Thus A D B, which contradicts our assumption and shows that
Eq. (6.6) cannot hold. ut
Lemma 6.9 Suppose that � 2 MC.R/ is a finite measure. Let fz.x/ denote the
function 1

x�z from L2.R; �/ for z 2 CnR. Then Ez0 D Lin f. fz0/k; . fz0 /k W k 2 N0g
for z0 2 CnR and E D Lin f fz W z 2 CnRg are dense linear subspaces of L2.R; �/:
Proof Let ' 2 L2.R; �/. Since�.R/ <1, there is a finite complex Radon measure
�' on R given by d�' D 'd�. Its Stieltjes transform I�' .z/ WD

R
R

1
x�z d�'.x/ is

holomorphic on CnR: Using Lebesgue’s convergence theorem we obtain

.I�' /
.k/.z/ D kŠ

Z
R

1

.x � z/kC1
d�'.x/ for k 2 N0: (6.7)
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Let us begin with Ez0 and assume that '?Ez0 : Let k 2 N0. Then, by (6.7),

0 D kŠ h'; . fz0/kC1iL2.R;�/ D kŠ
Z

'.x/

.x � z0/kC1
d�.x/ D .I�' /.k/.z0/:

Similarly, .I�' /
.k/.z0/ D 0 for k 2 N0. Therefore, since I�' is holomorphic on CnR,

we conclude that I�' .z/ D 0 in the upper half plane and in the lower half-plane. That
is, the Stieltjes transform I�' is zero on CnR. From Theorem A.13 it follows that
the measure �' is zero.

We prove that ' D 0 �-a.e. on R. For " > 0 put M" WD fx 2 R W j'.x/j � "g:
Then, since the measure �' is zero and the measure � is positive, we derive

0 D
Z
M"

'.x/ d�' D
Z
M"

j'.x/j2d� �
Z
M"

"2d�.x/ D "2�.M"/ � 0:

Hence �.M"/ D 0. Letting " ! C0, we get �.fx 2 R W '.x/ ¤ 0g/ D 0; that is,
' D 0 �-a.e.. Thus, ' D 0 in L2.R; �/. This proves that Ez0 is dense in L2.R; �/.

Now assume that '?E: Then '?fz means that I�' .z/ D 0. Hence the Stieltjes
transform I�' .z/ is zero on CnR, so that �' D 0 by Theorem A.13. As shown in the
preceding paragraph this implies 'D0. This proves that E is dense in L2.R; �/: ut

The following theorem gives an operator-theoretic answer to the uniqueness
problem for the Hamburger moment problem.

Theorem 6.10 The moment problem for a positive definite sequence s is determi-
nate if and only if the multiplication operator X (or equivalently, the corresponding
Jacobi operator T) is essentially self-adjoint. If this holds and � is the unique
representing measure for s, then CŒx� is dense in L2.R; �/, that is, Hs Š L2.R; �/,
so � is a von Neumann solution of the moment problem for s.

Proof First assume that X is not essentially self-adjoint. Then, by Corollary 6.7,
X has deficiency indices .1; 1/. Therefore, by Proposition A.42, X has at least two
different self-adjoint extensionsA and B on Hs. By Theorem 6.1,�A.�/DhEA.�/1; 1is
and�B.�/DhEB.�/1; 1is are representing measures for s. If �A were equal to �B, then
for z 2 CnR the functional calculus would yield

h.A�zI/�11; 1is D
Z
.x � z/�1d�A.x/ D

Z
.x � z/�1d�B.x/ D h.B�zI/�11; 1is;

which contradicts Lemma 6.8. Thus �A ¤ �B and s is indeterminate.
Suppose now that X is essentially self-adjoint. Fix z 2 CnR. Since X is

essentially self-adjoint, .X�zI/CŒx� is dense in Hs, again by Proposition A.42.
Hence there exists a sequence .rn.x// of polynomials such that 1 D limn.x�z/rn
in Hs. (The sequence .rn/ may depend on the number z, but it is crucial that it
is independent of any representing measure.) Let � be an arbitrary representing
measure for s. Since � is finite, the bounded function 1

x�z is in L2.R; �/\L1.R; �/.
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Using the equations Ls. p/ D
R
p d� for p 2 CŒx�; k1k2

L2.R;�/
D s20, and the Hölder

inequality we derive

jI�.z/ � Ls.rn/j2 D
ˇ̌
ˇ̌ Z

R

.x � z/�1 d�.x/�
Z
R

rn.x/ d�.x/

ˇ̌
ˇ̌2

�
�Z

R

j.x � z/�1 � rn.x/j d�.x/
�2

� k1k2L2.R;�/
Z
R

j.x�z/�1 � rn.x/j2 d�.x/ (6.8)

D s20

Z
R

jx�zj�2j1 � .x�z/rn.x/j2 d�.x/

� s20 jIm zj�2
Z
R

j1� .x�z/rn.x/j2 d�.x/

D s20 jIm zj�2 k1 � .x�z/rn.x/k2s ! 0:

Therefore I�.z/ D limn Ls.rn/ is independent of the representing measure �. By
Theorem A.13 the values of the Stieltjes transform I� determine the measure
�. Hence � is uniquely determined by s, that is, the moment problem for s is
determinate.

The preceding inequalities, especially (6.8), imply that for z 2 CnR the function
fz.x/ D 1

x�z is in the closure of CŒx� in L2.R; �/. Since the span E of such functions
is dense in L2.R; �/ by Lemma 6.9, so is CŒx�. ut
Corollary 6.11 Suppose that � 2 MC.R/. Then the moment sequence s of � is
determinate if and only if CŒx� is dense in L2.R; .1C x2/d�/.

Proof Without loss of generality we can assume that s is positive definite. Indeed,
otherwise � has finite support (by Proposition 3.11), hence the image of CŒx�
coincides with L2.R; .1C x2/d�/, and s is determinate by Corollary 4.2.

By Theorem 6.10, s is determinate if and only if X is essentially self-adjoint, or
equivalently by Proposition A.42, .x C z/CŒx� is dense in Hs for z D ˙i. Recall
that Hs is a subspace of L2.R; �/ by Proposition 6.2 and Hs Š L2.R; �/ if s
is determinate. Therefore, s is determinate if and only if .x C z/CŒx� is dense in
L2.R; �/ for z D ˙i. It is easily checked that this holds if and only if CŒx� is dense
in L2.R; .1C x2/d�/. (It suffices to approximate all functions of Cc.R/.) ut

By Proposition A.42, the operator X is essentially self-adjoint if .x ˙ i/CŒx� is
dense in Hs. In the present situation we have the following stronger criterion.

Corollary 6.12 If there exist a number z0 2 CnR and a sequence .rn.x//n2N of
polynomials rn 2 CŒx� such that

1 D lim
n!1.x � z0/rn.x/ in Hs;

then the moment problem for s is determinate.
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Proof Fix p 2 CŒx�. Since z0 is a zero of the polynomial p.x/�p.z0/, there is a
polynomial q 2 CŒx� such that p.x/�p.z0/ D .x�z0/q.x/. Then

.x�z0/.qCp.z0/rn/ D p�p.z0/C p.z0/.x�z0/rn ! p � p.z0/C p.z0/1 D p:

Therefore, because CŒx� is dense in Hs, .X�z0I/CŒx� is dense in Hs. Since X has
equal deficiency indices by Corollary 6.7, X is essentially self-adjoint. Hence s is
determinate by Theorem 6.10. ut
Theorem 6.13 For a measure � 2Ms the following statements are equivalent:

(i) � is von Neumann solution.
(ii) fz.x/ WD 1

x�z is in the closure of CŒx� in L
2.R; �/ for all z 2 CnR.

(iii) fz0 .x/ WD 1
x�z0

is in the closure of CŒx� in L2.R; �/ for one z0 2 CnR.

Proof
(i)!(ii) That � is a von Neumann solution means that CŒx� is dense in L2.R; �/.

Hence the function fz 2 L2.R; �/ is in the closure of CŒx�.

(ii)!(iii) is trivial.

(iii)!(i) Set b WD Im z0. Let G denote the closure of CŒx� in L2.R; �/. We first
prove by induction on k that f kz0 2 G for all k 2 N. For k D 1 this is true by
assumption. Suppose that f kz0 2 G. Then there is a sequence . pn/n2N of polynomials
such that pn ! f kz0 in L2.R; �/. We can write pn.x/ D pn.z0/ C .x�z0/qn.x/ with
qn 2 CŒx�. Using that j fz0.x/j � jbj�1 on R we derive

k f kC1z0 .x/ � pn.z0/.x�z0/�1�qn.x/kL2.�/
D k fz0 .x/. f kz0.x/ � pn.z0/�.x � z0/qn.x//kL2.�/
D k fz0 .x/. f kz0.x/ � pn.x//kL2.�/
� jbj�1k f kz0 .x/ � pn.x/kL2.�/ ! 0 as n!1:

Since fz0 2 G by assumption and hence pn.z0/.x�z0/�1�qn 2 G, this shows that
f kC1z0 2 G; which completes the induction proof.

Clearly, f kz0 2 G implies that f kz0 2 G. Hence the vector space Ez0 from Lemma 6.9
is contained in G. Since Ez0 is dense in L2.R; �/ by Lemma 6.9, CŒx� is dense in
L2.R; �/. Hence � is a von Neumann solution. ut

We close this section by developing an operator-theoretic construction of inde-
terminate moment sequences.

Example 6.14 For ˛ 2 R, let S˛ denote the operator �i ddx with dense domain

D.S˛/ D f f 2 ACŒ0; 2�� W f 0 2 L2.0; 2�/; f .2�/ D ei ˛2� f .0/ g
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of L2.0; 2�/ with Lebesgue measure. Here ACŒ0; 2�� are the absolutely continuous
functions on Œ0; 2��. (Recall that a function f on Œ0; 2�� is called absolutely
continuous if there exists a function h 2 L1.0; 2�/ such that f .x/ D f .a/C R x

a f .t/dt
on Œ0; 2��; in this case Tf D �i h.) Then S˛ is a self-adjoint operator with spectrum
�.S˛/ D f˛Ck W k 2 Zg, see e.g. [Sm9, p. 16, 34]. Each number ˛Ck is eigenvalue
of multiplicity one with normalized eigenfunction '˛;k.x/ D 1p

2�
ei.˛Ck/x and the

functions '˛;k; k 2 Z; form an orthonormal basis of the Hilbert space L2.0; 2�/:
(The latter follows from the spectral theory of self-adjoint operators; it can also be
verified directly. That the span of functions '˛;k; k 2 Z; is dense for ˛ 2 R follows
at once from the denseness of functions '0;k; k 2 Z:)

We fix a function f 2 C1
0 .0; 2�/; f ¤ 0; and define

sn WD h.�i/nf .n/; f i; n 2 N0; and s D .sn/n2N0 :

Since f .n/.0/ D f .n/.2�/ D 0 for n 2 N0, f is in the domain of each power .S˛/n

and .S˛/nf D .�i/nf .n/ for ˛ 2 R and n 2 N0. We develop f with respect to the
orthonormal basis f'˛;k W k 2 Zg and write f D P

k c˛;k'˛;k. For n 2 N0 we have
.S˛/nf DPk c˛;n.˛ C k/n'˛;k and hence

sn D h.�i/nf .n/; f i D h.S˛/k; f i D
�X
k2Z

c˛;k.˛ C k/n'˛;k;
X
l2Z

c˛;l'˛;l

�

D
X
k2Z

c2˛;k.˛ C k/n D
Z

xnd�˛; where �˛ WD
X
k2Z

c2˛;kı˛Ck:

Therefore, s is a moment sequence and �˛; ˛ 2 R; is a representing measure of s.
Let ˛; ˇ 2 Œ0; 1/; ˛ ¤ ˇ: Since f ¤ 0, there is a k 2 Z such that c2˛;k ¤ 0. Hence

�˛.f˛C kg/ ¤ 0, while �ˇ.f˛C kg/ D 0: Thus �˛ ¤ �ˇ and s is indeterminate. ı

6.4 Determinacy Criteria Based on the Jacobi Operator

The following lemma is a main technical ingredient of the proof of Theorem 6.16.

Lemma 6.15 Suppose that c D .cn/; ' D .'n/;  D . n/; 
 D .
n/, and � D .�n/
are sequences from l2.N0/. If f D . fn/n2N0 is a complex sequence satisfying

fnC1 D cn C 'n
nX

kD0

k fk C  n

nX
kD0

�k fk for n 2 N0; (6.9)

then f 2 l2.N0/.
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Proof Let " > 0. Since c; ';  ; 
; � 2 l2.N0/, there exists an l 2 N such that

mX
nDl

jcnj2 C k
k2
mX
nDl

j'nj2 C k�k2
mX
nDl

j nj2 � "

for all m � l. Suppose that m � l. Using the inequality

ˇ̌
ˇ̌ nX
kD0


k fk

ˇ̌
ˇ̌2 �

� nX
kD0
j
kj2

�� nX
kD0
j fkj2

�
� k
k2

mX
jD0
j fkj2; m � n;

we derive

mX
nDl

ˇ̌
ˇ̌'n

nX
kD0


k fk

ˇ̌
ˇ̌2 �

mX
nDl

j'nj2
ˇ̌
ˇ̌ nX
kD0


k fk

ˇ̌
ˇ̌2 � k
k2

mX
jD0
j fkj2

mX
nDl

j'nj2 � "
mX
jD0
j fkj2

and similarly

mX
nDl

ˇ̌
ˇ̌ n

nX
kD0

�k fk

ˇ̌
ˇ̌2 � "

mX
jD0
j fkj2:

From the preceding two inequalities and Eq. (6.9) we therefore obtain

1

4

mX
nDl

j fnC1j2 �
mX

kDl

jckj2 C
mX

nDl

ˇ̌
ˇ̌'n

nX
kD0


k fk

ˇ̌
ˇ̌2 C

mX
nDl

ˇ̌
ˇ̌ n

nX
kD0

�k fk

ˇ̌
ˇ̌2 � "C 2"

mX
jD0

j fkj2

and hence

�1
4
� 2"�

mX
nDl

j fnC1j2 � "C 2"
l�1X
jD0
j fkj2 for m � l:

Choosing " < 1
8

we conclude that f is in l2.N0/. ut
The next theorem sharpens Corollary 6.7 and it is the main result of this section.

Theorem 6.16 For any positive definite sequence s the following are equivalent:

(i) The moment problem for s is indeterminate.
(ii) The Jacobi operator T D TJ is not essentially self-adjoint.

(iii) pz 2 l2.N0/ for some (equivalently, for all) z 2 CnR.
(iv) qz 2 l2.N0/ for some (equivalently, for all) z 2 CnR.
(v) pz 2 l2.N0/ and qz 2 l2.N0/ for some (equivalently, for all) z 2 R.

(vi) pz 2 l2.N0/ and qz 2 l2.N0/ for some (equivalently, for all) z 2 C.
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Proof First we note that (i)$(ii) by Theorem 6.10, (ii)$(iii) by Corollary 6.7,
and (iii)$(iv) by Corollary 5.22. Further, (vi)!(iv) and (vi)!(v) are trivial. The
proof is complete once we have shown that (iii) and (iv) together imply (v) and that
(v) implies (vi). For this it suffices to prove the following assertion:

If pz and qz are in l2.N0/ for some z 2 C, then this holds for all x 2 C.
Indeed, suppose that pz and qz are in l2.N0/. Fix x 2 C. Set fn D pn.x/ and

cn D pnC1.z/; 'n D .x � z/qnC1.z/;  n D .z � x/pnC1.z/; 
n D pn.z/; �n D qn.z/

for n 2 N0. Since pz; qz 2 l2.N0/, the sequences c D .cn/; ' D .'n/;  D
. n/; 
 D .
n/, and � D .�n/ are in l2.N0/. Further, from the identity (5.53) it
follows that

pnC1.x/ D pnC1.z/C .x�z/qnC1.z/
nX

kD0
pk.z/pk.x/C .z�x/pnC1.z/

nX
kD0

qk.z/pk.x/:

This means that Eq. (6.9) holds. Therefore, all assumptions of Lemma 6.15 are
fulfilled, so we obtain px D . fn/ 2 l2.N0/. Replacing (5.53) by (5.54) and
proceeding verbatim in the same manner we derive that qx 2 l2.N0/. ut
Remark 6.17 The equivalence of conditions (i)–(iv) of Theorem 6.16 was obtained
by general operator-theoretic considerations. For the description of self-adjoint
extensions in Sect. 6.5 we need that p0 and q0 are in l2.N0/ if s is indeterminate. This
is more tricky and follows from the implication (i)!(vi) and also from Lemma 7.1
proved in the next chapter. ı

Combining Theorem 6.16 (i)!(vi), Proposition 6.5, and Lemma 5.16 we obtain
the following important corollary.

Corollary 6.18 If s is an indeterminate moment sequence, then for all (!) z 2 C the
sequences pz D . pn.z//n2N0 and qz D .qn.z//n2N0 are in D.T�/,

T�pz D zpz and T�qz D s1=20 e0 C zqz : (6.10)

The next corollary contains another sufficient condition for determinacy.

Corollary 6.19 If
P1

nD0 a�1
n D 1, then the Jacobi operator T is essentially self-

adjoint and the moment problem is determinate.

Proof Assume to the contrary that T is not essentially self-adjoint. Then, by
Theorem 6.16, pz 2 l2.N0/ and qz 2 l2.N0/ for z 2 CnR. Since

a�1
n D pn.z/qnC1.z/� pnC1.z/qn.z/;
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by formula (5.52), we derive

1X
nD1

a�1
n D

1X
nD1
Œ pn.z/qnC1.z/ � pnC1.z/qn.z/�

�
� 1X

nD1
jpn.z/j2

�1=2� 1X
nD1
jqnC1.z/j2

�1=2
C
� 1X

nD1
jpnC1.z/j2

�1=2� 1X
nD1
jqn.z/j2

�1=2

� kpzkl2.N0/ kqzkl2.N0/ C kqzkl2.N0/ kpzkl2.N0/ <1;
which contradicts the assumption

P1
nD0 a�1

n D 1. ut
Remark 6.20 Under additional assumptions a converse to Corollary 6.19 holds (see
[Bz, Theorem 1.5, p. 507]): Suppose that the sequence .bn/n2N0 is bounded and
an�1anC1 � a2n for n � n0 and some n0 2 N. If

P1
nD0 a�1

n < 1, the Jacobi
operator T is not essentially self-adjoint and the moment problem is indeterminate. ı

In Sect. 4.2 Carleman’s theorem 4.3 was derived from the Denjoy–Carleman
theorem 4.4 on quasi-analytic functions. Now we give an operator-theoretic proof
of Theorem 4.3 which is based on Corollary 6.19.

Second Proof of Carleman’s Theorem 4.3(i) If s0 > 0 and .sn/ satisfies Carleman’s
condition, then so does .sns�1

0 /. Hence we can assume that s0 D 1. Then,
by Corollary 5.7, pn has the leading coefficient .a0 : : : an�1/�1. Therefore, since
hxk; pnis D 0 for 0 � k < n, we have

h.a0 : : : an�1/�1xn; pnis D h pn; pnis D 1:
From the Cauchy–Schwarz inequality we obtain

1 � k.a0 : : : ; an�1/�1xnk2skpnk2s D .a0 : : : an�1/�2s2n;

so that

s
� 1
2n

2n � .a0 : : : an�1/�
1
n ; n 2 N: (6.11)

Stirling’s formula (see e.g. [RW, p. 45]) yields . ne /
n � nŠ and hence . 1nŠ /

1=n � e
n :

Using this fact and the arithmetic-geometric mean inequality we derive

�
1

a0
: : :

1

an�1

� 1
n

D
�
1

nŠ

� 1
n
�
1

a0

2

a1
: : :

n

an�1

� 1
n

� e

n

1

n

nX
kD1

k

ak�1
: (6.12)

Let us fix N 2 N. For k 2 N; k < N, we get

NX
nDk

k

n2
�

NX
nDk

2k

n.nC 1/ � 2k
NX

nDk

�
1

n
� 1

nC 1
�
D 2k

�
1

k
� 1

N C 1
�
< 2:

(6.13)
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Using first (6.11) and (6.12) and finally (6.13) it follows that

NX
nD1

s
� 1
2n

2n �
NX

nD1

e

n2

nX
kD1

k

ak�1
D

NX
kD1

NX
nDk

e

n2
k

ak�1
�

NX
kD1

e

ak�1

NX
nDk

k

n2
� 2e

N�1X
kD0

1

ak
:

Therefore, the assumption
P1

nD1 s
�1=2n
2n D 1 implies that

P1
nD1 a�1

n D 1. Hence
s is determinate by Corollary 6.19. ut

The case when a Jacobi operator is bounded is clarified by the next proposition.
In this case it is obvious that T is essentially self-adjoint, so s is determinate.

Proposition 6.21 The Jacobi operator T is bounded if and only if both sequences
a D .an/n2N0 and b D .bn/n2N0 are bounded.

Proof If T is bounded, the sequences a and b are bounded, since

jan�1j2 C jbnj2 C janC1j2 D kanenC1 C bnen C an�1en�1k2 D kTenk2 � kTk2:

Moreover, supn janj � kTk and supn jbnj � kTk.
Conversely, assume that both sequences a and b are bounded, say janj � M and

jbnj � M for n 2 N0. Let � 2 d. Using the triangle inequality in l2.N0/ we derive

kT�k D �X
n
jan�n�1 C bn�n C an�1�n�1j2/1=2

� �X
n
jan�n�1j2

�1=2 C �X
n
jbn�nj2/1=2 C

�X
n
jan�n�1j2

�1=2 � 3Mk�k;
that is, T is bounded and kTk � 3M: ut

6.5 Self-Adjoint Extensions of the Jacobi Operator

If a moment sequence is determinate, the Jacobi operator T is essentially self-adjoint
by Theorem 6.10 and hence its closure is the unique self-adjoint extension of T.

Throughout this section, s is an indeterminate moment sequence. By Theo-
rem 6.10 and Corollary 6.7, T has deficiency indices .1; 1/. Our aim is to describe
all self-adjoint extensions of the symmetric operator T on the Hilbert space Hs.

Recall from Corollary 6.18 that for each z 2 C the sequences pz; qz are in D.T�/
and satisfy T�pz D zpz and T�qz D s1=20 e0 C zqz: In particular,

T�p0 D 0; T�q0 D s1=20 e0; and p0.z/ D s�1=2
0 ; q0.0/ D 0:

To simplify some computations we set p WD s1=20 p0 and q WD s�1=2
0 q0: Then

T�p D 0; T�q D e0; and p D .1; : : : /; q D .0; : : : /: (6.14)
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These properties of p and q will play an essential role in what follows.
Let PC denote the direct sum. Recall that T is the closure of the operator T.

Lemma 6.22 D.T�/ D D.T/ PCC � q0 PCC � p0:
Proof Obviously,D.T/CC �q0CC �p0 D D.T/CC �qCC �p 	 D.T�/. It suffices
to prove the converse inclusion of the latter.

Using (6.14) and the fact that the operator T is symmetric we compute

hT�.' C c0qC c1p/;  C d0qC d1pi � h' C c0qC c1p;T
�. C d0qC d1p/i

D hT' C c0e0;  C d0qC d1pi � h' C c0qC c1p;T C d0e0i
D h'; d0e0i C hc0e0;  C d1pi � hc0e0;  i � h' C c1p; d0e0i
D '0d0 C c0 .  0 C d1 / � c0 0 � .'0 C c1/ d0 D c0 d1 � c1 d0 (6.15)

for arbitary '; 2 D.T/ and c0; c1; d0; d1 2 C.
Since T has deficiency indices .1; 1/, we have dim D.T�/=D.T/ D 2 by formula

(A.27) in Appendix A.7. Therefore, to prove that D.T�/ 	 D.T/C C � qC C � p it
suffices to show the vectors q and p are linearly independent modulo D.T/. Indeed,
if c0qC c1p 2 D.T/, then

hT�.c0qC c1p/; d0qC d1pi D hc0qC c1p;T
�.d0qCd1p/i

and hence c0 d1 � c1 d0 D 0 by (6.15) for arbitrary d0; d1 2 C. Therefore, c0 D
c1 D 0, so q and p are linearly independent modulo D.T/. ut
Theorem 6.23 The self-adjoint extensions of the Jacobi operator T on Hs Š
l2.N0/ are precisely the operators Tt D T�dD.Tt/, t 2 R [ f1g, where

D.Tt/ D D.T/ PCC � .q0 C tp0/ for t 2 R; D.T1/ D D.T/ PCC � p0: (6.16)

Further, if the symmetric operator T is positive, so is the self-adjoint operator T1.

Proof Let A be a self-adjoint extension of T on the Hilbert space Hs. Because T 	 A
and hence T� � A� D A, the operator A is completely described by its domain
D.A/. Since T has deficiency indices .1; 1/ and hence dim D.T�/=D.T/ D 2, we
conclude that dim D.A/=D.T/ D 1. Thus, up to complex multiples, there exists a
unique 
 2 D.A/ which is not in D.T/. By Lemma 6.22 the vector 
 can be chosen
to be of the form 
 D c0q0 C c1p0 2 D.A/: Further, upon scaling we can write

 D s0qC tp with t 2 C or 
 D p.

First we treat the case 
 D s0q C tp. Let c0; d0; d1 2 C and  2 D.T/. Since
' C c0
 D ' C c0s0qC c0tp 2 D.A/ and A 	 T�, it follows from (6.15) that

hA.' C c0
/;  C d0qC d1pi � h' C c0
;T
�. C d0qCd1p/i

D c0.s0 d1�t d0 /: (6.17)
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Let d0qCd1p be a nonzero vector in D.A/. Then d0qCd1p is a multiple of 
, so that
s0d1 D d0t and d0 ¤ 0. Hence c0.s0d1 � t d0/ D c0s0d0. t � t/: Therefore it follows
from (6.17) that the operator A is symmetric if and only if (6.17) vanishes for all
c0 2 C, or equivalently, if t is real. Since 
 D s0q C tp D s1=20 .q0 C tp0/ 2 D.A/,
then we have A D Tt.

Now let 
 D p. Then A D T1. If c1; d0; d1 2 C and  2 D.T/, then by (6.15),

hA.' C c1
/;  Cd0qCd1pi � h' C c1
;T
�. Cd0qCd1p/i D c1 d0: (6.18)

If d0qC d1p 2 D.T1/, then d0 D 0 and the right-hand side of (6.18) vanishes. This
proves that A D T1 is symmetric.

We have shown that all operators Tt, t 2 R [ f1g, are symmetric. It remains
to prove that they are self-adjoint. Assume to the contrary that A D Tt is not self-
adjoint. Then A ¤ A�. Since T 	 A 	 A� 	 T� and dim D.T�/=D.A/ D 1 (by
dim D.T�/=D.T/ D 2), we conclude that A� D T�. Hence the right-hand side
of Eq. (6.17) resp. (6.18) has to vanish. Since c0; d0; d1 2 C resp. c1; d0 2 C are
arbitrary, this leads to a contradiction.

To prove the last assertion let ' 2 D.T/ and c 2 C. Since the symmetric operator
T is positive, so is its closure T. Using that T1p D T�p D 0 we obtain

hT1.' C cp/; ' C cpi D hT'; ' C cpi D hT'; 'i C ch';T�pi D hT'; 'i � 0:

This shows that T1 is positive. ut
For t 2 R [ f1g we set �t.�/ WD s0hEt.�/e0; e0i, where Et denotes the spectral

measure of the self-adjoint operator Tt. The next lemma plays an essential role in
the proof of Theorem 7.6 below. It shows how the parameter t 2 R can be recovered
from the measure �t and from the operator Tt.

Lemma 6.24 For t 2 R, the operator Tt is invertible and

lim
y2R;y!0

I�t . yi/ D s0 lim
y2R;y!0

h.Tt�yiI/�1e0; e0i D s0hT�1
t e0; e0i D t: (6.19)

Further, lim
y2R;y!0

jI�1
. yi/j D C1:

Proof Let t 2 R. Since N .Tt/ 	 N .T�/ D C � p by Proposition 6.6(i) and p …
D.Tt/;we have N .Tt/Df0g, so the operator Tt is invertible. Recall that qCs�1

0 tp D
s�1=2
0 .q0 C tp0/ 2 D.Tt/: From T�p D 0 and T�q D e0 by (6.14) it follows that
Tt.qC s�1

0 tp/ D T�.qC s�1
0 tp/ D e0. Thus e0 2 D.T�1

t / and T�1
t e0 D qC s�1

0 tp,
so that

s0hT�1
t e0; e0i D hs0qC tp; e0i D t: (6.20)

Since e0 2 D.T�1
t /, the function h.x/ D x�2 is �t-integrable. In particular,

�t.f0g/ D 0. We set hy.x/ D j.x�yi/�1 � x�1j2 for y 2 .�1; 1/: Then hy.x/ ! 0
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�t–a.e. on R as y ! 0 and jhy.x/j � h.x/ for y 2 .�1; 1/: Therefore, Lebesgue’s
dominated convergence theorem applies and using the functional calculus for the
self-adjoint operator Tt we derive

k.Tt�yiI/�1e0 � T�1
t e0k2 D

Z
R

j.x � yi/�1 � x�1j2 dhEt.x/e0; e0i

D s�1
0

Z
R

j.x � yi/�1 � x�1j2 d�t.x/! 0 as y! 0:

Therefore, lim
y!0

.Tt�yiI/�1e0 D T�1
t e0. Combining this with (6.20) and using the

equality I�t . yi/ D s0h.Tt�yiI/�1e0; e0i; by the functional calculus, we get (6.19).

Since T1e0 D 0, �1.f0g/ > 0. Hence it follows from jI�1
. yi/j �

�1.f0g/jyj�1 that jI�1
. yi/j ! C1 as R 3 y! 0. ut

In the remaining part of this section we consider symmetric moment sequences.

Proposition 6.25 Suppose that the indeterminate moment sequence s is symmetric,
that is, s2nC1 D 0 for n 2 N0. Let V be the self-adjoint unitary operator (see
Proposition 5.38) of the Hilbert space Hs defined by V. p/.x/ D p.�x/, p 2 CŒx�:
Then VT0V�1 D �T0 and VT1V�1 D �T1. Further, if t 2 R[f1g and VD.Tt/ 	
D.Tt/, then t D 0 or t D 1.

Proof Since s is symmetric, pn.�x/ D .�1/npn.x/ and qn.x/ D .�1/nC1qn.x/ by
(5.68). Therefore, p2kC1.0/ D q2k.0/ D 0 for all k 2 N0. Hence the Fourier series
of p0 and q0 with respect to the orthonormal basis . pn.x//n2N0 of the Hilbert space
l2.N0/ Š Hs have the form

p Š
1X
kD0

p2k.0/p2k.x/ and q Š
1X
kD0

q2kC1.0/p2kC1.x/:

Hence Vp0 D p0 and Vq0 D �q0, so that V.q0C tp0/ D �q0C tp0. Thus, by (6.16),
the relation VD.Tt/ 	 D.Tt/ holds if and only if the parameter t is 0 or1:

Recall that VTV�1 D �T by Proposition 5.38. (As throughout, we identify X and
T via the canonical unitary isomorphism of Hs and l2.N0/.) Hence VD.T/ D D.T/
and VT�V�1 D �T�. As noted in the preceding paragraph, VD.Tt/ D D.Tt/ for
t D 0;1. Therefore, since Tt 	 T�, we conlude that VTtV�1 D �Tt for t D 0;1.

ut
Corollary 6.26 If s is a symmetric indeterminate moment sequence, then �0 and
�1 are different symmetric (!) representing measures for s.

Proof Let t D 0 or t D 1. Then VTtV�1 D �Tt by Proposition 6.25. We define a
positive Radon measure Q�t on R by d Q�t.�x/ D d�t.x/, x 2 R. Clearly, it follows
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from that equality�Tt D VTtV�1 that .�Tt�zI/�1 D V.Tt�zI/�1V�1 for z 2 CnR.
Using the relations V�1e0 D e0 and V D V� we derive

I Q�t.z/ D s0 h.�Tt � zI/�1e0; e0i D s0 hV.Tt � zI/�1V�1e0; e0i
D s0 h.Tt � zI/�1e0; e0i D I�t .z/ for z 2 CnR;

that is, the Stieltjes transforms of Q�t and �t coincide. Hence Q�t D �t by
Theorem A.13. This means that �t is symmetric.

To prove that �0 ¤ �1 we assume to the contrary that �0 D �1. Then we have
h.T0�zI/�1e0; e0i D h.T1�zI/�1e0; e0i. This contradicts Lemma 6.8, since T0 and
T1 are different self-adjoint extensions of T. (Note that Lemma 6.8 was formulated
for the operator X, but X is unitarily equivalent to T.) ut

6.6 Markov’s Theorem

In this section s D .sn/n2N0 is a positive definite sequence and a D .an/n2N0 and
b D .bn/n2N0 are the sequences in the corresponding Jacobi matrix J.

Let Jn be the operator on Cn defined by the truncated Jacobi matrix

Jn D

0
BBBBBBB@

b0 a0 0 : : : 0 0 0

a0 b1 a1 : : : 0 0 0

0 a1 b2 : : : 0 0 0

: : : : : : : : : : : : : : : : : : : : :

0 0 0 : : : an�3 bn�2 an�2
0 0 0 : : : 0 an�2 bn�1

1
CCCCCCCA
; n 2 N: (6.21)

This matrix and Lemmas 6.27 and 6.28 will be used later in Sect. 8.4 as well.
The next lemma gives another description of the monic polynomial Pn and it

shows that eigenvalues and eigenvectors of the self-adjoint operator Jn can be nicely
expressed in terms of zeros of the orthogonal polynomials pk.

Lemma 6.27

(i) Pn.z/ D det.zIn � Jn/ for n 2 N; z 2 C:

(ii) Let �1; : : : ; �n be the zeros of pn and y. j/ D . p0.�j/; : : : ; pn�1.�j// 2 Cn. Then
we have Jny. j/ D �jy. j/ for j D 0; : : : ; n � 1 and n 2 N.

Proof

(i) By developing det.zInC1�JnC1/ after the last row we obtain

det.zInC1�JnC1/ D .z � bn/ det.zIn�Jn/� a2n�1 det.zIn�1�Jn�1/ (6.22)
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for n 2 N. Note that (6.22) is also valid for n D 1 by setting det.zI0�J0/ WD 1.
From (6.22) and Proposition 5.9 it follows that the sequence of polynomi-
als det.zIn�Jn/ satisfy the same reccurence relation (5.14) and intial data
det.zI0�J0/ D P0.x/ and det.zI1�J1/ D z � b0 D P1.z/ as Pn. Hence
Pn.z/ D det.zIn�Jn/ for n 2 N:

(ii) For n D 1 the assertion is easily checked, so we can assume that n � 2.
Consider an equation Jny D zy, where y D . y0; : : : ; yn�1/ 2 Cn, y ¤ 0, and z 2
C. For the first n�1 components this equation means that y0; : : : ; yn�1 satisfy
the same recurrence relations (5.29) as the polynomials p0.z/; : : : ; pn�1.z/ do
with y�1Dp�1.z/ WD 0. Hence yk D cpk.z/ for k D 0; : : : ; n � 1 and some
nonzero c 2 C. Inserting this into the n-th component of Jny D zy yields

zpn�1.z/ D an�2pn�2.z/C bn�1pn�1.z/:

On the other hand, by the relation (5.29) we have

zpn�1.z/ D an�1pn.z/CCbn�1pn�1.z/C an�2pn�2.z/:

Since an�1 ¤ 0; it follows that Jny D zy holds if and only if pn.z/ D 0. Hence
the eigenvalues of Jn are precisely the zeros �j of pn and the corresponding
eigenvectors are the vectors y. j/. ut

Lemma 6.28 Let Kn be the matrix which is obtained from Jn by removing the first
row and the first column. Then

det .zI � Kn/ D Qn.z/ for n 2 N; n � 2; z 2 C; (6.23)

h.Jn � zI/�1e0; e0i D �Qn.z/

Pn.z/
for z 2 	.Jn/: (6.24)

Proof It suffices to prove the assertion for n � 3. Consider an equation Kny D zy
for y D . y1; : : : ; yn�1/ 2 Cn�1, y ¤ 0, and z 2 C. Recall that Kn is the
.n�1/�.n�1/matrix in left upper corner of the shifted Jacobi matrix QJ from (5.32).
Therefore, setting y0 WD 0 and using that q0 D 0, the first n�2 components of
the equation Kny D zy coincide with the recurrence relation for the polynomials
q1.z/; : : : ; qn�1.z/; see Sect. 5.4. Hence yj D cqj.z/ for j D 1; : : : ; n � 1 and some
c 2 C; c ¤ 0: For the .n�1/-th component it follows in a similar manner as in
the proof of Lemma 6.27 that z is an eigenvalue of Kn if and only if qn.z/ D 0, or
equivalently, Qn.z/ D 0. Thus, det .zI � Kn/ and Qn.z/ are monic polynomials of
degree n� 1 having the same zeros. Hence these polynomials coincide. This proves
(6.23).

Finally, we prove (6.24). Let z 2 	.Jn/. Setting f D . f0; � � � ; fn/ WD .Jn�zI/�1e0,
to compute f0 we apply Cramer’s rule and get
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h.Jn � zI/�1e0; e0i D f0 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 a0 0 : : : 0 0

0 b1 � z a1 : : : 0 0

: : : : : : : : : : : : : : : : : :

0 0 0 : : : bn�1 � z an�1
0 0 0 : : : an�1 bn � z

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

det .Jn � zI/

D det .Kn � zI/

det .Jn � zI/
D �det .zI � Kn/

det .zI�Jn/ D �
Qn.z/

Pn.z/
:

Here for the last equality we used (6.23) and Lemma 6.27(i). ut
Equation (6.25) in the following result is called Markov’s theorem.
In particular, if supp� is bounded, or equivalently, if the operator T Š X is

bounded, then s is determinate and the equality (6.25) holds.

Theorem 6.29 Suppose that s is a positive definite determinate moment sequence.
If � is the representation measure for s and R is an interval containing supp�, then

� lim
n!1

qn.z/

pn.z/
D �s0 lim

n!1
Qn.z/

Pn.z/
D
Z
R

d�.x/

x � z
for z 2 CnR: (6.25)

Proof The first equality in (6.25) follows at once from (5.36). To prove the second
equality we extend Jn to a finite rank operator QJn on l2.N0/ by setting

QJn WD
�
Jn 0
0 0

�
on l2.N0/ D Cn ˚ l2.Nn/;

where Nn D fk 2 N W k � ng. Fix a number z 2 CnR.
Because s is determinate, T Š X is essentially self-adjoint by Theorem 6.10 and

Hs Š L2.R; �/. Since the multiplication operator A� by the variable x in L2.R; �/
(see Proposition 6.2) is a self-adjoint extension of X and so of Mx, we have A� D
Mx. Therefore, the spectrum of the operator T Š Mx D A� is the support of � and
so a subset of R. Hence, since z 2 CnR, .T � zI/d is dense in l2.N0/. Further, since
Pn.z/ D det .zI�Jn/ by Lemma 6.27(i), the spectrum of Jn, hence ofeJn, consists
of the zeros of Pn, so it is also contained in R by Corollary 5.28. Thus, z is in the
resolvent sets of eJn and T.

Let ' D .'0; : : : ; 'k; 0; : : : / 2 d. If n � k, then we have .T � zI/' 2 CnC1 and
.eJn � zI/' D .T � zI/', so that

�
.eJn � zI/�1 � .T � zI/�1

�
.T � zI/'

D .eJn � zI/�1.eJn � zI/' � .T � zI/�1.T � zI/' D ' � ' D 0:

Hence, since k.eJn � zI/�1k � .dist.z;R//�1 and .T � zI/d is dense, it follows that
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lim
n!1.

eJn � zI/�1 D .T � zI/�1 for  2 l2.N0/: (6.26)

Since T is self-adjoint, we have �.�/ D s0hET.�/e0; e0i by formula (6.3) in
Corollary 6.3. Therefore, applying (6.24) and (6.26) with  D e0, we derive

� s0 lim
n!1

Qn.z/

Pn.z/
D s0 lim

n!1 h.Jn � zI/�1e0; e0i D s0 lim
n!1 h.eJn � zI/�1e0; e0i

D s0 h.T � zI/�1e0; e0i D s0

Z
R

.x � z/�1dhET.x/e0; e0i D
Z
R

.x � z/�1d�.x/;

which proves the second and main equality of (6.25). ut

6.7 Continued Fractions

We begin with general continued fractions. Let .˛n/n2N and .ˇn/n2N0 be complex
sequences. An (infinite) continued fraction is a formal expression

ˇ0 C ˛1

ˇ1 C ˛2

ˇ2C
:::C ˛n

ˇnC

:::

: (6.27)

Just as in case of infinite series we want to associate a number to this expression.
For this reason we set

Cn D ˇ0 C ˛1

ˇ1 C ˛2

ˇ2C
:::C ˛n

ˇn

: (6.28)

Note that it may happen that Cn is not defined if some denominator is zero. To save
space the expressions (6.27) and (6.28) are written as

ˇ0 C ˛1j
jˇ1 C

˛2j
jˇ2 C � � � C

˛nj
jˇn C : : : ;

Cn D ˇ0 C ˛1j
jˇ1 C

˛2j
jˇ2 C � � � C

˛nj
jˇn :

Definition 6.30 The continued fraction (6.27) converges to C 2 C if the numbers
Cn are defined up to a finite subset of N0 and limn!1 Cn D C: In this case we
write

C D ˇ0 C ˛1j
jˇ1 C

˛2j
jˇ2 C � � � C

˛nj
jˇn C : : : :
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Proposition 6.31 For the numbers Cn we have Cn D An
Bn

for n 2 N0, where

An D ˇnAn�1 C ˛nAn�2; A0 D ˇ0; A�1 D 1; (6.29)

Bn D ˇnBn�1 C ˛nBn�2; B0 D 1; B�1 D 0: (6.30)

If Bn ¤ 0 for n D 1; : : : ;m, then

Cm D Am

Bm
D ˇ0 C

mX
nD1

.�1/nC1˛1 : : : ˛n
Bn�1Bn

: (6.31)

Proof The first assertion will be proved by induction on n. We define An and Bn

recursively by (6.29) and (6.30). Then we have to show that Cn D An
Bn

.

For n D 0 this holds. Suppose that Cn D An
Bn

. Recall that CnC1 is obtained if we

replace ˇn by ˇnC ˛nC1

ˇnC1
in the formula for Cn. Then, using the induction hypothesis

and formulas (6.29) and (6.30), we derive

CnC1 D
�
ˇn C ˛nC1

ˇnC1

�
An�1 C ˛nAn�2�

ˇn C ˛nC1

ˇnC1

�
Bn�1 C ˛nBn�2

D ˇnC1.ˇnAn�1 C ˛nAn�2/C ˛nC1An�1
ˇnC1.ˇnBn�1 C ˛nBn�2/C ˛nC1Bn�1

D ˇnC1An C ˛nC1An�1
ˇnC1Bn C ˛nC1Bn�1

D AnC1
BnC1

;

which completes the induction proof.
Next we prove (6.31). Subtracting (6.29) multiplied by Bn�1 and (6.29) multi-

plied by An�1 we obtain

AnBn�1 � BnAn�1 D �˛n.An�1Bn�2 � Bn�1An�2/:

Repeated application of this relation yields

AnBn�1 � BnAn�1 D .�1/nC1˛1 : : : ˛n;

which can be written as

An

Bn
� An�1

Bn�1
D .�1/nC1˛1 : : : ˛n

Bn�1Bn
: (6.32)

Now (6.31) follows by summing over n D 1; : : : ;m and using that A0
B0
D ˇ0. ut
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Formulas (6.29) and (6.30) are three term recurrence relations that resemble
the relations for monic orthogonal polynomials. Equation (6.31) implies that the
continued fraction converges if and only if the corresponding series in (6.31) does.

Now we will use the (positive definite) moment sequence s D .sn/n2N0 . If an; bn
denote the corresponding Jacobi parameters an; bn, we set

ˇ0 D 0; ˇn D z � bn�1; ˛1 D s0; ˛nC1 D �a2n�1 for n 2 N:

Replacing n by nC 1 in (6.30) we obtain for the denominators

BnC1 D .z� bn/Bn � a2n�1Bn�1; B0 D 1;B�1 D 0; n 2 N;

and B1 D .z� b0/B0C s0 �B�1 D z� b0. These are precisely the recurrence relation
(5.14) and the intial data for the monic orthogonal polynomials Pn.z/. Therefore,
we have Bn D Pn.z/ for n 2 N0: In particular, B2 D .z � b1/.z � b0/� a20 D P2.z/.

For the numerators An we obtain in a similar manner

AnC1 D .z� bn/An � a2n�1An�1; A0 D 0;A�1 D 1; n 2 N;

and A1 D .z � b0/A0 C s0 � A�1 D s0: From Corollary 5.20 it follows that
s�1
0 An satisfies the same recurrence relation and initial data as the corresponding

polynomials Qn.z/. Hence An D s0Qn.z/ for n 2 N0. In particular, A2 D
.z � b1/s0 D s0Q2.z/.

Summarizing the preceding, we obtain

CnC1 D AnC1
BnC1

D s0QnC1.z/
PnC1.z/

D s0j
jz � b0

C �a20j
jz � b1

C � � � C �a
2
n�1j

jz� bn
; n 2 N:

(6.33)

Now we assume that the moment sequence s is determinate. Let � be its
representing measure. Then, by Markov’s theorem 6.29,

Z
R

d�.x/

z � x
D lim

n!1
s0QnC1.z/
PnC1.z/

; z 2 CnR:

Passing to the limit in (6.33) and inserting the latter equality yields

�I�.z/ D
Z
R

d�.x/

z � x
D s0j
jz � b0

C �a20j
jz � b1

C � � � C �a
2
n�1j

jz � bn
C : : : ; z 2 CnR:

(6.34)

Formula (6.34) provides an expansion of the negative Stieltjes transform �I�.z/ of
� as a continued fraction. It connects continued fractions and moment problems.
We will not follow this path in this book and prefer to use other methods.



6.8 Exercises 143

Further, suppose that � is supported by a bounded interval Œa; b�. Then

�I�.z/ D
Z

d�.x/

z � x
D s0

z
C s1

z2
C � � � C sn

znC1 C � � � (6.35)

for jzj > max .jaj; jbj/. (Indeed, then 1
z�x D

P1
nD0 xn

znC1 converges uniformly on
Œa; b�, so we can interchange summation and integration.) For general representing
measures there is an asymptotic expansion of the form (6.35), see Proposition 7.12
below.

The interplay between the two expansions (6.34) and (6.35) is one of the
interesting features of the classical theory of one-dimensional moment problems.

6.8 Exercises

1. Let s be a Hamburger moment sequence and � a representing measure for s.
Prove that the following statements are equivalent:

(i) The moment problem for s is determinate.
(ii) There exists a number z 2 CnR such that pz … l2.N0/ and qz … l2.N0/.

(iii) There is a number z0 2 CnR such that .x � z0/CŒx� is dense in L2.R; �/.
(iv) There exist a number z0 2 CnR and a sequence .rn/n2N of polynomials

rn 2 CŒx� such that limn!1.x � z0/rn.x/ D 1 in L2.R; �/.

2. Let �; � 2MC.R/. Suppose that there exists a c > 0 such that �.M/ � c�.M/
for each Borel subset M of R. Prove that if � is determinate, so is �.

3. Let s D .sn/n2N0 and t D .tn/n2N0 be moment sequences such that the moment
sequence sC t WD .snCtn/n2N0 is determinate. Prove that s and t are determinate.

4. Let � 2MC.R/ and let a; b; c 2 R; a < c < b Suppose that supp� 	 RnŒa; b�:
Prove that � is determinate if and only if .x � c/CŒx� is dense in L2.R; �/:

5. Prove the “Plücker identity” for the Wronskian defined by (5.40):

W.˛; ˇ/nW.�; ı/n �W.˛; �/nW.ˇ; ı/n CW.˛; ı/nW.ˇ; �/n D 0; n 2 N0;

where ˛; ˇ; �; ı are arbitrary complex sequences.
6. (Translation of Hamburger moment sequences)

Let s D .sn/n2N0 be a moment sequence and � 2 R. Define s.�/n DPn
kD0

�n
k

�
� ksn�k for n 2 N0.

a. Show that s.�/ D .s.�/n/n2N0 is also a moment sequence.
b. Show that � 2Ms if and only if �� 2Ms.�/, where d��.x/ WD d�.x � �/.
c. Show that s is determinate if and only if s.�/ is determinate.

7. Let � 2 MC.R/ be symmetric. Assume that .�c; c/ \ supp� D ; for some
c > 0. Show that the sequence

� qn.0/
pn.0/

�
n2N does not converge as n!1.
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6.9 Notes

The Hamburger moment problem was first studied extensively by H. Hamburger
[Hm]. Important classical result were obtained by M. Riesz [Rz2]. Among other
things he discovered the operator-theoretic characterization of determinacy (Corol-
lary 6.11). One-dimensional moment problems in the context of the extension theory
of symmetric operators were treated in [DM]. The terminology of a von Neumann
solution is from [Sim1]. Our approach partly follows [Sm9, Chapter 16] and [Sim1].

Markov’s theorem 6.29 goes back to A.A. Markov [Mv1]. It is proved in [Chi1]
for measures with bounded support and in [VA] and [Be] for determinate measures.
Our approach to Theorem 6.29 and Exercise 6.7 are taken from C. Berg [Be].

Continued fractions are treated in [Wl] and [JT].



Chapter 7
The Indeterminate Hamburger Moment
Problem

In this chapter we assume that s is an indeterminate Hamburger moment
sequence. Our aim is to analyze the structure of the set Ms of all solutions of
the moment problem for s. The central result in this respect is Nevanlinna’s theorem
(Theorem 7.13) on the parametrization of Ms in terms of the set P[f1g, where P
are the holomorphic functions on the upper half plane with nonnegative imaginary
parts. It provides a one-to-one correspondence between Stieltjes transforms of
measures � 2 Ms and elements � 2 P [ f1g given by a fractional linear
transformation (7.16) with respect to four distinguished entire functions A;B;C;D.
Note that in contrast to the moments the Stieltjes transform determines a finite
Radon measure uniquely (by Theorem A.13)!

In Sect. 7.1 these four Nevanlinna functions A;B;C;D are defined and investi-
gated. Sections 7.2 and 7.5 contain fundamental results on von Neumann solutions
(Theorems 7.6, 7.7, and 7.15). The family of Weyl circles is introduced in Sect. 7.3.
In Sect. 7.4 the celebrated Nevanlinna theorem is proved. In Sect. 7.6 we give
a short excursion into Nevanlinna–Pick interpolation and derive basic results on
the existence of a solution and on rational Nevanlinna functions (Theorems 7.20
and 7.22). In Sect. 7.7 solutions of finite order are studied and a number of
characterizations of these solutions is given (Theorem 7.27 and 7.33).

7.1 The Nevanlinna Functions A.z/;B.z/;C.z/;D.z/

The crucial technical step for the definition of the Nevanlinna functions is contained
in the following lemma.

Lemma 7.1 For any z 2 C the series
P1

nD0 jpn.z/j2 and
P1

nD0 jqn.z/j2 converge.
The sums are uniformly bounded on compact subsets of the complex plane.

Proof Because the moment problem for s is indeterminate, it has at least two
different solutions � and �. The corresponding Stieltjes transforms I� and I�

© Springer International Publishing AG 2017
K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics 277,
DOI 10.1007/978-3-319-64546-9_7
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are holomorphic functions on CnR. Since � ¤ �, they do not coincide by
Theorem A.13. Hence the set Z WDfz 2 CnR W I�.z/DI�.z/g has no accumulation
point in CnR.

Let M be a compact subset of C. We choose b > 0 such that jzj � b for all z 2 M
and the line segment LWDfz 2 C W Im z D b; jRe zj � bg does not intersect Z . By
the first condition and Corollary 5.31, the suprema of jpn.z/j and jqn.z/j over M are
less than or equal to the corresponding suprema over L. Hence it suffices to prove
the uniform boundedness of both sums on the set L.

Suppose that z 2 L. Then we derive

jI�.z/� I�.z/j2
X

n
jpn.z/j2

D
X

n
j.qn.z/C I�.z/pn.z// � .qn.z/C I�.z/pn.z//j2

� 2
X

n
jqn.z/C I�.z/pn.z/j2 C 2

X
n
jqn.z/C I�.z/pn.z/j2

� 2b�1.Im I�.z/C Im I�.z// � 2b�1.jI�.z/j C jI�.z/j/;

where the inequality before last follows from inequality (5.39) in Proposition 5.37.
Since the function jI�.z/�I�.z/j has a positive infimum on L (because L has a
positive distance from the set Z) and I�.z/ and I�.z/ are bounded on L, the preceding
inequality implies that the sum

P
n jpn.z/j2 is finite and uniformly bounded on L.

Using once more (5.39) and proceeding in a similar manner we derive

X
n
jqn.z/j2 � 2

X
n
jqn.z/C I�.z/pn.z/j2 C 2jI�.z/j2

X
n
jpn.z/j2

� 2b�1jI�.z/j C 2jI�.z/j2
X

n
jpn.z/j2

for z 2 L. Hence the boundedness of the sum
P

n jpn.z/j2 on L implies the
boundedness of

P
n jqn.z/j2 on L. ut

Lemma 7.2 For any sequence c D .cn/ 2 l2.N0/ the equations

f .z/ D
1X
nD0

cnpn.z/ and g.z/ D
1X
nD0

cnqn.z/ (7.1)

define entire functions f .z/ and g.z/ on the complex plane.

Proof We carry out the proof for f .z/. Since . pn.z// 2 l2.N0/ by Lemma 7.1 and
.cn/ 2 l2.N0/, the series f .z/ converges for all z 2 C. We have

ˇ̌
ˇ̌ f .z/ �

kX
nD0

cnpn.z/

ˇ̌
ˇ̌2 D

ˇ̌
ˇ̌ 1X
nDkC1

cnpn.z/

ˇ̌
ˇ̌2 �

� 1X
nDkC1

jcnj2
�� 1X

nD0
jpn.z/j2

�
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for k 2 N and z 2 C. Therefore, since .cn/ 2 l2.N0/ and the sum
P

n jpn.z/j2 is
bounded on compact sets (by Lemma 7.1), it follows that

Pk
nD0 cnpn.z/ ! f .z/

as k ! 1 uniformly on compact subsets of C. Hence f .z/ is holomorphic on the
whole complex plane. ut

From Lemmas 7.1 and 7.2 we conclude that

A.z;w/ WD .z�w/
1X
nD0

qn.z/qn.w/; B.z;w/ WD �1C .z�w/
1X
nD0

pn.z/qn.w/;

C.z;w/ WD 1C .z�w/
1X
nD0

qn.z/pn.w/; D.z;w/ WD .z�w/
1X
nD0

pn.z/pn.w/

are entire functions in each of the complex variables z and w. They are the limits
of the polynomials Ak.z;w/;Bk.z;w/;Ck.z;w/;Dk.z;w/, respectively, which have
been defined in Proposition 5.24. By passing to the limit n!1 in formula (5.57)
of Corollary 5.27 we obtain the important identity

A.z;w/D.z;w/ � B.z;w/C.z;w/ D 1: (7.2)

From the above formulas it is obvious that

A.z;w/ D �A.w; z/; B.z;w/ D �C.w; z/; D.z;w/ D �D.w; z/; z;w 2 C:

(7.3)

Definition 7.3 The four functions A.z;w/;B.z;w/;C.z;w/;D.z;w/ are called the
Nevanlinna functions associated with the indeterminate moment sequence s.

These four functions are a fundamental tool in the study of the indeterminate
moment problem. It should be emphasized that they depend only on the indetermi-
nate moment sequence s.

We shall see by Theorems 7.6 and 7.13 below that the entire functions

A.z/ WD A.z; 0/;B.z/ WD B.z; 0/;C.z/ WD C.z; 0/;D.z/ WD D.z; 0/

will enter in the parametrization of solutions. Often these four entire functions A.z/,
B.z/, C.z/, D.z/ are called the Nevanlinna functions associated with s.

A number of facts on these functions are collected in the next proposition. Scalar
products and norms refer always to the Hilbert space l2.N0/.

Proposition 7.4 Suppose that z;w 2 C. Then we have:

(i) D.z; 0/B.w; 0/ � B.z; 0/D.w; 0/ D �D.z;w/.
(ii) A.z;w/ D .z � w/hqz; qwi; D.z;w/ D .z � w/hpz; pwi.

B.z;w/C 1 D .z� w/hpz; qwi; C.z;w/ � 1 D .z � w/hqz; pwi:
(iii) Im .B.z/D.z/ / D Im z kpzk2.
(iv) D.z/ ¤ 0 and D.z/tC B.z/ ¤ 0 for z 2 CnR and t 2 R.
(v) D.z/� C B.z/ ¤ 0 for all z; � 2 C, Im z > 0 and Im � � 0.
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Proof

(i) follows from the formula (5.58) by passing to the limit n!1.
(ii) Since pn and qn have real coefficients, pn.w/ D pn.w/ and qn.w/ D qn.w/.

Hence the formulas follow at once from the definitions of A;B;C;D and pz; qw.
(iii) Using (i) and the second equality from (ii) we compute

B.z/D.z/ � B.z/D.z/ D D.z; z/ D .z�z/kpzk2:

(iv) Let z 2 CnR. Since p0.z/ ¤ 0, Im z kpzk2s ¤ 0 and hence D.z/ ¤ 0 by (iii).
Assume to the contrary that D.z/tCB.z/ D 0 for some z 2 CnR and t 2 R.

Then we have �t D B.z/D.z/�1 and hence

0 D Im .B.z/D.z/�1jD.z/j2/ D Im .B.z/D.z// D Im z kpzk2

by (iii), which is a contradiction.
(v) follows in a similar manner as the last assertion of (iv). ut

Proposition 7.5 If � 2Ms is a von Neumann solution, then

I�.z/ D � A.z;w/C I�.w/C.z;w/

B.z;w/C I�.w/D.z;w/
for z;w 2 CnR: (7.4)

Formula (7.4) determines all values of I�.z/ on CnR provided one fixed value
I�.w/ is given.

Proof Since � is a von Neumann solution, Hs Š L2.R; �/. Hence fpn W n 2 N0g is
an orthonormal basis of L2.R; �/, so by (5.38) for all z;w 2 CnR we have

fz D
1X
nD0

.qn.z/C I�.z/pn.z//pn; fw D
1X
nD0

.qn.w/C I�.w/pn.w//pn:

Using these formulas, the Parseval identity and Lemma 5.24 we derive

I�.z/ � I�.w/ D .z � w/
Z

1

x � z

1

x � w
d�.x/ D .z � w/ hfz; fwi�

D .z � w/
1X
nD0
.qn.z/C I�.z/pn.z//.qn.w/C I�.w/pn.w/ /

D .z � w/
1X
nD0
.qn.z/C I�.z/pn.z//.qn.w/C I�.w/pn.w//

D A.z;w/C I�.z/.B.z;w/C1/C I�.w/.C.z;w/�1/C I�.z/I�.w/D.z;w/:

Eliminating I�.z/ in the last equation we obtain (7.4). ut
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7.2 Von Neumann Solutions

Recall that the self-adjoint extensions of the Jacobi operator T on the Hilbert space
Hs are the operators Tt, t 2 R[f1g, from Theorem 6.23. If Et denotes the spectral
measure of Tt, we set

�t.�/ WD s0 hEt.�/e0; e0i: (7.5)

Theorem 7.6 The measures�t , where t 2 R[f1g, are precisely the von Neumann
solutions for the indeterminate moment sequence s. For z 2 CnR, we have

s0h.Tt�zI/�1e0; e0i D I�t.z/ �
Z
R

1

x � z
d�t.x/ D �A.z/C tC.z/

B.z/C tD.z/
; (7.6)

where for t D1 the fraction on the right-hand side has to be set equal to �C.z/
D.z/ .

Proof The measures �t are indeed the von Neumann solutions, since the operators
Tt exhaust the set of all self-adjoint extensions of T on Hs by Theorem 6.23.

The first equality of (7.6) follows at once from the definition of �t and the
functional calculus for the resolvent of the self-adjoint operator Tt.

The main assertion of Theorem 7.6 is the last equality of (7.6). For this we
apply formula (7.4) to � D �t, w D yi and pass to the limit y ! 0. Then the
holomorphic function A.z;w/ in w tends to A.z; 0/ D A.z/. Similarly the limits of
B.z;w/;C.z;w/;D.z;w/ are B.z/;C.z/;D.z/, respectively.

Let t 2 R. Then limy!0 I�t.yi/ D t by Lemma 6.24 and D.z/tCB.z/ ¤ 0 on
CnR by Proposition 7.4(iv), so the right-hand side of (7.4) tends to � A.z/CtC.z/

B.z/CtD.z/ :

Now let t D 1. Since limy!0 jI�1
.yi/j D C1 by Lemma 6.24 and D.z/ ¤ 0

for z 2 CnR by Proposition 7.4(iv), in this case the limit of (7.4) is �C.z/
D.z/ : ut

Since A.z/;B.z/;C.z/;D.z/ are entire functions, it follows from Eq. (7.6) that the
Stieltjes transform I�t.z/, t 2 R [ f1g, is a meromorphic function.

Further, the numerator and denominator in (7.6) have no common zero. Indeed,
if t 2 R and z were a zero of AC tC and BC tD, then

A.z/D.z/ � B.z/C.z/ D .�tC.z//D.z/ � .�tD.z//C.z/ D 0;

which contradicts (7.2). Similarly, for t D1, C and D have no common zero.
The following theorem describes the structure of von Neumann solutions.

Theorem 7.7 Suppose that s is an indeterminate Hamburger moment sequence.

(i) Each von Neumann solution �t of s has a discrete unbounded support. The
numbers in supp�t are precisely the zeros of the entire function B.z/ C tD.z/
for t 2 R resp. D.z/ for t D 1. The set supp�t is the spectrum of the self-
adjoint operator Tt:
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(ii) For each number x 2 R, there is a unique tx 2 R[f1g such that x 2 supp�tx .
If t; Qt 2 R [ f1g and t ¤ Qt, then the supports of �t and �Qt are disjoint.

(iii) If x 2 supp�t, then x is a simple eigenvalue of the operator Tt and

�t.fxg/ D kpxk�2 D
� 1X

nD0
jpn.x/j2

��1
: (7.7)

Proof

(i) By Proposition A.15, a closed subset K of R belongs to supp�t if and only
if the Stieltjes transform I�t.z/ has a holomorphic extension to CnK. Hence
supp�t is the set of poles of the meromorphic function I�t . Since the numerator
and denominator in (7.6) have no common zero, these are precisely the zeros
of the denominator. Being the zero set of an entire function, supp�t is discrete.

Since �t is a von Neumann solution, e0 is a cyclic vector for Tt. Hence Tt
acts as the multiplication operator by the variable x in L2.R; �t/ and supp�t is
the spectrum of Tt; see [Sm9, Section 5.4]. The operator Tt is unbounded and
so is its spectrum supp�t.

(ii) If D.x/ ¤ 0, then x is a pole of I�t for t D �B.x/D.x/�1, so that x 2 supp�t

by (i). Similarly, if D.x/ D 0, then x is a pole of I�1
and hence x 2 supp�1

by (i).
To prove the uniqueness assertion, assume that x 2 supp�t and x 2 supp�Qt

for t; Qt 2 R [ f1g. If t 2 R and Qt 2 R, then B.x/C tD.x/ D B.x/C QtD.x/ D
0. Hence D.x/ ¤ 0 (otherwise AD � BC D 0; which contradicts (7.2)) and
therefore t D Qt. If t 2 R and Qt D 1, then B.x/C tD.x/ D 0 and D.x/ D 0, so
that B.x/ D 0. Again this contradicts (7.2). Thus, t D Qt.

(iii) Let x 2 supp�t: Then x is in the spectrum of Tt by (i). Because this
set is discrete, x is an eigenvalue of Tt. Since Tt 	 T�, it follows from
Proposition 6.6(i) that all corresponding eigenvectors are multiples of px D
. pn.x/n2N0 . Thus kpxk�1px is a normalized simple eigenvector and the spectral
projection Et.fxg/ of Tt is the rank one projection Et.fxg/ D kpxk�2h�; pxi px.
Since he0; pxi D p0.x/ D s�1=2

0 ; we obtain

�t.fxg/ D s0 hEt.fxg/e0; e0i D s0 kpxk�2he0; pxihpx; e0i D kpxk�2;

which proves (7.7). ut

Definition 7.8 A von Neumann solution of an indeterminate Hamburger moment
sequence is called Nevanlinna extremal, or briefly, N-extremal.

By Theorem 7.7 (i) and (iii), each N-extremal solution � is the form

� D
1X
kD1

mkıxk ;
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where mk > 0, the points xk 2 R are pairwise distinct, and limk!1 jxkj D 1.
Further, fxk W k 2 Ng is the zero set of an entire function specified in Theorem 7.7(i).

7.3 Weyl Circles

An instructive tool in the theory of indeterminate moment problems is provided by
the Weyl circles.

Definition 7.9 For z 2 CnR the Weyl circle Kz is the closed circle in the complex
plane with radius 	z and center Cz given by

	z WD 1

jz�zj kpzk2s
D z�z
jz�zj

1

D.z; z/
; Cz WD � .z�z/

�1 C hqz; pzis
kpzk2s

D �C.z; z/
D.z; z/

:

The two equalities in this definition follow easily from Proposition 7.4(iii).
The proof of the next proposition shows that in the indeterminate case the

inequality (5.39) means that the number I�.z/ belongs to the Weyl circle Kz.

Proposition 7.10 Suppose that � 2 Ms. Then the number I�.z/ lies in the Weyl
circle Kz for each z 2 CnR. The measure � is a von Neumann solution if and only
if I�.z/ belongs to the boundary @Kz for one (hence for all) z 2 CnR.

Proof We fix z 2 CnR and abbreviate � D I�.z/. The inequality (5.39) says that

kqzk2s C � hqz; pzis C � hqz; pzis C j�j2kpzk2s � kqz C �pzk2s �
� � �
z � z

: (7.8)

The inequality in (7.8) can be rewritten as

j�j2kpzk2s C �
�hqz; pzisC.z�z/�1 �C � �hqz; pzisC.z�z/�1�C kqzk2s � 0 :

The latter inequality is equivalent to

kpzk2s
ˇ̌
� C kpzk�2s .hqz; pzisC.z�z/�1/

ˇ̌2 � kpzk�2s jhqz; pzis C .z�z/�1j2 � kqzk2s
and hence to

ˇ̌
� C kpzk�2s .hqz; pzisC.z�z/�1/

ˇ̌2 � kpzk�4s � jhqz; pzis C .z�z/�1j2�kpzk2skqzk2s �:
This shows that � lies in a circle with center Cz given above and radius

Q	z D kpzk�2s
q
jhqz; pzis C .z�z/�1j2 � kpzk2skqzk2s (7.9)
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provided the expression under the square root is nonnegative. Using Proposi-
tion 7.4(iii), the relation C.z; z/ D �B.z; z/, and (7.2) we compute

Q	z D z� z

D.z; z/

s
jC.z; z/j2
jz� zj2 �

A.z; z/D.z; z/

.z � z/2

D z� z

D.z; z/

s
�C.z; z/B.z; z/
jz� zj2 C A.z; z/D.z; z/

jz � zj2

D z�z
D.z; z/

1

jz�zj D
1

kpzk2s jz�zj
:

Thus Q	z is equal to the radius 	z of the Weyl circle and we have proved that � 2 Kz.
The preceding proof shows that I�.z/ D � 2 @Kz if and only if we have equality

in the inequality (7.8) and hence in (5.39). The latter is equivalent to the relation
fz 2 Hs by Proposition 5.21 and so to the fact that � is a von Neumann solution by
Proposition 6.13. This holds for fixed and hence for all z 2 CnR. ut

Let z;w 2 C. Since A.z;w/D.z;w/ � B.z;w/C.z;w/ D 1 by (7.2), the fractional
linear transformation Hz;w defined by

� D Hz;w.�/ WD �A.z;w/C �C.z;w/
B.z;w/C �D.z;w/ (7.10)

is a bijection of the extended complex plane C D C[ f1g with inverse given by

� D H�1
z;w.�/ D �

A.z;w/C �B.z;w/
C.z;w/C �D.z;w/ : (7.11)

Some properties of these transformations Hz;w can be found in Exercises 7.5 and
7.6. Here we will use only the transformations Hz WD Hz;0: Set R WD R [ f1g and
recall that CC D fz 2 C W Im z > 0g: The next lemma is illustrated in Fig. 7.1.

Fig. 7.1 The transformation Hz and the Weyl circle Kz
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Lemma 7.11

(i) Hz is a bijection of R onto the boundary @Kz D fI�t .z/ W t 2 Rg of the Weyl
circle Kz for z 2 C nR.

(ii) Hz is a bijection of CC onto the interior
ı
Kz of the Weyl circle Kz for z 2 CC.

(iii) Kz 	 CC for z 2 CC.

Proof

(i) By Theorem 7.6, Hz maps R on the set fI�t .z/ W t 2 Rg. Since I�t.z/ 2 @Kz

by Proposition 7.10, Hz maps R into @Kz. But fractional linear transformations
map generalized circles bijectively onto generalized circles. Hence Hz maps R

onto @Kz.
(ii) From (i) it follows that Hz is a bijection of either the upper half-plane or the

lower half-plane on the interior of Kz. It therefore suffices to find one point

� 2 ı
Kz for which H�1

z .�/ 2 CC. Since I�0.z/; I�1
.z/ 2 @Kz by (i),

� WD .I�0.z/C I�1
.z//=2 D .�A.z/B.z/�1 � C.z/D.z/�1/=2 2 ı

Kz :

Here the second equality follows from Theorem 7.6. Inserting this expression
into (7.11) we easily compute

H�1
z .�/ D B.z/D.z/�1 D jD.z/j�2B.z/D.z/ :

Hence H�1
z .�/ 2 CC by Proposition 7.4(iii), since z 2 CC.

(iii) Since z 2 CC, we have I�t .z/ 2 CC \ @Kz by (i). Hence Kz 	 CC. ut

7.4 Nevanlinna Parametrization

First we prove a classical result due to Hamburger and Nevanlinna which is of
interest in itself. It characterizes solutions of the moment problem in terms of the
asympotic behaviour of their Stieltjes transforms.

Proposition 7.12

(i) If s D .sn/n2N0 is an arbitrary (!) Hamburger moment sequence and � 2Ms,
then for each n 2 N0,

lim
y2R;y!1 ynC1

 
I�.iy/C

nX
kD0

sk
.iy/kC1

!
D 0; (7.12)

where for fixed n the convergence is uniform on the set Ms.
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(ii) Let s D .sn/n2N0 be a real sequence and I.z/ a Pick function. If (7.12) is
satisfied (with I� replaced by I) for all n 2 N0, then s is Hamburger moment
sequence and there exists a unique measure� 2Ms such that I.z/ D I�.z/ for
z 2 CnR.

Proof

(i) First we rewrite the sum in Eq. (7.12) as

nX
kD0

sk
.iy/kC1

D
nX

kD0

.�i/kC1
ykC1

Z
R

xkd�.x/D�i 1
ynC1

Z
R

nX
kD0
.�ix/kyn�k d�.x/

D �i 1
ynC1

Z
R

.�ix/nC1 � ynC1

�ix � y
d�.x/ D 1

ynC1

Z
R

.�ix/nC1 � ynC1

x � iy
d�.x/:

(7.13)

Therefore, since jx � iyj�1 � jyj�1 for x; y 2 R, y ¤ 0, we obtain

ˇ̌
ˇ̌
ˇ ynC1

 
I�.iy/C

nX
kD0

sk
.iy/kC1

!ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌ Z

R

ynC1

x � iy
d�.x/C

Z
R

.�ix/nC1�ynC1

x � iy
d�.x/

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z
R

.�ix/nC1

x � iy
d�.x/

ˇ̌
ˇ̌ � jyj�1

Z
R

jxjnC1 d�.x/ � jyj�1cn;

where cnWDsnC1 if n is odd and cnWDsn C snC2 if n is even. Since cn does not
depend on the measure �, we conclude that (7.12) holds uniformly on the set
Ms.

(ii) Condition (7.12) for n D 0 implies that limy!1 yI.iy/ D is0. Therefore,
by Theorem A.14, the Pick function I is the Stieltjes transform I� of a finite
positive Radon measure � on R and � is uniquely determined. Since �.R/ <
1, Lebesgue’s dominated convergence theorem applies and yields

s0 D lim
y!1�iyI.iy/ D lim

y!1�iyI�.iy/ D lim
y!1

Z
R

�iy
x � iy

d�.x/ D
Z
R

d�.x/:

The main part of the proof is to show that the n-th moment of � exists and
is equal to sn for all n 2 N0. We proceed by induction on n. For n D 0, this was
just proved. Let n 2 N and assume that � has the moments s0; : : : ; s2n�2. Then,
by the preceding proof of (i), formula (7.13) is valid with n replaced by 2n�2.
We use this formula in the case 2n�2 to derive the second equality below and
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compute

.iy/2nC1
� 2nX

kD0

sk
.iy/kC1

C I�.iy/

�

D s2n C iys2n�1 C i2nC1y2
�
y2n�1

2n�2X
kD0

sk
.iy/kC1

C y2n�1I�.iy/
�

D s2n C iys2n�1 C i2nC1y2
�Z

R

.�ix/2n�1�y2n�1

x � iy
d�.x/C

Z
R

y2n�1

x � iy
d�.x/

�

D s2n C iys2n�1 � y2
Z
R

x2n�1

x � iy
d�.x/

D s2n �
Z
R

x2n

.x=y/2 C 1 d�.x/C iy

�
s2n�1 �

Z
R

x2n�1

.x=y/2 C 1 d�.x/

�
:

By assumption (7.12) the term in the first line converges to zero as y!1.
Considering the real part and using Lebesgue’s monotone convergence theorem
we get

s2n D lim
y!1

Z
R

x2n

.x=y/2 C 1 d�.x/ D
Z
R

x2nd�.x/ <1: (7.14)

The imaginary part, hence the imaginary part divided by y, also converges to
zero as y!1. Since

jxj2n�1

.x=y/2 C 1 � jxj
2n�1 � 1C x2n

and 1Cx2n is�-integrable by (7.14), the dominated convergence theorem yields

s2n�1 D lim
y!1

Z
R

x2n�1

.x=y/2 C 1 d�.x/ D
Z
R

x2n�1d�.x/: (7.15)

By (7.14) and (7.15) the induction proof is complete. ut
Let P denote the Pick functions (see Appendix A.2). We identify t 2 R with the

constant function t; then R becomes a subset of P. Set P WD P [ f1g.
The main result in this section is the following theorem of R. Nevanlinna. It

expresses the Stieltjes transforms of representing measures of s by a fractional
transformation of functions from the parameter space P.
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Theorem 7.13 Suppose s is an indeterminate moment sequence. There is a one-to-
one correspondence between functions � 2 P and measures � 2Ms given by

I�� .z/ �
Z
R

1

x � z
d��.x/ D �A.z/C �.z/C.z/

B.z/C �.z/D.z/ � Hz.�.z//; z 2 CC: (7.16)

Proof Suppose that � 2Ms. If � is a von Neumann solution, then by Theorem 7.6
there exists a t 2 R such that I�.z/ D Hz.t/ for all z 2 CC.

Assume that � is not a von Neumann solution and define �.z/ WD H�1
z .I�.z//:

Let z 2 CC. Then I�.z/ 2
ı
Kz by Proposition 7.10 and hence �.z/ D H�1

z .I�.z// 2
CC by Lemma 7.11(ii). That is, �.CC/ 	 CC. We show that C.z/CI�.z/D.z/ ¤ 0.
Indeed, otherwise I�.z/ D �C.z/D.z/�1 D Hz.1/ 2 @Kz by Lemma 7.11(i)

which contradicts the fact that I�.z/ 2
ı
Kz. Thus, �.z/ is the quotient of two

holomorphic functions on CC with nonvanishing denominator function. Therefore,
� is holomorphic on CC. This proves that � 2 P. By the definition of � we have
Hz.�.z// D I�.z/ on CC, that is, (7.16) holds.

Conversely, suppose that � 2 P. If � D t 2 R, then by Theorem 7.6 there is a
von Neumann solution �t 2Ms such that I�t.z/ D Hz.t/.

Suppose now that � is not in R. Let z 2 CC and define I.z/ D Hz.�.z//. Then

�.z/ 2 CC and hence I.z/ D Hz.�.z// 2
ı
Kz	 CC by Lemma 7.11 (ii) and (iii).

From Proposition 7.4(v) it follows that B.z/ C �.z/D.z/ ¤ 0. Therefore, I is a
holomorphic function on CC with values in CC, that is, I 2 P.

To prove that I D I� for some � 2Ms we want to apply Proposition 7.12(ii).
For this we have to check that condition (7.12) is fulfilled. Indeed, by Proposi-
tion 7.12(i), given " > 0 there exists a Y" > 0 such that

ˇ̌
ˇ̌
ˇ ynC1

 
I�.iy/C

nX
kD0

sk
.iy/kC1

!ˇ̌
ˇ̌
ˇ < " for all y � Y" (7.17)

and for all � 2Ms. (Here it is crucial that Y" does not depend on � and that (7.17)
is valid for all measures � 2Ms!) Fix a y � Y". Since I.iy/ D Hiy.�.iy// is in the
interior of the Weyl circle Kiy by Lemma 7.11(ii), I.iy/ is a convex combination of
two points from the boundary @Kiy. By Lemma 7.11(i), all points of @Kiy are of the
form I�t .iy/ for some t 2 R. Since (7.17) holds for all I�t .iy/ and I.iy/ is a convex
combination of values I�t .iy/, (7.17) remains valid if I�.iy/ is replaced by I.iy/. This
shows that I.z/ fulfills the assumptions of Proposition 7.12(ii), so that I D I� for
some measure � 2Ms.

By Theorem A.13, the positive measure �� is uniquely determined by the values
of its Stieltjes transform I�� on CC. Therefore, since I�� and � 2 P correspond to
each other uniquely by the relation I�.z/ D Hz.�.z// on CC, (7.16) gives a one-to-
one correspondence between � 2Ms and � 2 P. ut

Let us briefly discuss and summarize some of the results obtained so far.
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Theorem 7.13 provides a complete parametrization of the solution set Ms in the
indeterminate case in terms of the set P. However, the one-to-one correspondence
� $ �� between P and Ms given by (7.16) is highly nonlinear and very implicit.
From Eq. (7.16) we derive that �.z/ is obtained from I�� .z/ by

�.z/ D � A.z/C I�� .z/B.z/

C.z/C I�� .z/D.z/
; z 2 CC:

The subset R [ f1g of P is in one-to-one correspondence to the von Neumann
solutions, or equivalently, to the self-adjoint extensions of T on the Hilbert space
Hs Š l2.N0/. The nonconstant Pick functions correspond to self-adjoint extension
on a strictly larger Hilbert space (see Theorem 6.1).

Fix z 2 CC. The values I�.z/ for all von Neumann solutions � 2 Ms fill the
boundary @Kz of the Weyl circle, while the numbers I�.z/ for all other solutions

� 2 Ms lie in the interior
ı
Kz. By taking convex combinations of von Neumann

solutions it follows that each number of
ı
Kz is of the form I�.z/ for some � 2Ms.

By Theorem 1.19, the solution set Ms is compact in the vague topology. For
each indeterminate moment sequence the set Ms is “very large". We illustrate this
by stating two results without proofs from [BC1, Theorem 1]:

The subset of measures � 2Ms of the form d� D f .x/dx for some nonnegative
function f 2 C1.R/ is dense in Ms with respect to the vague topology. The set of
measures of finite order (as defined in Sect. 7.7 below) is also dense inMs.

All solutions of finite order are extreme points of Ms (see Exercise 7.9). Hence
Ms is a convex compact set (in the vague topology) with dense set of extreme
points! Recall from Theorem 1.21 that a measure � 2 Ms is an extreme point of
Ms if and only CŒx� is dense in L1.R; �/.

Remark 7.14 It is easily seen that the map  7! � WD � �1 is a bijection of the
set P. Inserting this into (7.16) we obtain

I�� .z/ D �
A.z/�  .z/�1C.z/
B.z/�  .z/�1D.z/ D �

A.z/ .z/ � C.z/

B.z/ .z/ � D.z/
;  2 P: (7.18)

The fraction on the right-hand side of (7.18) is another equivalent form of
parametrization of solutions which often occurs in the literature (for instance, in
Akhiezer’s book [Ak]). Our convention (7.16) follows [Sim1]. ı

7.5 Maximal Point Masses

The following theorem and its subsequent corollary contain a remarkable property
of von Neumann solutions concerning maximal point masses.
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Theorem 7.15 Let � be a representing measure of the indeterminate moment
sequence s. Suppose that � is not a von Neumann solution. Then, for any x 2 R

there is a von Neumann solution �t of s such that �t.fxg/ > �.fxg/:
The following lemma is used in the proof of Theorem 7.15.

Lemma 7.16 Suppose that � 2 P and � … R. Let x 2 R and t 2 R. If the limit
L.x; t/ WD lim"!C0 �.xCi"/�t

i"
exists and is a real number, then L.x; t/ > 0.

Proof We use the canonical representation (A.4) of the Pick function

�.z/ D aC bzC
Z
R

1C zt

t � z
d�.t/;

where a; b 2 R, b � 0, and � is a finite positive Radon measure on R. Since L.x; t/
is real by assumption, we derive

L.x; t/ D lim
"!C0

�.xC i"/ � t

i"
D lim

"!C0 Re
�.xC i"/ � t

i"
D lim

"!C0
Im�.xC i"/

"

D lim
"!C0

�
bC

Z
R

1C t2

.t � x/2 C "2 d�.t/
�
D bC

Z
R

1C t2

.t � x/2
d�.t/;

where the last equality holds by Lebesgue’s monotone convergence theorem. The
right-hand side is obviously non-negative. If it were zero, then we would have b D 0
and � � 0, so that � 2 R, which contradicts the assumption. Thus L.x; t/ > 0. ut
Proof of Theorem 7.15 First assume that D.x/ ¤ 0. Put t D �B.x/D.x/�1. Then we
have x 2 supp�t and �t.fxg/ > 0 by Theorem 7.7. Therefore the assertion is trivial
if �.fxg/ D 0, so we can assume that �.fxg/ > 0.

Since A.x/D.x/� B.x/C.x/ D 1, we have

D.x/�1 D D.x/�1.A.x/D.x/� B.x/C.x// D A.x/C tC.x/: (7.19)

By Theorem 7.13 there is a unique � 2 P such that � D �� . Since � is not a
von Neumann solution, � … R[ f1g. From the Stieltjes–Perron formula (A.8) and
Eq. (7.16) we obtain

�.fxg/ D lim
"!C0 .�i"/I�.xC i"/ D lim

"!C0 i"
A.xC i"/C �.xC i"/C.xC i"/

B.xC i"/C �.xC i"/D.xC i"/
:

(7.20)

Therefore, since �.fxg/ > 0, we have lim"!C0 jI�.xC i"/j D C1 and hence

lim
"!C0 �.xC i"/ D lim

"!C0 H
�1
xCi".I�.xC i"//

D lim
"!C0 �

A.xC i"/C I�.xC i"/B.xC i"/

C.xC i"/C I�.xC i"/D.xC i"/
D �B.x/

D.x/
D t:

(7.21)
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Now we compute the limits of the numerator and denominator of the fraction
in the right-hand side of Eq. (7.20), where the factor i" is included into the
denominator. By (7.19) and (7.21) we obtain for the numerator

lim
"!C0

�
A.xC i"/C �.xC i"/C.xC i"/

� D A.x/C tC.x/ D D.x/�1: (7.22)

For the denominator we derive

lim
"!C0

B.xC i"/C �.xC i"/D.xC i"/

i"

D lim
"!C0

B.xC i"/ � B.x/C t.D.xC i"/ �D.x//CD.xC i"/.�.xC i"/ � t/

i"

D B0.x/C tD0.x/C D.x/ lim
"!C0

�.xC i"/ � t

i"
: (7.23)

By (7.22), the limit of the numerator in the right-hand side of (7.20) exists and is
real. Therefore, since �.fxg/ > 0, the limit of the denominator exists as well. Since
D.x/ ¤ 0, it follows from (7.23) that the limit L.x; t/ WD lim"!C0 �.xCi"/�t

i"
exists.

Since the limits in (7.20) and (7.22) are real, L.x; t/ is real. Hence L.x; t/ > 0 by
Lemma 7.16. Inserting the numerator and denominator limits into (7.20) we get

�.fxg/ D 1

D.x/.B0.x/C tD0.x//C D.x/2L.x; t/
: (7.24)

On the other hand, we compute the mass �t.fxg/ by applying again formula
(7.20) with � replaced by �t and � by t. Then, by (7.19), we obtain

�t.fxg/ D lim
"!C0 .�i"/I�t.xC i"/ D lim

"!C0 i"
A.xC i"/C tC.xC i"/

B.xC i"/C tD.xC i"/

D .A.x/C tC.x// lim
"!C0

i"

B.xC i"/ � B.x/C t.D.xC i"/ � D.x//

D A.x/C tC.x/

B0.x/C tD0.x/
D 1

D.x/.B0.x/C tD0.x//
: (7.25)

Recall that D.x/ ¤ 0 and L.x; t/ > 0. Therefore, comparing (7.24) and (7.25) it
follows that �t.fxg/ > �.fxg/. This proves the assertion in the case when D.x/ ¤ 0.

If D.x/ D 0, then B.x/ ¤ 0 and the same proof goes through verbatim by using
the second parametrization (7.18) of solutions. ut

The following corollary combines some assertions of Theorems 7.7 and 7.15.

Corollary 7.17 Let s be an indeterminate Hamburger moment sequence. For each
x 2 R there exists a unique von Neumann solution �t of s such that �t.fxg/ > 0.
For any solution � ¤ �t of the moment problem for s we have �.fxg/ < �t.fxg/:
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Proof The existence assertion on �t is contained in Theorem 7.7. Let � ¤ �t

be another solution. If � is a von Neumann solution, then �.fxg/ D 0 by
Theorem 7.7(ii). If � is not a von Neumann solution, then �.fxg/ < �t.fxg/ by
Theorem 7.15. ut
Corollary 7.18 Let � D P1

kD1mkıxk be an N-extremal solution of an indetermi-
nate moment sequence, where all mk > 0 and the points xk 2 R are pairwise
distinct. Then, the measure �k WD ��mkıxk is determinate for k 2 N. In particular,
� is the sum of the two determinate measures �k and mkıxk .

Proof Assume to the contrary that �k is indeterminate. By Corollary 7.17, there is
a von Neumann solution �k of the moment sequence of �k such that �k.fxkg/ > 0.
Clearly, � WD �k C mkıxk has the same moment sequence as � and �.fxkg/ > mk D
�.fxkg/. This is impossible by the last assertion of Corollary 7.17. ut
Remark 7.19 Retain the assumptions of Corollary 7.18 and assume (upon trans-
lation) that x1 D 0. Then sn.�/ D

R
xnd� D R

xnd�1 D sn.�1/ for n 2
N. Thus, except for the first moment, the indeterminate measure � and the
determinate measure�1 have the same moments and so the same growth of moment
sequences! That is, there is no characterization of determinacy by growth conditions
of the moment sequence. The determinate moment sequence of �1 cannot satisfy
Carleman’s condition (4.2), since otherwise � would be determinate by Carleman’s
theorem 4.3. ı

For an indeterminate moment sequence s we define a function

	s.z/ WD kpzk�2s D
� 1X

nD0
jpn.z/j2

��1
; z 2 C:

This function plays an important role in the study of the moment problem for s.
By Definition 7.9, 	z D jz � zj�1	s.z/ is the radius of the Weyl circle Kz for

z 2 CnR. By Corollary 7.17 and Theorem 7.7(iii), for x 2 R the number 	s.x/
is the maximal mass of the one point set fxg among all solutions of the moment
problem for s. This maximum is attained at a unique solution: the von Neumann
solution �t for which x 2 supp�t, that is, t D �B.x/D.x/�1 if D.x/ ¤ 0 and t D 1
if D.x/ D 0.

7.6 Nevanlinna–Pick Interpolation

Recall that each Pick function ˚ 2 P has a representation

˚.z/ D aC bzC
Z
R

�
1

t � z
� t

1C t2

�
d�.t/; z 2 CnR; (7.26)

where a; b 2 R, b � 0, and � is a positive measure such that
R
.1C t2/�1d�.t/ <1.
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Given a function 
 W Z ! CC defined on a subset Z of the upper half-plane
CC D fz 2 C W =z > 0g, the Nevanlinna–Pick interpolation problem asks:

When does there exist a function ˚ 2 P such that ˚.z/ D 
.z/ for all z 2 Z?

As in the case of moment problems, some appropriate positivity condition is
necessary and sufficient for the existence of a solution.

Theorem 7.20 Let Z be a subset of CC and 
 W Z ! CC a function on Z . There
exists a Pick function ˚ such that ˚.z/ D 
.z/ for all z 2 Z if and only if for each
finite set Z of pairwise distinct elements z0; : : : ; zn 2 Z the matrix

K.Z/ WD
�

.zi/� 
.zj/

zi � zj

�n

i;jD0
(7.27)

is positive semidefinite. If the set Z is finite, ˚ can be chosen rational.

Proof Assume first that there is a function ˚ 2 P such that ˚.z/ D 
.z/ for z 2 Z .
Then using the canonical representation (7.26) we derive


.zi/� 
.zj/
zi � zj

D ˚.zi/ �˚.zj/
zi � zj

D bC
Z
R

d�.x/

.x � zi/.x � zj/
: (7.28)

Hence for �0; : : : ; �n 2 C we obtain

nX
i;jD0


.zi/� 
.zj/
zi � zj

�i� j D b

ˇ̌
ˇ̌ nX
iD0

�i

ˇ̌
ˇ̌2 C

Z
R

ˇ̌
ˇ̌ nX
iD0

�i

x � zi

ˇ̌
ˇ̌2d�.x/ � 0; (7.29)

which proves that the matrix K.Z/ is positive semidefinite.
Now we prove the converse implication. Upon a linear transformation z 7! azCb

and a shift 
 7! 
� c with real a; b; c we can assume that i 2 Z and <
.i/ D 0. For
z 2 CnR; let 'z denote the function

'z.x/ D 1C xz

x � z
; x 2 R:

Next we verify that the functions f'z W z 2 CnR; z ¤ �ig are linearly
independent overC. Indeed, suppose that �0'iCPk

jD1 �j'zj D 0, where z1; : : : ; zk 2
CnR are distinct, zj ¤ �i; i, and �j 2 C. Note that 'i.x/ D i for x 2 R. Then we
obtain

kX
jD1

�j.1C z2j /.x � zj/
�1 C

kX
jD1

�jzj C �0i D 0; x 2 R:

Since zj ¤ �i; i and hence 1 � z2j ¤ 0 for j ¤ 0, the preceding equality implies that
�j D 0 for j D 1; : : : ; k and hence also �0 D 0.
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Since limx!˙1 'z.x/ D z, 'z is a continuous function on the one point
compactification R D R [ f1g of R by setting '.1/ D z. Let E be the set of
functions

f .x/ D i�0'i C
nX

jD1

�
�j'zj C �j'zj

�
; (7.30)

where �0 2 R; �1; : : : ; �n 2 C and z1; : : : ; zn 2 Zni are distinct. Since 'z D 'z,
each function f is real-valued and E is a real subspace C.RIR/. Since Z 	 CC,
it follows from the linear independence of the functions 'z shown above that the
numbers �j in (7.30) are uniquely determined by f . Hence there is a well-defined (!)
linear functional L W E! R defined by

L. f / D �0i 
.i/C
nX

jD1

�
�j
.zj/C �j 
.zj/

�
: (7.31)

Note that 
.i/ is defined, because i 2 Z , and i
.i/ is real, since < 
.i/ D 0. Further,
since 
.i/ 2 CC, the constant function g.x/ WD �i
.i/ D =
.i/ > 0 is in E.

Let LC W EC ! C be the extension of L to a linear functional on the complex
vector space EC D EC iE. Clearly, 'z; 'z 2 EC for z 2 Z and (7.31) implies that

LC.'z/ D 
.z/ and LC.'z/ D 
.z/ for z 2 Z : (7.32)

The crucial step of this proof is to show that L. f / � 0 for f 2 EC. This is where
the positivity assumption comes in. Suppose that the function f from (7.30) is in
EC. Recall that 'i D i. Hence we can write f as

f .x/ D jx � z1j�2 : : : jx � znj�2p.x/

for some polynomial p. Since f .x/ � 0 on R, p.x/ � 0 on R. Therefore, by
Proposition 3.1, p D q21 C q22 for q1; q2 2 RŒx�. Setting q WD q1 C iq2 2 CŒx�,
we have p.x/ D q.x/q.x/. Put

h.x/ WD .x � z1/
�1 : : : .x � zn/

�1q.x/:

Since f is bounded on R, deg. p/ � 2n, so that deg.q/ � n. Therefore, since the
numbers zj are distinct, h.x/ is a linear combination of some constant and partial
fractions .x � zj/�1. Setting z0 D i and using that .x � zj/�1 D .zj � i/�1. x�i

x�zj
� 1/

for j D 1; : : : ; k, it follows that h.x/ can be written as

h.x/ D
nX

jD0

x � i

x � zj
�j (7.33)
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with �j 2 C. Then, inserting the corresponding functions, we compute

f .x/ D jh.x/j2 D
nX

i;jD0

1C x2

.x � zi/.x � zj/
�i� j D

nX
i;jD0

'zi.x/� 'zj.x/
zi � zj

�i � j: (7.34)

Therefore, by (7.32),

L. f / D LC. f / D
nX

i;jD0


.zi/� 
.zj/
zi � zj

�i � j: (7.35)

Since the matrix K.Z/ is positive semidefinite by (7.27), L. f / � 0 by (7.35).
Thus L and E satisfy the assumptions of Proposition 1.9, so there exists a (finite)

measure Q� 2 MC.R/ such that L. f / D R
fd Q� for f 2 E. Define �.M/ D Q�.M/ for

a Borel subset M of R and b D Q�.f1g/. Then � is a finite measure of MC.R/ and

L. f / D bf .1/C
Z
R

f .x/ d�.x/; f 2 E: (7.36)

Clearly, (7.36) extends to LC. f / and f 2 EC. By (7.32), LC.'z/ D 
.z/ and hence


.z/ D LC.'z/ D bzC
Z
R

1C xz

x � z
d�.x/; for z 2 Z : (7.37)

The right-hand side of (7.37) defines a function ˚ 2 P. This completes the proof
of the converse implication.

If the set Z is finite, the vector space E is finite-dimensional. Then Proposi-
tion 1.26 applies instead of Proposition 1.9 and yields a finitely atomic measure Q�.
Then (7.37) gives a rational function ˚ 2 P. ut
Corollary 7.21 Let z0; : : : ; zn 2 CC be pairwise distinct and w0; : : : ;wn 2 CC.
There exists a function ˚ 2 P such that ˚.zj/ D wj for j D 0; : : : ; n if and only if
the matrix

K D .Kij/
n
ijD0; where Kij D wi � wj

zi � zj
; (7.38)

is positive semidefinite. In this case the function ˚ can be chosen rational.

Proof We apply Theorem 7.20 with Z WD fz0; : : : ; zng and 
.zj/ WD wj, j D
0; : : : ; n. Then the necessity of the positive semidefiniteness of K is stated in
Theorem 7.20 and its sufficiency follows from the preceding proof. Indeed, by the
definition of Z all functions f of E are of the form (7.30), so by the above proof it
suffices that the single matrix K is positive semidefinite. ut
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The degree of a rational function '.z/ D p.z/
q.z/ , where p; q 2 CŒz� have no common

zero, is defined by

deg.'/ WD max.deg. p/; deg.q//: (7.39)

Theorem 7.22 Let z0; : : : ; zn 2 CC be pairwise distinct and w0; : : : ;wn 2 CC.
Suppose that there exists a ˚ 2 P such that ˚.zj/ D wj for j D 0; : : : ; n. Then the
following are equivalent:

(i) The matrix (7.38) has the eigenvalue 0.
(ii) ˚ is real rational function with degree at most n.

(iii) The interpolating function ˚ 2 P is uniquely determined.

Proof For �0; : : : ; �n 2 C we compute (see (7.29))

nX
i;jD0

Kij �i� j D
nX

i;jD0

˚.zi/ �˚.zj/
zi � zj

�i� j D b

ˇ̌
ˇ̌ nX
iD0

�i

ˇ̌
ˇ̌2 C

Z
R

ˇ̌
ˇ̌ nX
iD0

�i

x � zi

ˇ̌
ˇ̌2d�.x/:

(7.40)

(i)!(ii) Let .�0; : : : ; �n/ be an eigenvector of K for the eigenvalue 0. Then the
expression in (7.40) is zero. Set p.x/ D Qn

iD0.x � zi/. Then there is a polynomial

q of degree at most n such that
Pn

iD0
�j

x�zi
D q.x/

p.x/ : Since (7.40) vanishes, we

obtain
R ˇ̌ q.x/

p.x/

ˇ̌2
d�.x/ D 0. Therefore, � is supported on the zero set Z.q/ by

Proposition 1.23. This has at most n points. If b ¤ 0, we have in additionPn
iD0 �i D 0 by (7.40). This implies that deg.q/ � n � 1, so that � is supported

at at most n� 1 points. In both cases b D 0 and b ¤ 0 it follows from the canonical
representation (7.26) that ˚ is a real rational function of degree at most n.

(ii)!(i) Suppose that ˚ is rational and deg.˚/ � n. Since ˚ is holomorphic
outside the support of �, it follows at once from (7.26) that � is supported at k points
x1; : : : ; xk, where k � n if b D 0 and k � n � 1 if b ¤ 0. Put m D k if b D 0 and
m D k C 1 if b ¤ 0. In either case m � n. For � D .�0; : : : ; �n/ 2 CnC1 we define
h.�/ D .h1.�/; : : : ; hm.�// 2 Cm, where

hj.�/ D
nX

iD0

�i

xj � zi
; j D 1; : : : ; k;

and hm.�/ D Pn
iD0 �i if b ¤ 0. Since m � n, the mapping h W CnC1 ! Cm has a

nontrivial kernel. If � ¤ 0 is in this kernel, then
Pn

i;jD0 Kij�i� j D 0 by (7.40). Since
the matrix (7.38) is positive semidefinite by Corollary 7.21, we conclude that � is an
eigenvector for the eigenvalue 0.

(i)!(iii) Let Q̊ be a solution of the interpolation problem. Then Q̊ is a real
rational function of degree at most n by (i)!(ii). Since Q̊ is real on R, we have
Q̊ .z/ D Q̊ .z/ for z 2 CnR by Schwarz’ reflection principle. Hence Q̊ .zj/ D wj and
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Q̊ .zj/ D wj for j D 0; : : : ; n: Hence Q̊ is uniquely determined, because a rational
function of degree at most n is determined by 2n C 1 distinct points. (Indeed, if
q1
p1
.vj/ D q2

p2
.vj/ for distinct v1 : : : ; v2nC1, then q1.vj/p2.vj/�q2.vj/p1.vj/ D 0. Since

deg.q1p2 � q2p1/ � 2n, this implies q1p2 � q2p1 D 0, so that q1
p1
D q2

p2
.)

(iii)!(i) Assume to the contrary that 0 is not an eigenvalue of the matrix (7.38).
We use the setup of the proof of Theorem 7.20. Let E 	 C.RIR/ be the real vector
space of functions (7.30) with n fixed. Suppose that f 2 EC and L. f / D 0. Since
0 is not an eigenvalue, the matrix (7.38) is positive definite. Therefore, by (7.35),
L. f / D 0 implies that all numbers �j in (7.33) are zero, so that h D 0 and hence
f D 0. Thus, L is strictly EC-positive. Hence, by Theorem 1.30(ii), L has different
representing measures Q� and these measures give different interpolating functions˚
by the right-hand side of (7.37). This contradicts (iii) and completes the proof. ut

There is an alternative proof of the last implication (iii)!(i). One can replace
Theorem 1.30(ii) by Theorem 9.7 (proved in Sect. 9.1 below) on the truncated
moment problem. Let us sketch the necessary modifications. First we note that
dimE D 2nC1. (To see this it suffices to recall that the complex space EC is spanned
by the linearly independent functions 1; 'zj ; 'zj , j D 1; : : : ; n, so it has dimension
2nC1.) For each f 2 E there exists a unique polynomial pf 2 RŒx�2n such that

f .x/ D jx � z1j�2 : : : jx � znj�2pf .x/:

Since dimRŒx�2n D dimE D 2nC1, the map f 7! pf is a linear bijection of E onto
RŒx�2n: Hence there exists a linear functional on RŒx�2n defined by QL. pf / D L. f /,
f 2 E: Let q 2 RŒx�n, q ¤ 0. Then q2 D pf for some f 2 E. Since q ¤ 0, we have
f ¤ 0 and f 2 EC, so that L. f / > 0 as shown in the preceding proof of (iii)!(i).
Thus, QL.q2/ D QL. pf / D L. f / > 0. Therefore, by Theorem 9.7, there exists a one-
parameter family �t of finitely atomic representing measures for the functional QL.
Hence, setting d�t D jx� z1j2 : : : jx� znj2d�t, we obtain a one-parameter family of
representing measures for L and so of interpolating functions˚ by (7.37).

7.7 Solutions of Finite Order

Throughout this section we assume that � is a measure in MC.R/. This means
that all moments of � are finite. Let s denote its moment sequence. Recall from
Proposition 6.2 that the canonical Hilbert space Hs is a closed subspace of L2.R; �/.

Definition 7.23 For a measure � 2MC.R/ the order of � is defined by

ord.�/ D dim .L2.R; �/
Hs/: (7.41)

Here dim means the cardinality of an orthonormal basis of the Hilbert space.
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Comparing Definitions 6.4 and 7.23 we see that the von Neumann solutions are
precisely the solutions of order 0. Thus, � 2 MC.R/ has order 0 if and only if
either its moment sequence is determinate (by Theorem 6.10) or it is an N-extremal
solution (Definition 7.8) of an indeterminate moment sequence. Therefore, for each
measure of nonzero order the corresponding moment sequence is indeterminate.

Measures of finite order are, after N-extremal measures, the simplest solutions of
indeterminate moment problems. In this section we derive a number of characteri-
zations of such measures.

We begin with some preliminaries. A crucial role is played by the functions

fz.x/ D 1

x � z
; where z 2 CnR; x 2 R:

For n1; : : : ; nk 2 N0 and pairwise distinct z1; : : : ; zk 2 CnR we define a closed
linear subspace of L2.R; �/ by

H.z1; : : : ; zkI n1; : : : ; nk/ WD Hs C Linf f jzl W j D 1; : : : ; nl; l D 1; : : : ; kg: (7.42)

(If nl D 0 for some l, the corresponding term in (7.42) will be set zero.) Further, we
shall use the bounded operator V.z;w/ of L2.R; �/ with bounded inverse defined by

V.z;w/ WD .A� � zI/.A� � wI/�1 D I C .w � z/.A� � wI/�1; z;w 2 CnR;

where A� is the multiplication operator by the variable x on L2.R; �/, see (6.2).

Lemma 7.24

(i) .A� � zI/�1Hs 	 Hs C C � fz for z 2 CnR:
(ii) f kz f

m
w 2 Lin f f jz ; f lw W jD1; : : : ; k; lD1; : : : ;mg for z;w 2 CnR; z ¤ w; k; n 2 N:

(iii) Suppose that z1; : : : ; zk 2 CnR are pairwise distinct and n1; : : : ; nk 2 N0. If
f
njC1
zj 2H.z1; : : : ; zkI n1; : : : ; nk/; then f kzj2H.z1; : : : ; zkI n1; : : : ; nk/ for k 2 N:

Proof

(i) Let p 2 CŒx�. Then qz.x/ WD p.x/�p.z/
x�z is a polynomial in x and

..A� � zI/�1p/.x/ D .x � z/�1p.x/ D p.x/� p.z/

x � z
C p.z/.x � z/�1

D qz.x/C p.z/fz.x/ 2 Hs C C � fz:

Thus .A��zI/�1CŒx� 	 HsCC � fz. Since HsCC � fz is closed in L2.R; �/, CŒx�
is dense in Hs and .A� � zI/�1 is bounded, it follows that .A� � zI/�1Hs 	
Hs C C � fz.

(ii) The assertion follows by induction on jC l easily from the identity

f jz f
l
w D . f jz f l�1w � f j�1z f lw/.z� w/�1; j; l 2 N:
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(iii) For notational simplicity let j D 1 and write z D z1; n D n1.
First let n � 1. By the assumption we can write f nC1

z D Pn
lD1 �lf lz C g,

where �l 2 C and g 2 H.z2; : : : ; zkI n2; : : : ; nk/. Applying .A� � zI/�1 we
obtain

f nC2
z D

nX
lD1

�lf
lC1
z C .A� � zI/�1g: (7.43)

From (i) and (ii) it follows that .A� � zI/�1g 2 H.z; z2; : : : ; zkI 1; n2; : : : ; nk/:
Since f nC1

z 2 H.z; : : : ; zkI n; : : : ; nk/ by assumption,
Pn

lD1 �lf lC1z 2
H.z; : : : ; zkI n; : : : ; nk/: Thus, if n � 1, both summands in (7.43) are in
H.z; : : : ; zkI n; : : : ; nk/ and so is f nC2

z .
Let n D 0. Then fz 2 H.z2; : : : ; zkI n2; : : : ; nk/ by assumption, so by (i)

and (ii),

f 2z 2 C � fz CH.z2; : : : ; zkI n2; : : : ; nk/ 	 H.z; z2; : : : ; zkI 0; n2; : : : ; nk/:

This completes the proof of the assertion for k D n C 1. Proceeding in a
similar manner by induction it follows that f kz 2 H.z; : : : ; zkI n; : : : ; nk/ for all
k 2 N: ut

Lemma 7.25 Let w; z1; : : : ; zk 2 CnR be pairwise distinct and n1; : : : ; nk 2 N0.
Then, for l D 1; : : : ; k, we have

.i/ V.zl;w/H.z1; : : : ; zkI n1; : : : ; nl C 1; : : : ; nk/ D H.z1; : : : ; zk;wI n1; : : : ; nk; 1/:
.ii/ V.w; zl/H.z1; : : : ; zk;wI n1; : : : ; nk; 1/ D H.z1; : : : ; zkI n1; : : : ; nl C 1; : : : ; nk/:

Proof From Lemma 7.24(ii) we conclude that V.w; zl/ and V.zl;w/ map the
corresponding subspaces into the spaces on the right. Therefore, the composition
I D V.zl;w/V.w; zl/ maps H.z1; : : : ; zk;wI n1; : : : ; nk; 1/ into, hence onto, itself.
This implies that we have equality in (ii) and similarly in (i). ut
Proposition 7.26 Suppose � 2 MC.R/ and ord.�/ D n 2 N. Let z1; : : : ; zk 2
CnR be pairwise distinct and n1; : : : ; nk 2 N such that n D n1 C � � � C nk. Then

L2.R; �/ D Hs C Lin f f jzl W j D 1; : : : ; nl; l D 1; : : : ; kg:

Proof Let A D Lin f f kz W z 2 CnR; k 2 Ng. By Lemma 7.24(ii), A is closed
under multiplication, so A is a �-subalgebra of the C�-algebra C0.R/ of continuous
functions on R vanishing at infinity. Obviously, A separates the points of R.
Hence, by the Stone–Weierstrass theorem [Cw, Corollary 8.3], A is norm dense
in C0.R/. Since the measure � is finite, this implies that A is dense in L2.R; �/.
Since ord.�/ D n, there exists a finite-dimensional subspace B of A such that
L2.R; �/ D Hs C B. The latter implies that L2.R; �/ D Hs CA.
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Let fv1; : : : ; vrg be a maximal subset of CnR such that F1 WD f fv1 ; : : : ; fvrg is
linearly independent modulo Hs, where maximality means that fv 2 Hs C LinF1
for any v 2 CnR distinct from all vj. It is clear that such a set always exists, since
ord.�/ D n and L2.R; �/ D Hs CA. Further, there exist numbers m1; : : : ;mr 2 N

such that F D f f jvl W j D 1; : : : ;ml; l D 1; : : : ; rg is a maximal set which is linearly
independent modulo Hs. Here the maximality means that f mlC1

vl
2 Hs C LinF for

all l D 1; : : : ; r. Then, it follows from the definition (7.42) that

G WD H.v1; : : : ; vrIm1; : : : ;mr/ D Hs C LinF:

If z 2 CnR, z ¤ vj for all j, then fz 2 G and hence f kz 2 G for all k 2 N

by Lemma 7.24(iii). Likewise, f
mjC1
vj 2 G implies f kvj 2 G for k 2 N, again by

Lemma 7.24(iii). This proves that A 	 G. Since L2.R; �/ D Hs C A as shown in
the preceding paragraph, we get L2.R; �/ D G. Because F is linearly independent
modulo Hs,

n D ord.�/ D dimL2.R; �/=Hs D dim LinF D m1 C � � � C mr:

Thus, by the preceding we have shown that

L2.R; �/ D H.v1; : : : ; vrIm1; : : : ;mr/ D Hs C Lin ff jvl W j D 1; : : : ;ml; l D 1; : : : ; rg:
This equality is of the required form except for the fact that we have to take our
given functions fzl and numbers nl instead of fvl and ml, respectively. To remedy this
we now use Lemma 7.25.

First let us choose w1; : : : ;wn 2 CnR such that both w1; : : : ;wn; v1 : : : ; vr and
w1; : : : ;wn; z1; : : : ; zk are pairwise distinct. Then, by Lemma 7.25(i), we can find
a products of operators V.vl;wi/ that maps L2.R; �/ D H.v1; : : : ; vrIm1; : : : ;mr/

ontoH.w1; : : : ;wnI 1; : : : ; 1/. Further, by Lemma 7.25(ii), there is a product of oper-
ators V.wi; zj/ which maps H.w1; : : : ;wnI 1; : : : ; 1/ onto H.z1; : : : ; zkI n1; : : : ; nk/.
Since all operators V.vl;wi/ and V.wi; zj/ are isomorphisms of L2.R; �/, we obtain

L2.R; �/ D H.z1; : : : ; zkI n1; : : : ; nk/ D Hs C Linf f jzl W jD1; : : : ; nl; lD1; : : : ; kg: ut

Proposition 7.26 says that f f jzl W j D 1; : : : ; nl; l D 1; : : : ; kg forms a
basis of the quotient space L2.R; �/=Hs if ord.�/ D n1C : : :Cnk 2 N and
z1; : : : ; zk 2 CnR are pairwise distinct. This is a crucial step for the following
theorem, which characterizes measures of finite order in terms of density and
determinacy conditions.

Theorem 7.27 Suppose that � 2 MC.R/. Let z1; : : : ; zk 2 CnR be pairwise
distinct numbers and z 2 CnR. Let n1; : : : ; nk 2 N and set n D n1 C � � � C nk.
Define measures �n and �nC1 of MC.R/ by

d�n.x/ D
kY

lD1
jx � zlj�2nld�.x/; d�nC1.x/ D jx � zj�2d�n.x/:
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Then the following statements are equivalent:

(i) ord.�/ � n.
(ii) L2.R; �/ D Hs C Linf f jzl W j D 1; : : : ; nl; l D 1; : : : ; kg:

(iii) CŒx� is dense in L2.R; �n/.
(iv) �nC1 is determinate.

Proof In this proof we abbreviate F D Linf f jzl W j D 1; : : : ; nl; l D 1; : : : ; kg:
(i)!(ii) Assume that m WD ord.�/ � n. If m D 0, then L2.R; �/ D Hs and

the assertion trivially holds. Now let m 2 N. We choose natural numbers i � k and
mj � nj for j D 1; : : : ; i such that m D m1 C � � � C mi. Then, by Proposition 7.26,
L2.R; �/ D Hs C Lin f f jzl W j D 1; : : : ;ml; l D 1; : : : ; ig: By adding further powers
f jzl if m < n this obviously implies L2.R; �/ D Hs C F ; which proves (ii).

(ii)!(i) is trivial, since dim F � n1 C � � � C nk D n:
(ii)$(iii) From the definition of the measure �n we see that the mapping U

defined by .Uf /.x/ D Qk
lD1.x � zl/nl f .x/ is a unitary operator of L2.R; �/ onto

L2.R; �n/. Decomposition into partial fractions yields an identity

kY
lD1
.x � zl/

�nl D
kX

lD1

nlX
jD1

alj
.x � zl/j

; (7.44)

where alj 2 C. Equation (7.44) implies that U maps CŒx� C F into CŒx�. From
Lemma 7.24(ii) it follows that U maps CŒx� C F onto CŒx�. Since CŒx� is dense
in Hs, (ii) is equivalent to the density of CŒx� C F in L2.R; �/: Hence CŒx� C F
is dense in L2.R; �/ if and only if U.CŒx� C F/ D CŒx� is in L2.R; �n/. Thus,
(ii)$(iii).

(iii)$(iv) By Theorem 6.13, CŒx� is dense in L2.R; �n/ if and only if the
function fz D .x�z/�1 is in the closure of CŒx� in L2.R; �n/. From Corollary 6.12
(or from Exercise 6.1) it follows that �nC1 is determinate if and only if 1 is in the
closure of .x � z/CŒx� in L2.R; �nC1/. But both conditions are equivalent, since

Z
j.x � z/�1 � p.x/j2d�n.x/ D

Z
j1 � .x � z/p.x/j2jx � zj�2d�n.x/

D
Z
j1 � .x � z/p.x/j2d�nC1.x/ for p 2 CŒx�: ut

Since statement (i) of Theorem 7.27 does not depend on the choice of zj; nj, this
holds for the assertions (ii)–(iv) as well. We elaborate on this in some corollaries.

Corollary 7.28 Let � 2MC.R/, wj 2 CnR for j 2 N: Define �k 2MC.R/ by

d�k WD
kY

jD1
jx � wjj�2d�; k 2 N; �0 WD �: (7.45)



170 7 The Indeterminate Hamburger Moment Problem

Then the following statements are equivalent:

(i) ord.�/ is finite.
(ii) There exists a k 2 N such thatCŒx� is dense in L2.R; �k/ for some, equivalently

for arbitrary, numbers w1; : : : ;wk 2 CnR.
(iii) There exists an m 2 N such that �m is determinate for some, equivalently for

arbitrary, numbers w1; : : : ;wm 2 CnR.

Further, ord.�/ � k if (ii) holds and ord.�/ � m � 1 if (iii) is satisfied.

Proof Let w1; : : : ;wn 2 CnR be arbitrary. We denote by z1; : : : ; zk the pairwise
distinct ones among them and by nj the multiplicity of wj in the sequence
fw1; : : : ;wng. Then we are in the setup of Theorem 7.27 and the equivalence of
statements (i), (iii), (iv) therein yields the assertions. ut

The next corollary follows at once from the last statement in Corollary 7.28.

Corollary 7.29 Retain the assumptions and the notation of Corollary 7.28, that is,
wj 2 CnR are arbitrary, and �k is defined by (7.45). Let n 2 N. Then:

(i) ord.�/ D n if and only if CŒx� is dense in L2.�n/, but not in L2.�n�1/.
(ii) ord.�/ D n if and only if �nC1 is determinate, but �n is not determinate.

Corollary 7.30 For a measure � 2MC.R/ the following are equivalent:

(i) ord.�/ is finite.
(ii) L2.R; �/ D Hs C Linf fw1 ; : : : ; fwng for some n 2 N and some, equivalently

for arbitrary, pairwise distinct numbers w1; : : : ;wn 2 CnR.
(iii) L2.R; �/ D Hs C Linf fw; f 2w; : : : ; f nwg for some n 2 N and some, equivalently

for arbitrary, w 2 CnR.

Proof We regroup fw1; : : : ;wng as in the proof of Corollary 7.28 and apply
Theorem 7.27 (i)$(ii). ut
Corollary 7.31 If� 2MC.R/ has order n 2 N, then the support of� is a discrete
unbounded set.

Proof We retain the notation (7.45). By Corollary 7.29 (i) and (ii), CŒx� is dense
in L2.R; �n/ and �n is not determinate. Thus �n is a von Neumann solution of an
indeterminate moment problem. Hence the support of �n is discrete and unbounded
by Theorem 7.7. Since d� DQn

jD1 jx � wjj2d�n.x/, so is the support of �. ut
The next proposition relates measures of finite order to moment problems with

constraints on their Stieltjes transforms.
Let z1; : : : ; zn 2 CC be pairwise distinct and w1; : : : ;wn 2 CC. We abbreviate

r.x/ D jx � z1j2 � � � jx � znj2:

For p 2 CŒx� there is a decomposition of the rational function p
r as a sum of partial

fractions
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p.x/

r.x/
D qp.x/C

nX
jD1

�
aj;p
x � zj

C bj;p
x � zj

�
; (7.46)

where aj;p; bj;p 2 C and qp 2 CŒx�. The constants aj;p; bj;p and the polynomial qp are
uniquely determined by p and z1 : : : ; zn. Note that aj;p D bj;p and qp D qp.

For a linear functional L on CŒx�, we define a linear functional on CŒx� by

�.L/.z1;:::;znIw1;:::;wn/. p/ D L.qp/C
nX

jD1
.aj;pwj C bj;pwj/; k 2 N0: (7.47)

Because of (7.46) the functional L and the numbers wj can be recovered from the
functional�.L/.z1;:::;znIw1;:::;wn/ by the formulas

L. p.x// D �.L/.z1;:::;znIw1;:::;wn/. p.x/r.x//; (7.48)

wj D �.L/.z1;:::;znIw1;:::;wn/.r.x/.x � zj/
�1/: (7.49)

(The latter expression is well-defined, since r.x/.x � zj/�1 is a polynomial.)

Proposition 7.32 Suppose that s is a moment sequence. Let z1; : : : ; zn 2 CC be
pairwise distinct and w1; : : : ;wn 2 CC: There is a bijection between all solutions
� 2 Ms satisfying I�.zj/ D wj for j D 1; : : : ; n and solutions �n 2 MQs, where
Qs D .Qsk/k2N0 and Qsk WD �.Ls/.z1;:::;znIw1;:::;wn/.x

k/, k 2 N0, is defined by (7.47) for
p D xk. (Note that both sets of solutions may be empty.) This bijection is given by

d� $ d�n WD
nY

jD1
jx � zjj�2d� � r.x/�1d�: (7.50)

Proof First, let � 2 Ms be such that I�.zj/ D wj for j D 1; : : : ; n. Let k 2 N0.
Then, using (7.50), (7.46), and finally (7.47), we derive

Z
xkd�n.x/ D

Z
xkr.x/�1d�.x/

D
Z

qxk.x/d�.x/C
nX

jD1

�
aj;xk

Z
d�.x/

x � zj
C bj;xk

Z
d�.x/

x � zj

�

D �.Ls/.z1;:::;znII�.z1/;:::;I�.zn//.xk/ D �.Ls/.z1;:::;znIw1;:::;wn/.x
k/ D Qsk;

that is, �n 2MQs.
Now suppose that �n 2MQs. Using the formulas (7.48) and (7.49) we obtain

sk D Ls.x
k/ D �.Ls/.z1;:::;znIw1;:::;wn/.x

kr.x// D
Z

xkr.x/d�n.x/ D
Z

xkd�.x/;
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wj D �.Ls/.z1;:::;znIw1;:::;wn/

�
r.x/.x � zj/

�1/

D
Z

r.x/.x � zj/
�1 d�n.x/ D

Z
.x � zj/

�1d�.x/ D I�.zj/

for k 2 N0 and j D 1; : : : ; n. Thus, � 2Ms and I�.zj/ D wj; j D 1; : : : ; n: ut
The next theorem states that solutions of finite order are precisely those

corresponding to rational functions ˚ 2 P in the Nevanlinna parametrization of
Theorem 7.13. In the proof we use Theorem 7.22 on Nevanlinna–Pick interpolation.

Theorem 7.33 Suppose that s is an indeterminate Hamburger moment sequence. A
representing measure �˚ 2Ms (given by (7.16) with ˚ 2 P) has a finite order if
and only if ˚ is a rational function. In this case, ord.�˚/ D deg.˚/; where deg.˚/
is defined by (7.39).

Proof We fix z1; : : : ; znC1 2 CC pairwise distinct and abbreviate � WD �˚ .
As in Theorem 7.27 and Proposition 7.32 we define �nC1 2MC.R/ by

d�nC1.x/ D
nC1Y
jD1
jx � zjj�2d�.x/:

Then vj WD I�.zj/ and wj WD H�1
zj .vj/ are in CC for j D 1; : : : ; nC 1. By (7.16) we

have Hzj.˚.zj// D I�.zj/ D vj and hence ˚.zj/ D H�1
zj .vj/ D wj: That is, ˚ is a

solution of the Nevanlinna–Pick interpolation problem

�.zj/ D wj; j D 1; : : : ; nC 1; for � 2 P: (7.51)

Suppose � has order n 2 N. Let Q̊ 2 P be another solution of the interpolation
problem (7.51). Then Q� WD � Q̊ 2 Ms (by Theorem 7.13) and Q̊ .zj/ D wj, so
that vj D Hzj.wj/ D Hzj.

Q̊ .zj// D I Q�.zj/ by (7.16) for j D 1; : : : ; n C 1. Hence,
by Proposition 7.32, . Q�/nC1 and �nC1 have the same moment sequence. But, since
ord .�/ D n, the measure �nC1 is determinate by Corollary 7.29(ii). Therefore,
. Q�/nC1 D �nC1 which in turn implies that � Q̊ � Q� D � � �˚ and hence Q̊ D ˚

by Theorem 7.13. This shows that the interpolation problem (7.51) has a unique
solution. It follows from Theorem 7.22 (iii)!(ii) that˚ is rational and deg.˚/ � n.

Now suppose that ˚ is rational and deg.˚/ � n. We proceed as in the preceding
paragraph but in reverse order. Let � be a solution of the moment problem for �nC1
and define Q� 2 MC.R/ by d Q� D QnC1

jD1 jx � zjj2d�. Then . Q�/nC1 D �. From
Proposition 7.32, applied in the converse direction, it follows that IQ�.zj/ D I�.zj/ D
vj; j D 1; : : : ; n C 1; and Q� 2 Ms. Therefore, Q� D � Q̊ for some Q̊ 2 P by
Theorem 7.13. Then we have vj D IQ�.zj/ D Hzj.

Q̊ .zj// by (7.16), so that Q̊ .zj/ D
H�1

zj .vj/ D wj: Hence Q̊ solves the interpolation problem (7.51) as well. Since ˚ is
rational and deg.˚/ � n, the interpolation problem (7.51) has a unique solution by
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Theorem 7.22 (ii)!(iii). Thus, Q̊ D ˚ which implies Q� D � and hence � D �nC1.
This proves that �nC1 is determinate. Therefore, ord.�/ � n by Corollary 7.27.

In the paragraph before last it was shown that ord.�˚/ D n implies deg.˚/ � n:
If we had deg.˚/ � n�1, then ord.�˚/ � n�1 by the preceding paragraph, which
is a contradiction. Thus we have proved that ord.��/ D deg.˚/. ut

7.8 Exercises

In this section, we assume that s is an indeterminate Hamburger moment
sequence.

1. Let M be a compact subset of C. Then cM WD supz2M .
P1

nD0 jpn.z/j2/1=2 < 1
by Lemma 7.1. Show that jp.z/j � cMkpks for p 2 CŒx� and z 2 M.

2. Let z1; z2; z3; z4 2 C. Prove the following identities:

A.z1; z2/D.z3; z4/� B.z3; z2/C.z1; z4/C B.z3; z1/C.z2; z4/ D 0;
A.z1; z2/C.z3; z4/C A.z3; z1/C.z2; z4/C A.z2; z3/C.z1; z4/ D 0;
D.z1; z2/B.z3; z4/C D.z3; z1/B.z2; z4/C D.z2; z3/B.z1; z4/ D 0:

Hint: Verify the corresponding identities for Ak;Bk;Ck;Dk. Use Lemma 5.24.
3. Let z;w 2 C. Show that

A.z;w/ D A.z/C.w/ � C.z/A.w/; B.z;w/ D A.z/D.w/� C.z/B.w/;

C.z;w/ D B.z/C.w/ �D.z/A.w/; D.z;w/ D B.z/D.w/� D.z/B.w/:

4. (Reproducing kernel) Recall that pk; k 2 N0; are the orthonormal polynomi-
als.

a. Show that the series

K.z;w/ D
1X
kD0

pk.z/pk.w/; .z;w/ 2 C2;

converges uniformly on compact subsets of C2 to a holomorphic function K,
called the reproducing kernel for s, such that D.z;w/ D .z � w/K.z;w/:

b. Show that for each representing measure � 2Ms and polynomial f 2 CŒx�,

Z
R

K.z; x/f .x/d�.x/ D f .z/; z 2 C:

c. Show that the preceding equality remains valid for each holomorphic
function f .z/ DP1

kD0 ckpk.z/, where .cn/ 2 l2.N0/.
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5. Prove that the fractional linear transformation Hz;w defined by (7.10) maps

a. @Kw onto @Kz if Im z ¤ 0 and Im w ¤ 0;
b. @Kw onto R if Im z D 0 and Im w ¤ 0;
c. R onto @Kz if Im z ¤ 0 and Im w D 0;
d. R onto R if Im z D Im w D 0:

6. Let Hz;w be the transformation defined by (7.10) and Hz WD Hz;0: Prove that

Hz;wHw;v D Hz;v ; H.z; z/ D I; .Hz;w/
�1 D Hw;z; Hz;w D Hz.Hw/

�1; z;w; v 2 C:

Hint: Use (7.4) and (7.3).
7. Show that for each n 2 N there is a continuum of measures � 2Ms of order

n.
8. Suppose that � 2Ms has order n 2 N. Let p 2 RŒx� and define � 2MC.R/

by d� D .1C p.x/2/�1d�. What is the order of �?
9. Show that each measure in Ms of finite order is an extreme point of the set Ms:

Hint: Use Proposition 1.21 and (for instance) Theorem 7.27 (iii).
10. Consider the Nevanlinna–Pick interpolation problem in Theorem 7.22 and

sharpen the equivalence of (i) and (ii) therein: Show that 0 is an eigenvalue
of multiplicity k if and only if the rational function ˚ has degree nC 1 � k.

11. Let ˚ D p
q 2 P, where p; q 2 RŒx� have no common zeros. Suppose that the

support of the measure � in the representation (7.26) consists of n points.

a. Show that deg.˚/ D n and discuss the possible degrees of p and q.
b. Express the polynomials p and q in terms of atoms and masses of � and of

the constant b in (7.26).

12. Collect characterizations of N-extremal solutions among all solutions (dense-
ness of CŒx� in L2.R; �/, orthonormal basis fpk W k 2 N0g of L2.R; �/, values
of the Stieltjes transform I�.z/ for z 2 CC, Nevanlinna parametrization, order).

13. Let � DP1
kD1mkıxk be an N-extremal solution of s, with mk > 0 and xk 2 R

pairwise distinct. (Proofs of the following results can be found in [BC1].)

a. Show that the measure � WD ��Pr
kD1mkıxk is determinate for each r 2 N.

b. Let m0 > 0 and x0 2 R. Suppose that x0 ¤ xk for all k 2 N. Show
that the measure � D m0ıx0 C

P1
kD2mkıxk is an N-extremal solution of

an indeterminate moment sequence.

7.9 Notes

Theorem 7.13 was proved in 1924 by R. Nevanlinna [Nv1]. Proposition 7.12 is due
to H. Hamburger [Hm] and R. Nevanlinna [Nv1]. The two-parameter Nevanlinna
functions and fractional transformations appeared in [BCa2]. It is difficult to
determine explicit examples of Nevanlinna functions A;B;C;D. The first such
examples were calculated in [ChiI], [IM], [BV], [CI].
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The existence Theorem 7.20 on Nevanlinna–Pick interpolation is due to G. Pick
[Pi] for finite sets Z and due to R. Nevanlinna [Nv2] for countable sets, see also [Ak,
Theorem 3.3.3]. Operator-theoretic approaches to Nevanlinna–Pick interpolation
are given in [SK] and [AM]. Characterizations of solutions of finite order such as in
Theorem 7.27 were first obtained by H. Buchwalther and G. Cassier [BCa1]; further
results are in [Sim1] and [Ge].

There are important results about growth properties of Nevanlinna functions.
Already M. Riesz [Rz2] had shown (see e.g. [Ak, p. 101]) that the entire functions
f D A;B;C;D are of minimal exponential type, that is, for each " > 0 there exists a
K" > 0 such that jf .z/j � K"e"jzj for z 2 C. C. Berg and H.L. Petersen [BP] proved
that the four functions have the same order and type, called the order and type of the
indeterminate moment sequence s. Further results are given in [BS2].



Chapter 8
The Operator-Theoretic Approach
to the Stieltjes Moment Problem

This chapter is devoted to a detailed study of Stieltjes moment problems by using
positive self-adjoint extensions of positive symmetric operators on Hilbert spaces.

In Sect. 8.2 we rederive the existence theorem for the Stieltjes moment problem
by operator-theoretic methods (Theorem 8.2). Since the Jacobi operator T for a
Stieltjes moment sequence s is positive, it has a largest positive self-adjoint exten-
sion on Hs, the Friedrichs extension, and a smallest positive self-adjoint extension,
the Krein extension. By the corresponding spectral measures this leads to two
distinguished solutions�F and�K of the Stieltjes moment problem for s. In Sect. 8.3
we give an operator-theoretic characterization of Stieltjes determinacy by showing
that the Stieltjes moment problem is determinate if and only if the Jacobi operator T
has a unique positive self-adjoint extension on Hs (Theorem 8.7). The relationship
between Hamburger determinacy and Stieltjes determinacy is discussed. In Sect. 8.4
we prove that for any other solution � of the Stieltjes moment problem the Stieltjes
transforms satisfy I�F.x/ � I�.x/ � I�K .x/ for x < 0 (Theorem 8.18). Further,
an approximation theorem for the Stieltjes transforms I�F.x/ and I�K .x/ is obtained
(Theorem 8.16). Sections 8.5 and 8.6 develop the Nevanlinna parametrization of
solutions (Theorem 8.24) and the Weyl circle description, respectively, for an
indeterminate Stieltjes moment sequence.

8.1 Preliminaries on Quadratic Forms on Hilbert Spaces

In this short section we collect some facts on forms and positive self-adjoint
operators that will be used in this chapter; all of them can be found in the book
[Sm9].

Suppose that H is a Hilbert space. A positive quadratic form s on a linear
subspace DŒs� of H is a mapping sŒ�; �� W DŒs� � DŒs� ! C which is linear in
the first variable, antilinear in the second and satisfies sŒ'; '� � 0 for ' 2 DŒs�:

© Springer International Publishing AG 2017
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Such a form s is called closed if for each sequence .'n/n2N from DŒs� such that
limn;k!1 sŒ'n�'k; 'n�'k� D 0 and limn!1 'n D ' in H for some ' 2 H we have
' 2 DŒs� and limn!1 sŒ'n�'; 'n�'� D 0.

A symmetric operator T on H is said to be positive if hT'; 'i � 0 for ' 2 D.T/:
For a positive symmetric operator T its greatest lower bound is the number

m.T/ WD sup f� 2 R W hT'; 'i � �h'; 'i for ' 2 D.T/g: (8.1)

Let A be a positive self-adjoint operator. Then the spectral measure EA is
supported on Œm.A/;C1/ 	 RC and A has a unique positive square root A1=2

given by A1=2 D R1
0 �1=2 dEA.�/. There exists a unique closed positive quadratic

form sA W

DŒsA� D D.A1=2/ and sAŒ';  � D hA1=2';A1=2 i for '; 2 DŒ sA�:

Conversely, for each densely defined closed positive quadratic form s there exists a
unique positive self-adjoint operator A such that s D sA, see [Sm9, Theorem 10.17].

Let s1; s2 be positive quadratic forms on H. We define s1 � s2 if DŒs2� 	 DŒs1�
and s1Œ'; '� � s2Œ'; '� for all ' 2 DŒ s2�.

Let G1 and G2 be closed linear subspaces of H and let A1 and A2 be positive
self-adjoint operators on G1 and G2, respectively. We write A1 � A2 if sA1 � sA2 , or
equivalently, D.A1=22 / 	 D.A1=21 / and kA1=21 'k � kA1=22 'k for ' 2 D.A1=22 /.

Proposition 8.1 Let A1 and A2 be as above. Then A1 � A2 if and only if

.A2 � �I/�1 � .A1 � �I/�1

for one (then for all) � < 0. Here .Aj � �I/�1 denotes the operator of B.H/ which
is the inverse .Aj � �I/�1 on Gj and 0 on G?

j , j D 1; 2.
Proof [Sm9, Corollary 10.13] in the case G1 D G2 D H. The general case is easily
obtained by minor modifications. ut

Now suppose that T is a densely defined positive symmetric operator on H. Then
T always has a positive self-ajoint extension on H. There is a largest positive self-
adjoint extension, called the Friedrichs extension and denoted by TF , and a smallest
positive self-adjoint extension, called the Krein extension and denoted by TK , with
respect to the order relation “�” [Sm9, Corollary 13.15]. That is, if A is an arbitrary
positive self-adjoint extension of T on H, then we have

.TF C �I/�1 � .AC �I/�1 � .TK C �I/�1 for � > 0:

The Friedrichs extension is defined as follows. It can be shown that the positive
quadratic form s defined by sŒ';  � D hT'; i, '; 2 DŒs� WD D.T/, has a
smallest closed extension s. Since s is densely defined, closed, and positive, it is
the quadratic form of a unique positive self-adjoint operator. This operator is the
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Friedrichs extension TF, see [Sm9, Theorem 10.17]. From this construction of TF it
follows that T and TF have the same lower bounds, that is,

ms WD m.T/ D m.TF/: (8.2)

The Krein extension TK can be nicely described in the case when m.T/ > 0.
Then we have (see [Sm9, formulas (14.67–68)])

D.TK/ D D.T/ PCN .T�/; TK.' C �/ D T' for ' 2 D.T/; � 2 N .T�/: (8.3)

If N .T�/ ¤ f0g, then 0 is an eigenvector of TK . Note that TF is invariant under
translation, that is, .T � �I/F D TF � �I; but TK is not in general.

8.2 Existence of Solutions of the Stieltjes Moment Problem

In this short section we apply Hilbert space operator theory to solve the Stieltjes
moment problem. More precisely, we use the Friedrichs extension of a positive
symmetric operator and the spectral theorem for self-adjoint operators [Sm9]. The
following theorem is the counterpart of Theorem 6.1 for the Stieltjes moment
problem.

Theorem 8.2 Suppose that s D .sn/n2N0 is a positive definite real sequence such
that the sequence Es D .snC1/n2N0 is positive semidefinite. Then the Stieltjes
moment problem for s is solvable.

If A is a positive self-adjoint extension of the symmetric operator X on a possibly
larger Hilbert space G (that is, Hs 	 G and X 	 A) and EA is the spectral measure
of A, then �A.�/DhEA.�/1; 1iG is a solution of the Stieltjes moment problem for s.
Each solution of the Stieltjes moment problem for s is of this form.

Proof The proof follows the lines of the proof of Theorem 6.1 and we explain only
the necessary modifications.

Let p.x/ D Pn
jD0 cjxj 2 CŒx�. Then xp.x/p.x/ D Pn

j;kD0 cjck xjCkC1. Therefore,
since the sequence Es is positive semidefinite, we obtain

hXp; pis D L.xpp/ D
nX

j;kD0
cjck sjCkC1 � 0: (8.4)

This shows that the symmetric operator X is positive. The Friedrichs extension of
the densely defined positive operator X is a positive self-adjoint extension. Hence X
has at least one positive self-adjoint extension on Hs.

For any positive self-adjoint extension A of X, the spectral measure EA is
supported on Œ0;C1/, so �A is a solution of the Stieltjes moment problem for s.
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Conversely, if � is a solution of the Stieltjes moment problem for s, the self-
adjoint operator A� from Proposition 6.2 is a positive self-adjoint extension of X
acting on the (possibly larger) Hilbert space L2.Œ0;C1/; �/. ut

Recall that the Jacobi operator T on l2.N0/ is unitarily equivalent to X. Thus
Theorem 8.2 yields at once the following counterpart of Corollary 6.3.

Corollary 8.3 If s is as in Theorem 8.2, then the solutions of the Stieltjes moment
problem for s are precisely the measures of the form �B.�/ D s0hEB.�/e0; e0iF ,
where B is a positive (!) self-adjoint extension of T on a possibly larger Hilbert
space F .

Suppose that s is a positive definite Stieltjes moment sequence. Then, by (8.4),
the symmetric operator X Š T on Hs Š l2.N0/ is positive. Let ms denote the
greatest lower bound m.T/ of the operator T, see (8.1). From the extension theory of
positive symmetric operators (see Sect. 8.1) it is known that T has a largest positive
self-adjoint extension on Hs, the Friedrichs extension TF , and a smallest positive
self-adjoint extension on Hs, the Krein extension TK . By (8.2), we have

ms D m.T/ D m.TF/ � 0: (8.5)

By Corollary 8.3, the spectral measures ETF and ETK give rise to solutions �F and
�K , respectively, of the Stieltjes moment problem for s.

Definition 8.4 �F.�/ WD s0hETF .�/e0; e0i is the Friedrichs solution and �K.�/ WD
s0hETK .�/e0; e0i is the Krein solution of the Stieltjes moment problem for s.

These two distinguished solutions �F and �K will play a crucial role in this
chapter. Both solutions come from self-adjoint extensions of T on the Hilbert space
Hs Š l2.N0/, so they are von Neumann solutions according to Definition 6.4.

8.3 Determinacy of the Stieltjes Moment Problem

Suppose that s is a Stieltjes moment sequence and � is a solution of the Stieltjes
moment problem for s. If � is the only representing measure of s supported
on Œ0;C1/, then we say that s, and likewise �, is determinate or Stieltjes
determinate if confusion can arise. But s may be indeterminate as a Hamburger
moment sequence, that is, s may have different representing measures on R (see
Example 8.11 below). Then the Stieltjes moment sequence s is called Ham-
burger indeterminate. In order to distinguish these cases unambiguously we will
speak about Stieltjes determinacy and Hamburger determinacy of Stieltjes moment
sequences in what follows. Obviously, if s is Hamburger determinate, it is also
Stieltjes determinate.
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If s is Hamburger indeterminate, then �F and �K are N-extremal solutions of the
Hamburger moment problem for s according to Definition 7.8.

Let us begin with Hamburger indeterminate Stieltjes moment sequences.

Proposition 8.5 Suppose that s is a Stieltjes moment sequence which is Hamburger
indeterminate. Then the following are equivalent:

(i) X Š T has a unique positive self-adjoint extension on Hs Š l2.N0/.
(ii) 0 is an eigenvalue of the Friedrichs extension TF of T.

(iii) ms D 0.
Proof

(i)!(ii) The operator T1 from Theorem 6.23 is a positive self-adjoint extension
of T satisfying T1p0 D T�p0 D 0, that is, 0 is an eigenvalue of T1. Since T has a
unique positive self-adjoint extension by (i), we have T1 D TF . This proves (ii).

(ii)!(iii) is trivial.
(iii)!(i) Let A be an arbitrary positive self-adjoint extension of T on l2.N0/. The

Friedrichs extension TF is the largest positive self-adjoint extension of T, so that
A � TF . Hence, by Proposition 8.1,

.TF C I/�1 � .AC I/�1 � 1; (8.6)

where the second inequality holds because A is positive. By (iii) and (8.5) we have
ms D m.TF/ D 0. Therefore, k.TFCI/�1k D 1 and hence k.ACI/�1k D 1 by (8.6).
Since A � 0 and A has a discrete spectrum by Theorem 7.7(i), it follows from the
equality k.AC I/�1k D 1 that 0 is an eigenvalue of A. But 0 is also in the spectrum
of TF , because m.TF/ D 0. Therefore, from Theorem 7.7(ii) it follows that A D TF .
This shows that TF is the unique self-adjoint extension of T on l2.N0/. ut
Corollary 8.6 Let s be a Stieltjes moment sequence which is Hamburger indeter-
minate. Then the operator T1 from Theorem 6.23 is the Krein extension TK of T
and

D.TK/ D D.T1/ D D.T/ PCC � p0 D D.T/ PCN .T�/; (8.7)

TK.' C �p0/ D T' for ' 2 D.T/; � 2 C: (8.8)

Proof Because s is Hamburger indeterminate, we have p0 2 l2.N0/ by Theo-
rem 6.16 and hence N .T�/ D C � p0 by Proposition 6.6(i).

First let ms D 0. Then, by Proposition 8.5, T has only one positive self-adjoint
extension on l2.N0/. Since TK (by definition) and T1 (by Theorem 6.23) are such
extensions, T1 D TK and (6.16) implies (8.7) and (8.8).

Now suppose that ms ¤ 0. Then ms > 0 and hence D.TK/ D D.T/ PCN .T�/ by
(8.3). Therefore, since N .T�/ D C � p0, we obtain D.T1/ D D.TK/. But T1 and
TK are restrictions of T�, so that T1 D TK and (6.16) yields (8.7) and (8.8). ut
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The main result in this section is the following operator-theoretic characterization
of Stieltjes determinacy. It is the counterpart of the corresponding result (Theo-
rem 6.10) for the Hamburger moment problem.

Theorem 8.7 Suppose that s is a positive definite Stieltjes moment sequence. Then
s is Stieltjes determinate if and only if the symmetric operator X, or equivalently the
Jacobi operator T, has a unique positive self-adjoint extension on the Hilbert space
Hs Š l2.N0/.

Proof First we assume that X has two different positive self-adjoint extensions, say
A and B, on Hs. We repeat the reasoning from the proof of Theorem 6.10. Then
�A.�/DhEA.�/1; 1i and �B.�/DhEB.�/1; 1i are representing measures for s. They are
supported on Œ0;C1/, because A and B are positive. If �A were equal to �B, then
we would have h.A�zI/�11; 1i D h.B�zI/�11; 1i for z 2 CnR by the functional
calculus of self-adjoint operators. This contradicts Lemma 6.8. Hence �A ¤ �B, so
s is Stieltjes indeterminate.

Now we assume that X has a unique positive self-adjoint extension on Hs. If s is
Hamburger determinate, it is Stieltjes determinate and we are finished. Suppose now
that s is Hamburger indeterminate. Then �F is N-extremal and 0 is an eigenvalue
of TF by Proposition 8.5. Since the multiplication operator X on Hs and the Jacobi
operator T on l2.N0/ are unitarily equivalent, so are their Friedrichs extensions XF

and TF , and we have �F.�/ D hEXF.�/1; 1is. Then 0 is an eigenvalue of XF. Let
f 2 Hs be a corresponding unit eigenvector. From the definition of the Friedrichs
extension it follows that there exists a sequence . fn/n2N from D.X/ D CŒx� such
that limn fn D f in Hs Š L2.RC; �F/ and limn hXfn; fnis D hXFf ; f is D 0.

Let � be an arbitrary solution of the Stieltjes moment problem for s. Since we
have fn ! f in Hs, . fn/n2N is a Cauchy sequence in .CŒx�; k�ks/ and so in L2.RC; �/
by Proposition 6.2. Hence fn ! g in L2.RC; �/ for some g 2 L2.RC; �/. Clearly,
kgkL2.RC;�/

D 1, since k fnkL2.RC;�/
D k fnks ! k fks D 1. Then

Z 1

0

jpxfnj2 d� D
Z 1

0

xfn fn d� D Ls.xfn fn / D hXfn; fnis ! hXFf ; f is D 0:

Therefore, for each function ' 2 Cc.RCIR/ we obtain

Z 1

0

p
xfn ' d� D

Z 1

0

fn
p
x ' d�! 0 D

Z 1

0

g
p
x ' d�:

This implies that g.x/ D 0 �-a.e. on .0;C1/. Since fn ! f in L2.RC; �F/, we
have in particular f .x/ D 0 �F-a.e. on .0;C1/. (This also follows from the fact
that XFf D 0.) Thus, since g 2 L2.RC; �/ and f 2 L2.RC; �F/ are unit vectors, we
get

�.f0g/jg.0/j2 D �F.f0g/j f .0/j2 D 1: (8.9)
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Further, we have

Z 1

0

fn d� D Ls. fn/ D
Z 1

0

fn d�F !
Z 1

0

g d� D
Z 1

0

f d�F:

Since g.x/ D 0 �-a.e. and f .x/ D 0 �F-a.e. on .0;C1/, the latter equality yields

�.f0g/g.0/D �F.f0g/f .0/: (8.10)

Combining (8.9) and (8.10) we obtain �.f0g/ D �F.f0g/ > 0. Because �F is a von
Neumann solution of the indeterminate Hamburger moment sequence s, it follows
from Corollary 7.17 that � D �F . This proves that s is Stieltjes determinate. ut

We close this section by deriving three useful corollaries. An immediate conse-
quence of Theorem 8.7 and Proposition 8.5 is the following.

Corollary 8.8 Let s be a Stieltjes moment sequence which is Hamburger indeter-
minate. The following are equivalent:

(i) s is Stieltjes determinate.
(ii) 0 is an eigenvalue of the Friedrichs extension TF of T.

(iii) ms D 0.
Corollary 8.9 Let s be a determinate Stieltjes moment sequence with representing
measure �. If �.f0g/ D 0, then s is Hamburger determinate.
Proof Since s is Stieltjes determinate, � D �F . The multiplication operator A� by
the variable x on L2.Œ0;C1/; �/ and the Friedrichs extension TF are positive self-
adjoint extensions of X Š T on Hs Š L2.Œ0;C1/; �/ D L2.Œ0;C1/; �F/. Hence
A� D TF by Theorem 8.7. Since �.f0g/ D 0, 0 is not an eigenvalue of A� D TF .
Hence s cannot be Hamburger indeterminate by Corollary 8.8. ut
Corollary 8.10 Suppose that s is an indeterminate Stieltjes moment sequence. Then
m.TF/ > 0, supp�F 	 Œm.TF/;C1/, and 0 is in the resolvent set of the Friedrichs
extension TF, that is, .TF/�1 2 B.Hs/.

Proof Since s is Stieltjes indeterminate, it is Hamburger indeterminate and T has
at least two different positive self-adjoint extensions on l2.N0/ by Theorem 8.7.
Therefore, ms D m.TF/ > 0 by Proposition 8.5 and (8.5). From the theory of self-
adjoint operators it follows that the spectrum of TF , hence the support of the measure
�F , is contained in Œm.TF/;C1/, so that 0 is in the resolvent set of TF. ut
Example 8.11 (A determinate Stieltjes moment sequence that is Hamburger inde-
terminate) Let s be an indeterminate Stieltjes moment sequence. Then ms D
m.TF/ > 0 by Corollary 8.10. Let Qs D .Qsn/n2N0 denote the shifted sequence of s
by �ms, that is, Qsn D Pn

kD0
�n
k

�
.�ms/

ksn�k for n 2 N0; see Exercise 6.5. Then Qs is
Hamburger indeterminate (because s is Hamburger indeterminate) and mQs D 0. By
Corollary 8.8, mQs D 0 implies that Qs is Stieltjes determinate. ı
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8.4 Friedrichs and Krein Approximants

In this section we suppose that s is a positive definite Stieltjes moment sequence.
We develop two sequences of matrices and two related sequences of quotients of
polynomials as approximants for the Friedrichs and Krein extensions and as useful
tools in the proofs of our main results (Theorems 8.16 and 8.18).

The truncated Jacobi matrix (6.21) is called the Friedrichs approximant and
denoted by AŒn�F , that is, we set

AŒn�F WD Jn D

0
BBBBBBB@

b0 a0 0 : : : 0 0 0

a0 b1 a1 : : : 0 0 0

0 a1 b2 : : : 0 0 0

: : : : : : : : : : : : : : : : : : : : :

0 0 0 : : : an�3 bn�2 an�2
0 0 0 : : : 0 an�2 bn�1

1
CCCCCCCA
; n 2 N: (8.11)

The Krein approximant AŒn�K is defined by

AŒn�K D

0
BBBBBBB@

b0 a0 0 : : : 0 0

a0 b1 a1 : : : 0 0

0 a1 b2 : : : 0 0

: : : : : : : : : : : : : : :

0 0 0 : : : bn�2 an�2
0 0 0 : : : an�2 bn�1 � ˛n�1

1
CCCCCCCA
; n 2 N; (8.12)

where ˛n�1 is chosen according to the following lemma.

Lemma 8.12 There is a unique positive number ˛n�1 such that AŒn�K has the
eigenvalue zero. A corresponding eigenvector is . p0.0/; : : : ; pn�1.0//. The matrix
AŒn�K is positive semidefinite, pn�1.0/ ¤ 0, and we have

.bn�1 � ˛n�1/pn�1.0/C an�2pn�2.0/ D 0; (8.13)

˛n�1 D� an�1
pn.0/

pn�1.0/
; (8.14)

.bn � ˛n/˛n�1 � a2n�1 D 0: (8.15)

Proof The assertion is obvious for n D 1, so we assume that n � 2. Fix ˛n�1 and
y D . y0; : : : ; yn�1/ 2 Cn with y0 WD p0.0/. Let us consider the equation AŒn�K y D 0.
For the first n�1 components of y this is equivalent to the recurrence relations (5.9)
for x D 0 with the same intial data. Therefore, yk D pk.0/ for k D 0; : : : ; n � 1. For
the n-th component this is precisely equation (8.13).
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The sequence s is positive definite, hence is AŒn�F . Therefore, pn�1.0/ ¤ 0, because

otherwise AŒn�F would have the eigenvalue zero. Since pn�1.0/ ¤ 0, (8.13) has a
unique solution ˛n�1. Let Cn denote the matrix with entry one at the right lower
corner and zero otherwise. Then AŒn�F D AŒn�K C ˛n�1Cn by definition. If ˛n�1 � 0,

then 0 � AŒn�F � AŒn�K and hence AŒn�F would not be positive definite. Hence ˛n�1 > 0.
The recurrence relation (5.9) gives an�1pn.0/Cbn�1pn�1.0/Can�2pn�2.0/ D 0.

Combined with (8.13) this yields (8.14). Replacing now n�1 by n in Eq. (8.13) and
comparing this with (8.14) we obtain (8.15). ut
Lemma 8.13 For n 2 N0 we define

Mn.z/ D Pn.z/ � Pn.0/

Pn�1.0/
Pn�1.z/; Nn.z/ D Qn.z/� Pn.0/

Pn�1.0/
Qn�1.z/:

Then

h.AŒn�K � zI/�1e0; e0i D � Nn.z/

Mn.z/
; z 2 	.AŒn�K /: (8.16)

Proof In this proof we use Lemmas 6.27 and 6.28. Let BŒn�K be the matrix obtained

from AŒn�K by removing the first row and the first column. By developing the
determinant and using Lemma 6.27(i) we get

det .zI � AŒn�K / D det .zI � AŒn�F /� ˛n�1 det .zI � AŒn�1�
F / D Pn.z/� ˛n�1Pn�1.z/:

Since the matrix AŒn�K has the eigenvalue 0 by Lemma 8.12, we have det AŒn�K D 0.
Hence Pn.0/ D ˛n�1Pn�1.0/ and

det .zI � AŒn�K / D Pn.z/� Pn.0/Pn�1.0/�1Pn�1.z/ D Mn.z/: (8.17)

Similarly, applying Lemma 6.28(i) we derive

det .zI � BŒn�K / D det .zI � BŒn�F / � ˛n�1 det .zI � BŒn�1�
F /

D Qn.z/ � ˛n�1Qn�1.z/ D QnC1.z/� Pn.0/Pn�1.0/�1Qn�1.z/ D Nn.z/:

As in the proof of Lemma 6.28 we use Cramer’s rule and obtain

h.AŒn�K � zI/�1e0; e0i D det .BŒn�K � zI/

det .AŒn�K � zI/
D �det .zI � BŒn�K /

det .zI � AŒn�K /
D � Nn.z/

Mn.z/

for z in the resolvent set 	.AŒn�K /. This completes the proof of Lemma 8.13. ut



186 8 The Operator-Theoretic Approach to the Stieltjes Moment Problem

Lemma 8.14 For x < ms and n 2 N0, we have

h.AŒn�F � xI/�1e0; e0i � h.AŒnC1�
F � xI/�1e0; e0i; (8.18)

lim
n!C1h.A

Œn�
F � xI/�1e0; e0i D h.TF � xI/�1e0; e0i : (8.19)

Proof In this proof we use some facts on forms and self-adjoint operators, see
Sect. 8.1. Let sn denote the positive quadratic form defined by

sn. f ; g/ D hAŒn�F f ; gi; f ; g 2 DŒ sn� WD f. f0; : : : ; fn�1; 0; 0; : : : / W fj 2 Cg:

Then DŒsn� 	 DŒsnC1� and sn. f ; f / D snC1. f ; f / for f 2 DŒsn�. By the definition of
the order relation of forms this means that snC1 � sn. Therefore, by Proposition 8.1,

.AŒn�F � xI/�1 � .AŒnC1�
F � xI/�1: (8.20)

(By the convention in Proposition 8.1 the resolvents are defined to be 0 on the
orthogonal complements of DŒsn� and DŒsnC1� in l2.N0/.) Clearly, (8.20) implies
(8.18).

Since ms > x, the sequence ..AŒn�F � xI/�1/n2N of bounded positive self-adjoint
operators on l2.N0/ is monotonically increasing by (8.20) and bounded from above
by .ms�x/�1I (since AŒn�F � msI). Hence it converges strongly to a bounded positive
self-adjoint operator S such that S � .ms�x/�1I.

Let f 2 N .S/. Then 0 D hSf ; f i � h.AŒn�F � xI/�1f ; f i � 0: Since AŒn�F � msI;

this implies .AŒn�F � xI/�1f D 0 for all n 2 N. Hence f 2 \n DŒsn�? D f0g, so that
f D 0. Thus, S has a trivial kernel. Therefore, since S � .ms�x/�1I, it follows that
A WD S�1 C xI is a positive self-adjoint operator on l2.N0/ and

.AŒn�F � xI/�1 � S D .A � xI/�1; n 2 N: (8.21)

We prove that A D TF . Let sA denote the positive quadratic form associated with
A: By definition the Friedrichs extension TF of T is the positive self-adjoint operator
associated with the closure s1 of the quadratic form defined by

s1. f ; g/ D hTf ; gi; f ; g 2 DŒs1� D d:

By (8.21) and Proposition 8.1, sA � sn. Therefore, DŒsn� 	 DŒsA� for all n 2 N and
hence DŒs1� D [nDŒsn� 	 DŒsA�. Further, sn. f ; f / D s1. f ; f / for f 2 DŒsn� and

sA. f ; f / � lim
n

sn. f ; f / D s1. f ; f / for f 2 DŒs1�:
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The preceding facts show that sA � s1 � sn. Since sn is closable, sA � s1 � sn.
Applying again Proposition 8.1 we conclude that

.AŒn�F � xI/�1 � .TF � xI/�1 � .A � xI/�1 D S:

But S is the strong limit of the sequence ..AŒn�F � xI/�1/n2N. Hence the latter implies
that .TF � xI/�1 D .A � xI/�1 D S: Therefore, TF D A. Thus, for f 2 l2.N0/,

.TF � xI/�1f D .A � xI/�1f D Sf D lim
n
.AŒn�F � xI/�1f ;

which in turn yields (8.19). ut
Now we treat the Krein approximants. We extend AŒn�K to a positive self-adjoint

finite rank operator T Œn�K on l2.N0/ by filling up the matrix with zeros, that is,

T Œn�K WD
 
AŒn�K 0

0 0

!
:

Then it is obvious that

h.T Œn�K � zI/�1e0; e0i D h.AŒn�K � zI/�1e0; e0i; z 2 	.T Œn�K / D 	.AŒn�K /: (8.22)

The following Eq. (8.24) says that the self-adjoint operator TK is the strong resolvent
limit of the sequence .T Œn�K /n2N.

Lemma 8.15 For x < 0, n 2 N0, and f 2 l2.N0/,

h.T ŒnC1�
K � xI/�1e0; e0i � h.T Œn�K � xI/�1e0; e0i; (8.23)

lim
n!C1.T

Œn�
K � xI/�1f D .TK � xI/�1f : (8.24)

Proof The nonzero part of the matrix T ŒnC1�
K � T Œn�K is the block matrix

Dn D
�
˛n�1 an�1
an�1 bn � ˛n

�
:

By (8.15), detDn D ˛n�1.bn � ˛n/ � a2n�1 D 0. In particular, ˛n�1.bn � ˛n/ � 0.
Hence bn�˛n � 0, since ˛n�1 > 0 by Lemma 8.12, and TrDn D bn�˛nCan�1 � 0,
since an�1 > 0. Since det Dn D 0 and TrDn � 0, it follows that Dn � 0 and hence
T ŒnC1�
K � T Œn�K � 0. Therefore .T ŒnC1�

K � xI/�1 � .T Œn�K � xI/�1; which implies (8.23).

Now we prove (8.24). Since k.T Œn�K � xI/�1k � jxj�1 for all n 2 N, it is easily
shown that the set of f 2 l2.N0/ for which (8.24) holds is closed. Further, (8.24) is
valid for f 2 .T � xI/D.T/. Indeed, then T Œn�K f D Tf D TKf for some n 2 N and

hence .T Œn�K � xI/�1f D .TK � xI/�1f .
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First assume that s is Hamburger determinate. Then T is essentially self-adjoint
by Theorem 6.10. Hence T D TK . Since T � 0 and x < 0, .T � xI/D.T/ is dense in
l2.N0/ by Proposition A.42(iv). Thus (8.24) holds on l2.N0/ as noted above.

Now suppose s is Hamburger indeterminate. Then we have D.TK/DD.T/CC �p0
and TKp0 D 0 by (8.7). From .TK � xI/p0 D �xp0 we get .TK � xI/�1p0 D �x�1p0.
Put p

Œn�
0 WD . p0.0/; : : : ; pn.0/; 0; : : : /. Since T Œn�K p

Œn�
0 D 0 by Lemma 8.12, we have

.T Œn�K � xI/�1pŒn�0 D �x�1pŒn�0 . Then, as n!1,

k.T Œn�K � xI/�1p0 � .TK � xI/�1p0k D k.T Œn�K � xI/�1p0 � x�1p0k
D k.T Œn�K � xI/�1.p0 � p

Œn�
0 /C x�1.pŒn�0 � p0/k � 2jxj�1k.pŒn�0 � p0/k ! 0:

This proves (8.24) for f D p0. Because TK � 0 is self-adjoint and x < 0, it follows
from Proposition A.42(iv) and (8.7) that

.TK � xI/D.TK/ D .T � xI/D.T/CC � p0 D .T � xI/D.T/C C � p0 D l2.N0/:

Therefore, since (8.24) is valid for f 2 .T � xI/D.T/ and f D p0 as shown above,
(8.24) holds for all f 2 l2.N0/. ut

The zeros of Pn.x/ are contained in Œms;C1/ by Proposition 5.28 (or by
Lemma 6.27(i)). Hence Pn.x/ ¤ 0 for x < ms. Moreover, Mn.x/ ¤ 0 for x < 0 by
(8.17).

Putting the preceding together we obtain our main approximation result.

Theorem 8.16 Suppose that s is a positive definite Stieltjes moment sequence.
For any x < ms the sequence

� � Qn.x/
Pn.x/

�
n2N0

is bounded increasing and

�s0 lim
n!1

Qn.x/

Pn.x/
D
Z 1

0

d�F. y/

y � x
: (8.25)

For x < 0 the sequence
�� Nn.x/

Mn.x/

�
n2N0

is bounded decreasing and

�s0 lim
n!1

Nn.x/

Mn.x/
D
Z 1

0

d�K. y/

y � x
: (8.26)

Proof Recall that AŒn�F acting as an operator on Cn is just the operator Jn in
(6.24). Combining (6.24), (8.18), and (8.19) it follows that .�Qn.x/

Pn.x/
/n2N0 is a

bounded increasing sequence converging to h.TF � xI/�1e0; e0i. Since �F.�/ D
s0hETF .�/e0; e0i by Definition 8.4, we have s0h.TF � xI/�1e0; e0i D

R1
0

d�F. y/
y�x by

the functional calculus, whence (8.25) follows.
Similarly, we conclude from (8.16), (8.22), (8.23), and (8.24) that the sequence

.� Nn.x/
Mn.x/

/ is bounded, decreasing, and that it converges to h.TK � xI/�1e0; e0i.
Combined with s0h.TK � xI/�1e0; e0i D

R1
0

d�K . y/
y�x this yields (8.26). ut
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Remark 8.17 The assertion of Theorem 8.16 also holds for a determinate positive
definite Stieltjes moment sequence s. In this case � WD �K D �F is the unique
solution of the Stieltjes moment problem for s and it follows from Theorem 8.16
that

��s0 Qn.x/
Pn.x/

�
n2N0

and
��s0 Nn.x/

Mn.x/

�
n2N0

are monotone sequences converging from

below resp. from above to the Stieltjes transform I�.x/ D
R1
0
. y � x/�1 d�. y/ of

the representing measure � for x < 0. ı
Our second main result in this section is the following theorem.

Theorem 8.18 Suppose that s is an indeterminate Stieltjes moment sequence. If �
is an arbitrary solution of the Stieltjes moment problem for s, then

Z 1

0

d�F. y/

y � x
�
Z 1

0

d�. y/

y � x
�
Z 1

0

d�K. y/

y � x
for x < 0; (8.27)

Z 1

0

d�. y/

y � x
<

Z 1

0

d�K. y/

y � x
if � ¤ �K ; x < 0; (8.28)

Z 1

0

d�F. y/

y � x
<

Z 1

0

d�. y/

y � x
if � ¤ �F; x � 0: (8.29)

Remark 8.19 It should be emphasized that both inequalities (8.28) and (8.29) are
strict and that (8.29) also holds for x D 0. In this case the integral

R1
0

y�1d�. y/
in (8.29) can be infinite, while

R1
0

y�1d�F. y/ is always finite, since supp�F 	
Œm.TF/;C1/ and m.TF/ > 0 by Corollary 8.10. ı
Proof The proofs of the two strict inequalities (8.28) and (8.29) will be given at the
end of the proof of Theorem 8.24 below. Here we only prove the inequalities (8.27).

Since an indeterminate Stieltjes moment sequence is obviously positive definite,
Theorem 8.16 applies and by (8.25) and (8.26) it suffices to show that

�s0 Qn.x/

Pn.x/
�
Z 1

0

d�. y/

y � x
� �s0 Nn.x/

Mn.x/
for x < 0: (8.30)

Recall that Hs is a subspace of L2.R; �/ by Proposition 6.2. Now we derive

0 �
Z 1

0

Pn. y/2

y � x
d�. y/

D
Z 1

0

Pn. y/
Pn. y/� Pn.x/

y � x
d�. y/C Pn.x/

Z 1

0

Pn. y/

y � x
d�. y/

.1/D Pn.x/
Z 1

0

Pn. y/

y � x
d�. y/

D Pn.x/
Z 1

0

Pn. y/ � Pn.x/

y � x
d�. y/C Pn.x/

2

Z 1

0

d�. y/

y � x
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.2/D Pn.x/ Ls;y

�
Pn. y/ � Pn.x/

y � x

�
C Pn.x/

2I�.x/

.3/D Pn.x/ s0Qn.x/C Pn.x/
2I�.x/:

Dividing this inequality by Pn.x/2 leads to the left inequality of (8.30).
Let us explain why the three equalities (1)–(3) of the preceding derivation hold.

Since .Pn. y/� Pn.x//=. y� x/ is a polynomial in y of degree less than degPn D n,
it is orthogonal to Pn. y/ in Hs and so in L2.RC; �/. Thus,

Z 1

0

Pn. y/
Pn. y/� Pn.x/

y � x
d�. y/ D 0:

This has been used in (1). Because � is a solution of the Stieltjes moment problem
for s, equality (2) holds. Finally, (3) follows from (5.34).

Now we turn to the right inequality of (8.30). Since Mn.0/ D 0 by the definition
of Mn, Mn. y/y�1 is a polynomial of degree n � 1 in y. Hence

Mn. y/y�1 �Mn.x/x�1

y � x

is a polynomial of degree at most n � 2 in y. Therefore, it is orthogonal to Pn�1. y/
and Pn. y/ and hence to Mn. y/ in Hs and so in L2.R; �/. This gives the equality
(4) below. Further, from the definitions of Nn and Mn (see Lemma 8.13) and the

equation s0Qn.x/ D Ls;y
�
Pn. y/�Pn.x/

y�x



by (5.34) it follows that

Z 1

0

Mn. y/�Mn.x/

y � x
d�. y/ D Ls;y

�
Mn. y/�Mn.x/

y � x

�
D s0 Nn.x/:

This relation is inserted in equality (5) below. Using the preceding facts we derive

0 �
Z 1

0

Mn. y/2

. y � x/y
d�. y/

D
Z 1

0

Mn. y/
Mn. y/y�1 �Mn.x/x�1

y � x
d�. y/CMn.x/x

�1
Z 1

0

Mn. y/

y � x
d�. y/

.4/D Mn.x/x
�1
Z 1

0

Mn. y/

y � x
d�. y/

D Mn.x/x
�1
Z 1

0

Mn. y/�Mn.x/

y � x
d�. y/CMn.x/

2x�1
Z 1

0

d�. y/

y � x

.5/D Mn.x/x
�1 s0 Nn.x/CMn.x/

2x�1I�. y/:

Dividing now by Mn.x/2x�1 < 0 yields the right inequality of (8.30). ut
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By Theorem 8.16, the sequence
� � Qn.x/

Pn.x/

�
n2N0

is monotonically increasing and

the sequence
�
x Nn.x/
Mn.x/

�
n2N0

is monotonically decreasing for x < 0. Letting x! �0 it

follows that
�� Qn.0/

Pn.0/

�
is also monotonically increasing and

� Nn.0/

M0

n.0/

�
is monotonically

decreasing. (Note that Pn.0/ ¤ 0 by Lemma 8.12 and limx!�0 xNn.x/
Mn.x/

D Nn.0/

M0

n.0/
; since

Mn.0/ D 0.) Hence the limits �s and ˇs of these sequences exist. They enter into the
following corollary.

Corollary 8.20 For each positive definite Stieltjes moment sequence s we have

�s WD �s0 lim
n!1

Qn.0/

Pn.0/
D
Z 1

0

d�F. y/

y
; ˇs WD s0 lim

n!1
Nn.0/

M0
n.0/
D �K.f0g/:

(8.31)

Proof From Theorem 8.16 we obtain

�s0 Qn.x/

Pn.x/
�
Z 1

0

d�F. y/

y � x
�
Z 1

0

d�F. y/

y

for x < 0. Letting x! �0 and then n!1 we get �s �
R
y�1d�F. y/.

We prove the converse inequality. Recall that Jn D AŒn�F by (8.11). Hence, by

Lemma 6.28 we have h.AŒn�F � xI/�1e0; e0i D �Qn.x/
Pn.x/

for x < 0. Since AŒn�F � 0, the
left-hand side increases as x! �0 and we obtain

�s0 Qn.x/

Pn.x/
� �s0 Qn.0/

Pn.0/
� �s; x < 0:

Letting n!1 and using (8.25) this yields
R
. y� x/�1d�F. y/ � �s. Passing to the

limit x ! �0 by using Lebesgue’s monotone convergence theorem we conclude
that

R
y�1d�F. y/ � �s. This completes the proof of the first equality in (8.31).

By Theorem 8.16, the sequence .�s0 Nn.x/
Mn.x/

/ converges to
R
. y�x/�1 d�K. y/ from

above for x < 0. Therefore, multiplying by �x > 0; we obtain

�K.f0g/ �
Z 1

0

.�x/d�K. y/

y � x
� s0

xNn.x/

Mn.x/
:

Passing to the limits x! �0 and then n!1 yields �K.f0g/ � ˇs.
Conversely, the expression h.�x/.AŒn�K � xI/�1e0; e0i D xNn.x/

Mn.x/
(by Lemma 8.13)

decreases as x! �0, since AŒn�K � 0. Therefore, for x < 0,

s0
xNn.x/

Mn.x/
� s0

Nn.0/

M0
n.0/

:
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Now we take the limit n!1. Because of (8.26) we then obtain

Z 1

0

.�x/d�K. y/

y � x
� ˇs; x < 0: (8.32)

Since j �x
y�x j � 1 for y � 0 and limx!�0. �x

y�x / is the characteristic function of the
point 0, Lebesgue’s dominated convergence theorem applies for the limit x ! �0
in (8.32) and yields �K.f0g/ � ˇs. This proves the second equality in (8.31). ut

Note that �s can be infinite if the Stieltjes moment sequence s is determinate.
However, if s is indeterminate, then �s is finite (by Corollary 8.21). In this case the
number �s enters into the Nevanlinna parametrization given in Theorem 8.24 below.

Corollary 8.21 Let s be a positive definite Stieltjes moment sequence. Then s is
Stieltjes indeterminate if and only if �s <1 and ˇs ¤ 0:
Proof Let s be Stieltjes indeterminate. Then m.TF/ > 0 by Corollary 8.10 and
supp�F 	 Œm.TF/;C1/, so that �s D

R1
0

y�1d�F. y/ < 1. Obviously, s is also
Hamburger indeterminate. Hence p0 2 D.TK/ by Corollary 8.6. Since TKp0 D
T�p0 D 0, 0 is an eigenvalue of TK and hence ˇs D �K.f0g/ D kp0k�2 ¤ 0 by
formula (7.7).

Conversely, assume that �s < 1 and ˇs ¤ 0. Since then
R1
0

y�1d�F. y/ < 1
and �K.f0g/ ¤ 0, we have �F ¤ �K . Hence s is Stieltjes indeterminate. ut

The next corollary uses the inquality (8.29) which will be proved only in the next
section. It can be used to construct determinate moment sequences of “fast growth”.

Corollary 8.22 Suppose that s D .sn/n2N0 is an indeterminate Stieltjes moment
sequence. Set c WD R1

0
y�1d�F. y/, Qs0 D 1, and Qsn D c�1sn�1 for n 2 N. Then

Qs D .Qsn/n2N0 is a Stieltjes moment sequence which is Hamburger determinate.

Proof First note that c 2 .0;C1/, since supp�F 	 Œm.TF/;C1/ and m.TF/ > 0

by Corollary 8.10. Clearly, the measure �0 given by d�0 D c�1y�1d�F is supported
on RC and has the moments Qsn. Hence Qs is a Stieltjes moment sequence.

Let � be a solution of the Stieltjes moment problem for Qs. Then the measure �
given by d�. y/ WD cyd�. y/ has the moment sequence s, is supported on RC, and

Z 1

0

y�1d�. y/ D c
Z 1

0

d�. y/ D cQs0 D c D
Z 1

0

y�1d�F. y/:

Therefore, it follows from statement (8.29) in Theorem 8.18, applied with x D 0,
that � D �F . This implies � D �0. Hence Qs is a determinate Stieltjes moment
sequence with representing measure �0. Since �0.f0g/ D 0, Qs is also Hamburger
determinate by Corollary 8.9. ut
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8.5 Nevanlinna Parametrization for the Indeterminate
Stieltjes Moment Problem

For � 2 R let P� denote the set of Pick functions ˚ 2 P which are holomorphic
on CnRC and map .�1; 0/ into Œ�;1/. Note that all constant functions equal to a
number t 2 Œ�;1/ are contained in P� . Set P� WD P� [ f1g.
Proposition 8.23 A function ˚ belongs to the class P� if and only if

˚.z/ D ˛ C
Z 1

0

d�.x/

x � z
; z 2 CnŒ�;1/; (8.33)

where ˛ � � and � is a positive Borel measure on RC satisfying
R1
0

d�.x/
xC1 <1.

Proof Clearly, any function ˚ of the form (8.33) is holomorphic on CnRC. Since
a � � and

R1
0
.x � z/d�.x/ � 0 for z < 0, ˚ maps .�1; 0/ into Œ�;1/, so that

˚ 2 P� .
Conversely, let˚ 2 P� . Then˚ 2 P, so by formula (A.5) it has a representation

˚.z/ D aC bzC
Z
R

�
1

x � z
� x

1C x2

�
d�.x/; z 2 CnR; (8.34)

where a; b 2 R, b � 0, and � is a positive measure such that
R
.1Cx2/�1d�.x/ <1.

Since ˚ is holomorphic on CnRC, Proposition A.15 implies that supp � 	 RC.
We consider the limit z!�1 in (8.34). The integrand converges monotonically

decreasing on RC to the function � x
1Cx2

. If b > 0, it follows from Lebesgue’s
monotone convergence theorem that ˚.z/ ! �1 as z ! �1. This contradicts
˚ 2 P� . Thus b D 0. Applying the limit z ! �1 in (8.34) once more, ˚ 2 P�

implies that c WD R1
0

x.1 C x2/�1d�.x/ < 1 and ˚.z/ ! a � c. This yieldsR1
0
.1 C x/�1d�.x/ < 1 and ˛ WD a � c � �; since ˚ 2 P� . Then (8.34) gives

(8.33). ut
Suppose that s is an indeterminate Stieltjes moment sequence. Let �s denote the

positive real number (see Corollary 8.21) defined by (8.31). Recall that m.TF/ > 0,
supp�F 	 Œm.TF/;C1/, and .TF/�1 2 B.Hs/ by Corollary 8.10. If ETF denotes
the spectral measure of the self-adjoint operator TF , the functional calculus yields

�s �
Z 1

0

y�1 d�F. y/ D s0

Z 1

0

y�1 dhETF. y/e0; e0i D s0 h.TF/�1e0; e0i:
(8.35)

The positive number �s is called the Friedrichs parameter of s.
The following theorem is the counterpart of Nevanlinna’s Theorem 7.13 for the

Stieltjes moment problem.
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Theorem 8.24 Suppose that s is an indeterminate Stieltjes moment sequence. Then
there is a one-to-one correspondence between functions � 2 P�s

and solutions � of
the Stieltjes moment problem for s given by

I�� .z/ �
Z 1

0

1

x � z
d��.x/ D �A.z/C �.z/C.z/

B.z/C �.z/D.z/ � Hz.�.z//; z 2 CC:

(8.36)

Proof Since s is Stieltjes indeterminate, it is Hamburger indeterminate. Thus
Theorem 7.13 applies and gives a one-to-one correspondence �˚ $ ˚ between
solutions �˚ of the Hamburger moment problem for s and functions ˚ 2 P.
Therefore, it suffices to show that supp�˚ 	 RC if and only if ˚ 2 P�s

.

Recall that the solutions �t for t 2 R 	 P correspond to the self-adjoint
operators Tt from Theorem 6.23. Since TK D T1 by Corollary 8.6, the assertion
holds for � D �K and ˚ D 1. Further, s0 hT�1

t e0; e0i D t for t 2 R by
Lemma 6.24. Hence Eq. (8.35) implies that TF D T�s , so that the assertion is also
valid for ˚ D �s.

Let us fix x 2 R and consider the fractional linear transformation (see (7.10))

Hx.t/ WD �A.x/C tC.x/

B.x/C tD.x/
:

Since A.x/;B.x/;C.x/;D.x/ 2 R and A.x/D.x/ � B.x/C.x/ D 1, Hx is a bijection
of R on R, where R WD R[ f1g. From the relation H0

x.t/ D .B.x/C tD.x//�2 > 0
it follows that Hx is strictly increasing on R outside the pole t D � B.x/

D.x/ . Therefore,
since Hx.�s/ D I�F .x/ and Hx.1/ D I�K .x/ as shown in the preceding paragraph,
Hx is a bijection of Œ�s;1� on the interval ŒITF .x/; ITK .x/�.

Now suppose that ˚ 2 P�s . Then I�˚ .z/ D Hz.˚.z// is holomorphic on CnR.
Let x < 0. Then ˚.x/ 2 Œ�s;1/ and hence Hx.�.x// 2 ŒITF .x/; ITK .x/�. Hence
the denominator of Hx.˚.x// does not vanish, because otherwise Hx.˚.x// D 1.
Therefore, since the functions A;B;C;D are entire and ˚.z/ is holomorphic on
CnRC; I�˚ .z/ D Hz.˚.z// is holomorphic on CnRC: Hence supp�˚ 	 RC by
Proposition A.15. This proves one direction of Theorem 8.24.

To prove the converse direction we assume that � ¤ �K is a solution of the
Stieltjes moment problem for s. Then, by formula (8.27) in Theorem 8.18,

I�F.x/ � I�.x/ � I�K .x/ for x < 0: (8.37)

Since �K Š �1, by Theorem 7.13 there is a unique ˚ 2 P such that � D �˚ . We
have to show that ˚ 2 P�s .

First we verify that ˚.z/ ¤ 0 for z 2 CC � fz 2 C W Im z > 0g. Indeed, assume
to the contrary that ˚.z0/ D 0 for some z0 2 CC. Then, since ˚ 2 P�s , ˚.CC/ is
not open. Therefore ˚ is constant, so that ˚ D 0 2 R. Lemma 6.24 implies that
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hT�1
0 e0; e0i D 0: From the functional calculus of self-adjoint operators we obtain

0 D s0 hT�1
0 e0; e0i D s0

Z
R

y�1dhET0 . y/e0; e0i D
Z 1

0

y�1d�˚. y/ <1:

Hence �˚ D 0; which is a contradiction, since �˚ solves an indeterminate Stieltjes
moment problem. This proves that ˚.z/ ¤ 0 for z 2 CC.

Hence � WD 1=˚ is a holomorphic function on CC and we have

�.z/ D 1

˚.z/
D 1

H�1
z .I�.z//

D �C.z/C I�.z/D.z/

A.z/C I�.z/B.z/
: (8.38)

Assume that A.x0/ C I�.x0/B.x0/ D 0 for some x0 < 0. Then, since the
numerator and denominator of the fractional linear transformation do not vanish
simultaneously, C.x0/C I�.x0/D.x0/ ¤ 0 and hence

˚.x0/ WD lim
z2CC;z!x0

˚.z/ D � lim
z2CC;z!x0

A.z/C I�.z/B.z/

C.z/C I�.z/D.z/
D 0: (8.39)

Since ˚.z/ D H�1
z .I�.z//, this implies that ˚.x0/ D H�1

x0 .I�.x0//. By (8.37) we
have H�1

x0 .I�.x0// 2 Œ�s;1�. Since ˚.x0/ D 0 and �s > 0, this is a contradiction.
Thus we have proved that A.x/C I�.x/B.x/ ¤ 0 for all x < 0.

Therefore, since � solves the Stieltjes moment problem and hence I� is
continuous on CnRC, it follows from (8.38) that � has a continuous extension
to CC [ .�1; 0/ with real values on .�1; 0/. Hence, by Schwarz’ reflection
principle, � has a holomorphic extension to CnRC: From (8.37) we conclude that
˚.x/ D H�1

x .I�.x// 2 Œ�s;1� and therefore �.x/ 2 Œ0; ��1
s � for x < 0.

Next we show that�.x/ ¤ 0 on .�1; 0/. Assume to the contrary that�.x0/ D 0
for some x0 < 0. Since �.z/ D 1=˚.z/ ¤ 0 on CnRC and �.x/ 2 Œ0; ��1

s � for all
x < 0, we have .�1; 0/ \ �.CnRC/ D ;. Hence �.CnRC/ is not open, so � is
constant. Since �.x0/ D 0, �.z/ � 0. But � D 1=˚ with ˚ 2 P, so we have a
contradiction.

Putting the preceding together we have shown that ˚ D 1=� has a holomorphic
extension to CnRC and ˚.x/ 2 Œ�s;1/ for x 2 .�1; 0/. That is, ˚ 2 P�s . This
proves the converse direction and completes the proof of Theorem 8.24.

Finally, we prove the two inequalities (8.28) and (8.29) from Theorem 8.18.
Since �.x/ ¤ 0 as shown in the paragraph before last, ˚.x/ ¤ 1 and therefore

I�.x/ D Hx.˚.x// ¤ Hx.1/ D I�K .x/. Since I�.x/ � I�K .x/ by (8.37), this yields
I�.x/ < I�K .x/. This proves the first inequality (8.28).

Now we turn to the proof of (8.29). Let � ¤ �F be a solution of the Stieltjes
moment problem for s. Then � D �˚ , where ˚.z/ WD H�1

z .I�.z// for z 2 CC.
First we assume to the contrary that I�.x/ D I�F.x/ for some x < 0. Then we

have˚.x/ D H�1
x .I�.x// D H�1

x .I�F .x// D �s, so �.x/ D ��1
s is the right end point

of the interval Œ0; ��1
s �. Arguing as above, �.CnRC/ is not open, so � and hence˚
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are constant. Thus ˚.z/ D ˚.x/ D �s and therefore I�.z/ D Hz.˚.z// D Hz.�s/ D
I�F.z/ for all z 2 CnRC. Hence � D �F; which is the desired contradiction.

Now let x D 0. Since� solves the Stieltjes moment problem,˚ 2 P�s , so˚ is of
the form (8.33). This implies that ˚.z/ 2 Œ�s;1/ and ˚.z/ is monotone increasing
on the interval .�1; 0/. Hence the limit �0 WD limz!�0 ˚.z/ 2 Œ�s;C1� exists.
We have �0 ¤ �s. (Indeed, otherwise ˚.z/ � �s and the mononiticity of ˚.z/ on
.�1; 0/ imply that ˛ D �s and � D 0; then ˚ D �s and hence � D �˚ D �F;

which is a contradiction.) Since A.0/ D D.0/ D 0 and C.0/ D �B.0/ D 1, we have
H0.t/ D t for t 2 R. Clearly, I�.z/ �

R1
0

y�1d� for z < 0. Then, by the preceding,

Z 1

0

y�1d�F. y/ D I�F .0/ D H0.�s/ D �s < �0

D lim
z!�0Hz.˚.z// D lim

z!�0 I�.z/ �
Z 1

0

y�1d�. y/:

This proves (8.29) for x D 0 and it completes the proofs of (8.28) and (8.29). ut
We briefly repeat some facts from the preceding proof. In the parametrization

(8.36) the Friedrichs solution �F corresponds to the Friedrichs parameter ˚ D �s,
while the Krein solution �K is obtained for ˚ D 1. The von Neumann solutions of
the Stieltjes moment problem for s (that is, the solutions � for which CŒx� is dense
in L2.R; �/) are precisely the measures �t for constants ˚ D t with t 2 Œ�s;C1�:
Remark 8.25 The parametrization (7.18) is related to our Nevanlinna parametriza-
tion (7.16) by taking �˚�1 instead of ˚ . Hence in this parametrization (7.18)
Friedrichs and Krein solutions correspond to the parameters ���1

s and 0, respec-
tively. ı

8.6 Weyl Circles for the Indeterminate Stieltjes
Moment Problem

In this section we suppose that s is an indeterminate Stieltjes moment sequence
and z 2 CC: For t 2 R; let W.z; t/ denote the cone in the complex plane given by

W.z; t/ WD fw 2 C W 0 � arg.w� t/ � � � arg.z/g:

One easily verifies that

w 2 W.z; t/ ” Im.w/ � 0 and Im .z.w � t// � 0: (8.40)

Note that W.z; t/ D tCW.z; 0/ and W.z; t/ 	 W.z; t0/ if t0 � t.
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Proposition 8.26

(i) If ˚ 2 P�s , then ˚.z/ 2 W.z; �s/.
(ii) For each w 2 W.z; �s/ there exists a ˚ 2 P�s such that w D ˚.z/:

(iii) Suppose that w 2 W.z; �s/ and Im.z.w � �s// D 0. Then there is a unique
function ˚ 2 P�s such that ˚.z/ D w. This function is

˚.z0/ D �s � z.�s � w/

z0 ; z0 2 CC:

Proof

(i) By Proposition 8.23, ˚ 2 P�s is of the form (8.33) with ˛ � �s. Since

Im

�
z
Z 1

0

d�.x/

x � z

�
D
Z 1

0

Im

�
z

x � z

�
d�.x/ � 0

and Im
� R1

0
.x � z/�1d�.x/

� � 0, (8.40) implies that
R1
0
.x � z/�1d�.x/ 2

W.z; 0/. Therefore, since ˛ � �s, we deduce that

˚.z/ D ˛ C
Z 1

0

d�.x/

x � z
2 ˛ CW.z; 0/ D W.z; ˛/ 	 W.z; �s/:

(ii) Let z D a C ib and w D u C iv 2 W.z; �s/; where a; b; u; v 2 R: Since
z 2 CC, b > 0. Further, since w 2 W.z; �s/, it follows from (8.40) that v � 0
and

Im.z.w � �s// D Im..aC ib/.u � �s C iv// D b.u � �s/C av � 0:
(8.41)

First let v D 0. Then u � �s: Hence ˚ WD u 2 P�s and ˚.z/ D w. Now
suppose v > 0. Then x0 WD v�1.b.u � �s/ C av/ � 0 by (8.41). Define
a measure � D v

b jx0 � zj2ıx0 : By Proposition 8.23, ˚.z0/ WD �s C
R1
0 .x �

z0/�1d�.x/ 2 P�s . We compute

˚.z/ D �s C v

b
jx0 � zj2.x0 � z/�1 D �s C v

b
.x0 � aC ib/ D uC iv D w:

(iii) Suppose that ˚ 2 P�s and ˚.z/ D w: By Proposition 8.23, ˚ is of the form
(8.33). Inserting ˚.z/ D w therein we derive

0 D Im.z.w � �s// D Im.z.˛ � �s//C
Z 1

0

Im

�
z

x � z

�
d�.x/

D Im.z/.˛ � �s/C Im.z/
Z 1

0

x

jx � zj2 d�.x/:
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Fig. 8.1 The transformation Hz and the set KSt
z

Since Im.z/ > 0 and ˛ � �s, we deduce that ˛ D �s and � D cı0; c � 0. But
then w D ˚.z/ D �s�cz�1, so that c D z.�s�w/. Hence ˚.z0/ D �s� z.�s�w/

z0 :

Let ˚ be this function. Clearly, ˚.z/ D w. Since Im.z.w � �s// D 0, we
derive from (8.41) that c D z.�s � w/ D v.a2b�1 C b/ � 0: This implies that
˚ 2 P�s . ut

By Theorem 8.24, the values of Stieltjes transforms of all solutions of the
Stieltjes moment problem for s are I�� .z/ D Hz.�.z//; where � 2 P�s : From
Proposition 8.26 we deduce that these are precisely the numbers of the set

KSt
z D Hz.W.z; �s/ [ f1g/

which is the right gray shaded area with boundary in Fig. 8.1.
Let us consider the boundary of the set KSt

z . Recall that Kz denotes the Weyl circle
defined in Sect. 7.3. Then the boundary @KSt

z is the disjoint union of the sets

@�KSt
z WD @KSt

z \ @Kz D Hz.Œ�s;C1/ [ f1g/;
@CKSt

z WD @KSt
z n@Kz D fHz.w/ W w 2 @W.z; �s//; Im.w/ > 0g:

From the discussion after Theorem 7.13 we know that for each w 2 @�KSt
z 	 @Kz

there exists a unique solution � of the Hamburger moment problem for s satisfying
I�.z/ D w. Since w 2 @KSt

z , � is also the unique Stieltjes solution such that I�.z/ D
w. Further, � is a von Neumann solution, that is, ord.�/ D 0.

Now let w 2 @CKSt
z . One easily verifies (see (8.40)) that Im.z.w � �s// D 0.

Therefore, by Proposition 8.26(iii), there is a unique function ˚ 2 P�s such that
˚.z/ D w. Hence it follows from Theorem 8.24 that there exists a unique solution�
of the Stieltjes moment problem for s satisfying I�.z/ D w. In this case, ord.�/ D 1:
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8.7 Exercises

1. Show s D .sj/j2N0 is a Stieltjes moment sequence if and only if the sequence
.s0; 0; s1; 0; s2; : : : / is positive semidefinite.

2. Let s D .sj/j2N0 be a Hamburger moment sequence. Show that .s2j/j2N0 is a
Stieltjes moment sequence.

3. Let s D .sj/j2N0 be a Stieltjes moment sequence. Show that s2mCn � sksl for all
m; n; k; l 2 N0 such that kC l D 2.mC n/.

4. Let s be a Stieltjes moment sequence. Show that ms D inff� W � 2 supp�Fg.
5. (A determinate sequence t growing faster than an indeterminate sequence s.)

Find Stieltjes moment sequences s D .sn/n2N0 and t D .tn/n2N0 such that s is
Stieltjes indeterminate, t is Hamburger determinate, and limn!1 sn

tn
D 0:

Hint: Use Corollary 8.22 and Examples 4.18 for ˛ D 1
4

and 4.23.
6. Let .˛n/n2N0 and .ˇn/n2N0 be positive sequences. Prove that there exists a

Stieltjes moment sequence s D .sn/n2N0 such that sn � ˛n and snC1 � ˇnsn
for n 2 N0.

7. Let z 2 CC; t 2 R, and w 2 C.

a. Show that w 2 W.z; t/ if and only if Im.w/ � 0 and Re.z/
Im.z/ Im.w/CRe.w/ � t.

b. Show that if w is an interior point of W.z; t/, then Re.z/
Im.z/ <

Re.w�t/
Im.w�t/ .

8. Suppose that z 2 CC and u 2 CC. Let n 2 N and y; Qy 2 R; y ¤ 0; Qy ¤ 0:
a. Show that there are numbers cj > 0 and pairwise distinct points xj 2 R such

that cj.xj � z/ D 1
n .u � 2yj/ for j D 1; : : : ; n.

b. Define ˚y.z0/ WD �y.nC 1/CPn
jD1

cj
xj�z0 ; z

0 2 CC. Show that ˚y 2 P is a

rational function of degree n satisfying ˚y.z/ D u.
c. Show that ˚y ¤ ˚Qy for y ¤ Qy.

9. Suppose that s is an indeterminate Stieltjes moment sequence and z 2 CC. Let v
be an interior point of W.z; �s/, w an interior point of KSt

z , and n 2 N.

a. Show that there are infinitely many rational functions ˚ 2 P�s of degree n
such that ˚.z/ D v.

b. Show that there are infinitely many solutions � of the Stieltjes moment
problem for s such that ord.�/ D n and I�.z/ D w.

Hint for b: Use the construction sketched in Exercise 8. Show that the numbers
xj can be chosen positive for small y > 0; details can be found in [Ge].

8.8 Notes

The theory of the Stieltjes moment problem goes back to T. Stieltjes’ famous
memoir [Stj], which contains many basic results.



200 8 The Operator-Theoretic Approach to the Stieltjes Moment Problem

The Friedrichs parameter has been identified in [Pd1]. Since these papers use
the parametrization in the form (7.18), their number is our ���1

s . The Nevanlinna
parametrization for indeterminate Stieljtes moment sequences was first given by
H.L. Pedersen [Pd1]; it is also contained in [Sim1].

The use of the operators TF and TK and the corresponding approximants is due
to B. Simon [Sim1]. Our operator-theoretic approach is based on [Sim1] and [Ge].
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The One-Dimensional Truncated
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Chapter 9
The One-Dimensional Truncated Hamburger
and Stieltjes Moment Problems

In this chapter we are concerned with the following problem:
Let s D .sj/mjD0 be a real m-sequence, where m 2 N0. When does there exist a

Radon measure � on R such that sj D
R
R
xj d�.x/ for all j D 0; : : : ;m?

This is the truncated Hamburger moment problem and in the affirmative case s is
called a truncated Hamburger moment sequence. If we require in addition that the
measure � is supported on RC, we get the truncated Stieltjes moment problem.

In Sects. 9.1 and 9.3 the special case of a positive definite 2n-sequence is
studied in detail. Using quasi-orthogonal polynomials Gauss’ quadrature formulas
are derived (Theorems 9.4 and 9.6) and a one-parameter family of .n C 1/-atomic
solutions is constructed (Theorem 9.7). The associated reproducing kernel space
and the Christoffel function are investigated in Sect. 9.3. In the short Sect. 9.2 we
apply some result from Sect. 9.1 to reprove Hamburger’s and Markov’s theorem in
the positive definite case.

The remaining part of the chapter deals with positive semidefinite finite
sequences. In Sect. 9.4 such sequences are characterized by integral representations
(Theorems 9.15 and 9.19). In Sect. 9.5 the Hankel rank of a positive semidefinite 2n-
sequence is introduced. The integral representation and the Hankel rank enter into
the treatment of truncated moment problems in Sect. 9.6. Here basic existence
theorems for the truncated Hamburger and Stieltjes moment problems in the
even case m D 2n (Theorems 9.27 and 9.36) and in the odd case m D 2n C 1

(Theorems 9.32 and 9.35) are obtained. Further, neccesary and sufficient conditions
for the uniqueness of the representing measures are given.

Let us recall some standard notations. The real polynomials of degree at most n
are denoted by RŒx�n. For a sequence s D .sj/mjD0 and 2n � m, the Hankel matrix
Hn.s/ is defined by Hn.s/ D .siCj/

n
i;jD0, the corresponding Hankel determinant is

Dn.s/ WD detHn.s/, and Ls is the Riesz functional on RŒx�m defined by Ls.xj/ D sj.

© Springer International Publishing AG 2017
K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics 277,
DOI 10.1007/978-3-319-64546-9_9
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9.1 Quadrature Formulas and the Truncated Moment
Problem for Positive Definite 2n-Sequences

Throughout this section, we assume that n 2 N and s D .sj/2njD0 is a real positive
definite 2n-sequence. That s is positive definite means that

nX
k;lD0

skCl�k�l > 0 for all .�0; : : : ; �n/
T 2 RnC1; .�0; : : : ; �n/T ¤ 0: (9.1)

In terms of the Riesz functional Ls on RŒx�2n, condition (9.1) is equivalent to the
requirement Ls. p2/ > 0 for all p 2 RŒx�n, p ¤ 0.

Lemma 9.1 Let s2jC1, j � n, be given real numbers. There exist real numbers s2i
for i 2 N, i � nC 1; such that s D .sk/k2N0 is a positive definite sequence.

Proof Since .sj/2njD0 is positive definite, the Hankel matrix Hn.s/ is positive definite.
Hence the Hankel determinant Dn.s/ of s is positive. Let s2nC2 be a real number.
The Hankel determinant DnC1 for the sequence .sj/

2nC2
jD0 is of the form

DnC1 D s2nC2Dn.s/C p.s0; : : : ; s2n; s2nC1/:

Here p is a real polynomial p in s0; : : : ; s2n; s2nC1 that does not depend on s2nC2.
Since Dn.s/ > 0, we have DnC1 > 0 for sufficiently large s2nC2. Proceeding by
induction this extension procedure leads to a positive definite sequence s. ut

Combining Lemma 9.1 with Hamburger’s Theorem 3.8 we obtain the following

Corollary 9.2 The truncated Hamburger moment problem for each positive definite
real 2n-sequence is solvable.

As in Chap. 5 we define a scalar product h�; �is on RŒx�nC1 by

h p; qis D Ls. pq/; p; q 2 RŒx�nC1: (9.2)

For this scalar product on RŒx�nC1 and at a few other places we need an extension of
s to a positive definite .2nC 2/-sequence. Such an extension exists by Lemma 9.1.
We fix this extension. Note that (9.2) also depends on the numbers s2nC1; s2nC2:

Definition 9.3 A polynomial P 2 RŒx�nC1;P ¤ 0, is called quasi-orthogonal of
rank nC 1 if

Ls.Px
j/ D 0 for j D 0; : : : ; n � 1: (9.3)

(Since deg.Pxj/ � 2n, (9.3) does not require an extension of the 2n-sequence s.)

Proceeding as in Sect. 5.1 we obtain a unique sequence p0; : : : ; pnC1 of orthonor-
mal polynomials of the unitary space .RnC1Œx�; h�; �is/ such that degpk D k and the
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leading coefficient of pk is positive for k D 0; : : : ; nC 1. Since then Ls. pkxj/ D 0

for j < k, pn and pnC1 are quasi-orthogonal of rank nC 1. Therefore, for any t 2 R,

P.t/.x/ D pnC1.x/C tpn.x/ (9.4)

is quasi-orthogonal of rank n C 1 and degree n C 1. Up to constant multiples all
quasi-orthogonal polynomials of rank nC 1 and degree nC 1 are of this form.

In what follows we fix a quasi-orthogonal polynomial P of rank nC1 and degree
nC 1. By Proposition 5.28, P has nC 1 real zeros �1 < �2 < � � � < �nC1. Let us
introduce the quantities

�j.x/ WD P.x/

.x � �j/P0.�j/
and mj WD Ls.�

2
j / > 0 ; j D 1; : : : ; nC 1; (9.5)

Q.z/ WD Ls;x

�
P.x/� P.z/

x � z

�
(9.6)

and define an .nC 1/-atomic measure �P by

�P D
nC1X
jD1

mjı�j : (9.7)

Since P.x/�P.z/
x�z is a polynomial in x of degree at most n, the functional Ls;x applies

to this polynomial and Q.z/ is a polynomial of degree at most n. Clearly,

�j.x/ D .x � �1/ : : : .x � �j�1/.x � �jC1/ : : : .x � �nC1/
.�j � �1/ : : : .�j � �j�1/.�j � �jC1/ : : : .�j � �nC1/

;

�j.�i/ D ıij for i; j D 1; : : : ; nC 1: (9.8)

Now can can state and prove the first main theorem of this section.

Theorem 9.4 For each polynomial f 2 RŒx�2n we have

Ls. f / D
nC1X
jD1

mjf .�j/ �
Z

f .x/ d�P.x/: (9.9)

Further, for j D 1; : : : ; nC 1 and z 2 Cnf�1; : : : ; ; �nC1g,

mk D Q.�k/

P0.�k/
D Ls.�k/ and � Q.z/

P.z/
D

nC1X
jD1

mj

�j � z
�
Z

d�P.x/

x � z
: (9.10)
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Proof For each p 2 RŒx�n we have the Lagrange interpolation formula

p.x/ D
nC1X
jD1

�j.x/ p.�j/: (9.11)

(To prove (9.11) it suffices to note the the difference of both sides is a polynomial
of degree at most n that vanishes at nC 1 points �j, so it is identically zero.)

Now fix f 2 RŒx�2n. Since deg.P/ D nC 1, there are polynomials qf 2 RŒx�n�1
and pf 2 RŒx�n such that

f .x/ D P.x/qf .x/C pf .x/: (9.12)

The defining relation (9.3) for the quasi-orthogonal polynomial P yields Ls.Pqf / D
0, so that Ls. f / D Ls. pf /. Further, since P.�j/ D 0 and hence pf .�j/ D f .�j/ by
(9.12), combining the relations Ls. f / D Ls. pf / and (9.11) we obtain

Ls. f / D
nC1X
jD1

Ls.�j/f .�j/: (9.13)

Applying this formula to f D �2k by using (9.5) and �j.�k/ D ıjk by (9.8) we get

mk D Ls.�
2
k / D

nC1X
jD1

Ls.�j/�k.�j/
2 D Ls.�k/ ; k D 1; : : : ; nC 1: (9.14)

Inserting (9.14) into (9.13) we obtain (9.9).
Combining (9.14) with (9.5) and (9.6) we get

mk D Ls.�k/ D Ls

�
P.x/

.x � �k/P0.�k/

�
D 1

P0.�k/
Ls

�
P.x/� P.�k/

x � �k
�
D Q.�k/

P0.�k/
:

This yields the first half of (9.10).
Finally, we prove the second half of (9.10). Since degP D n C 1, P has n C 1

simple real zeros, and degQ � n, there exists a partial fraction decomposition

� Q.z/

P.z/
D

nC1X
jD1

�j

�j � z
(9.15)

with �j 2 R. Here the coefficients �j are

�j D lim
z!�j

.z � �j/Q.z/
P.z/

D Q.�j/

P0.�j/
D mj
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by the first part of (9.10). Inserting �j D mj into (9.15) gives the second half of
(9.10). ut

Formula (9.9) is usually called a Gaussian quadrature formula. If the functional
Ls is of the form Ls. f / D

R
f .x/d�.x/ for some measure �, then (9.9) reads as

Z
f .x/ d�.x/ D

nC1X
jD1

mjf .�j/: (9.16)

The numbers �j are called nodes and the numbers mj weights of the quadrature
formula. For general functions f the sum on the right of (9.16) can be considered as
an approximation of the integral on the left.

Theorem 9.4 says that the identity (9.16) holds for all polynomials f 2 RŒx�2n.
But (9.16) does not hold for f 2 RŒx�2nC2. For instance, if f .x/ D QnC1

jD1 .x � �j/2,
then the right-hand side of (9.16) vanishes, but Ls. f / D

R
f d� > 0, because s is

positive definite.
Before we continue we derive a nice application of formula (9.9).

Corollary 9.5 Let P and QP be two quasi-orthogonal polynomials of rank nC 1 and
degree nC 1 with zeros �1 < � � � < �nC1 and Q�1 < � � � < Q�nC1, respectively. Then
either QP is a multiple of P or the sequences .�1; � � � ; �nC1/ and . Q�1; � � � ; Q�nC1/
are stricly interlacing, that is, for any k there is a j such that �k < Q�j < �kC1. In
particular, if t; Qt 2 R and t ¤ Qt, then the zeros of the quasi-orthogonal polynomials
P.t/ and P.Qt/ defined by (9.4) are strictly interlacing.

Proof Fix k 2 f1; : : : ; ng and put

fk.x/ D 1

.x � �k/.x � �kC1/
nC1Y
jD1
.x � �j/2:

Then fk 2 RŒx�2n, so (9.9) applies and yields Ls. fk/ D 0, since fk.�j/ D 0 for
j D 1; : : : ; nC 1. Applying the same formula with P replaced by QP we get

Ls. fk/ D
nC1X
jD1

emjfk. Q�j/ D 0: (9.17)

The zeros of fk are precisely the numbers�l and we have fk.x/ < 0 for x 2 .�k; �kC1/
and fk.x/ � 0 for x � �k and x � �kC1. Therefore, if there were no j such that
�k < Q�j < �kC1, then all (!) numbers Q�j would have to be contained in the zero set
of fk. This implies that �k D Q�k for all k, so P is a constant multiple of QP. ut

As in Sect. 5.2 the orthonormal polynomials pk; k � n; satisfy the recurrence
relation (5.9); let an be the corresponding Jacobi coefficient from (5.9).

In the case P D pnC1 we have the following stronger result than Theorem 9.4.
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Theorem 9.6 If P D pnC1, then formula (9.9) holds for all f 2 RŒx�2nC1 and

m�1
j D anpn.�j/p

0
nC1.�j/ D

nX
kD0

pk.�j/
2; j D 1; : : : ; nC 1: (9.18)

Conversely, if there are real numbers Q�j and positive numbersemj, j D 1 : : : ; nC1,
such that Q�1 < � � � < Q�nC1 and

Ls. f / D
nC1X
kD1

emjf . Q�k/ for all f 2 RŒx�2nC1; (9.19)

then Q�j D �j and emj D mj for jD1; : : : ; n C 1 and formula (9.19) coincides with
(9.9).

Proof Let f 2 RŒx�2nC1. Then the polynomial qf in (9.12) belongs to RŒx�n.
Therefore, since P D pnC1, we have Ls.Pqf / D 0. Proceeding now as in the proof
of Theorem 9.4 it follows that formula (9.9) holds for f as well.

Next we prove (9.18). Since p0; : : : ; pnC1 are orthonormal polynomials for the
extended sequence (by Lemma 9.1), the formulas (5.47) and (5.51) proved in
Sect. 5.5 are valid. We set z D �j in the Christoffel formula (5.47) and remember
that pnC1.�j/ D 0. Inserting the definition (9.5) of �j.x/ for P D pnC1 we derive

nX
kD0

pk.x/pk.�j/ D an
pnC1.x/pn.�j/

x � �j D an�j.x/p
0
nC1.�j/pn.�j/:

Applying the functional Ls by using that p0 D s�1=2
0 and mj D Ls.�j/ we get

1 D s�1
0 Ls.1/ D Ls. p0/p0.�j/ D

nX
kD0

Ls. pk/pk.�j/ D anpn.�j/p
0
nC1.�j/mj

which yields the first equality of (9.18). The second equality follows from the first
by setting x D �j in formula (5.51) and using once again that pnC1.�j/ D 0.

Finally, we prove the uniqueness assertion. We set

QP.x/ D .x � Q�1/ : : : .x � Q�nC1/

and define Q�j andemj by (9.8) with P replaced by QP and �j by Q�j.
By deg Q�j D n and P D pnC1, we have Ls.P Q�j/ D 0. Since deg.P Q�j/ � 2nC 1,

formula (9.19) applies to P Q�j as well. Using the relation Q�j. Q�k/ D ıkj (by 9.8))
we obtain 0 D Ls.P Q�j/ D emjP. Q�j/: Thus, P. Q�j/ D 0, since emj > 0: That is, the
numbers Q�j are the zeros of P. Therefore, Q�j D �j for j D 1; : : : ; n C 1 and QP is a
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constant multiple of P D pnC1. Hence Q�j D �j, so that mj D Ls.�j/ D Ls. Q�j/ D emj

by (9.10) for j D 1; : : : ; nC 1. ut
The next theorem summarizes and restates some of the preceding results on the

quadrature formula (9.9) in terms of the truncated Hamburger moment problem.

Theorem 9.7 Suppose that s D .sj/2njD0 is a real positive definite 2n-sequence. Let
�t denote the .nC1/-atomic measure �P.t/ for the quasi-orthogonal polynomial P.t/
defined by (9.4) and (9.7), respectively.

(i) Each measure �t , t 2 R, is a solution of the truncated Hamburger moment
problem for s, that is, we have sj D

R
xj d�t.x/ for j D 0; : : : ; 2n:

(ii) For t; Qt 2 R, t ¤ Qt, the atoms of �t and �Qt are strictly interlacing, so �t and
�Qt have disjoint supports.

(iii) For any � 2 R that is not a zero of pn.x/, there exists a unique t 2 R such that
� is an atom of �t.

(iv) For each real number s2nC1 there is a unique .nC 1/-atomic measure � such
that s0; : : : ; s2nC1 are the moment of �. In fact, � is the measure �0 when the
sequence .sj/

2nC1
jD0 is extended to a positive definite .2nC2/-sequence .sj/2nC2

jD0 .

Proof (i) and (ii) follow from formula (9.9) and Corollary 9.5, respectively.

(iii) Setting t WD �pn.�/�1pnC1.�/, the number � is a zero of the quasi-orthogonal
polynomial

P.t/.x/ D pnC1.x/ � pn.�/
�1pnC1.�/pn.x/

and hence an atom of �t. (ii) yields the uniqueness assertion.
(iv) We extend .sj/

2nC1
jD0 to a positive definite real sequence .sn/n2N0 (by Lemma 9.1)

and put P WD P.0/ � pnC1. Then, by Theorem 9.6, (9.9) holds for the
polynomials x0; : : : ; x2nC1 which means that the measure �0 has the moments
s0; : : : ; s2nC1. The uniqueness of � D �0 follows from the second part of
Theorem 9.6. ut

We restate assertion (iv) of the preceding theorem separately as

Corollary 9.8 For each positive definite real sequence .sj/2njD0 and each real
number � there exists a unique .nC 1/-atomic measure �� such that

sj D
Z

xj d��.x/ for j D 0; : : : ; 2n and � D
Z

x2nC1 d��.x/:

9.2 Hamburger’s Theorem and Markov’s Theorem Revisited

In this section, we assume that s D .sn/n2N0 is a real positive definite sequence.
Recall that pn and qn are the orthogonal polynomials of the first and the second kind,
respectively, associated with s.
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We apply Theorem 9.4 with P D pnC1; k D n C 1; and set �k WD �P. Then
qk D Q by (9.6). Let �

.n/
1 < � � � < �

.n/
n denote the zeros of pk and m.k/j the

corresponding weights. From (9.9), applied with f D xj, and (9.10) we obtain

sj D
Z
R

xj d�k.x/ ; j D 0; : : : ; k � 1; (9.20)

�qk.z/
pk.z/

D
kX

jD1

m.k/j

�
.k/
j � z

D
Z
R

d�k.x/

x � z
; z 2 Cnf�.k/1 ; : : : ; ; �.k/k g: (9.21)

Since �k.R/ D s0 for all k, .s�1
0 �k/k2N0 is a sequence of probability measures.

Hence it follows from Theorem A.9 that there exists a subsequence .�kn/n2N0 which
converges vaguely to some measure � 2 MC.R/.

Let L�k be the linear functional on RŒx�k�1 defined by L�k . f / D R
f d�k. Then,

by (9.20), .L�k /k2N is a directed sequence of linear functionals on RŒx� according to
Definition 1.17. Hence limn!1 L�kn D L� by Lemma 1.18 (or Theorem 1.20) and

L�.xj/ D L�kn .xj/ D
Z
R

xj d�kn D sj for kn > j

by (9.20). Therefore, � is a representing measure for s, that is, � solves the
Hamburger moment problem for s. Thus we have given a third proof of the main
implication (ii)!(i) of Hamburger’s theorem 3.8 for positive definite sequences.

By formula (5.60) the sequence .�
.k/
1 /k2N is decreasing and the sequence

.�
.k/
k /k2N is increasing. Therefore, the limits

˛s WD lim
k!1�

.k/
1 2 f�1g [R and ˇs WD lim

k!1�
.k/
k 2 R [ fC1g

exist, see Corollary 5.33. Let Js denote the smallest closed interval which contains
.˛s; ˇs/. That is, Js is the smallest closed interval which contains all zeros of the
orthonormal polynomials pk; k 2 N. Note that ˛s, ˇs, and Js depend only on the
sequence s, but not on any representing measure. Since supp�k 	 Œ�.k/1 ; �.k/k � 	 Js

for k 2 N by (9.21), it follows that supp� 	 Js: In the literature [Chi1] a solution
of the moment problem with support contained in Js is called a natural solution.

Now we use formula (9.21) to develop a second approach to Markov’s theo-
rem 6.29.

Theorem 9.9 Suppose that s is a determinate positive definite sequence s. If � and
Js are as above, then

� lim
k!1

qk.z/

pk.z/
D
Z
Js

d�.x/

x � z
for z 2 CnJs; (9.22)

where the convergence is uniform on compact subsets of CnJs.
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Proof By Theorem 1.20, .�k/k2N converges vaguely to �. Let z 2 CnJs. Then the
function fz.x/ D 1

x�z is in C0.Js/. Therefore, since supp�k 	 Js and supp� 	 Js,
Proposition A.9 implies that

lim
k!1

Z
Js

d�n.x/

x � z
D
Z
Js

d�.x/

x � z
: (9.23)

Then (9.22) is obtained by inserting (9.21) on the left-hand side of (9.23).
Now we prove the assertion concerning the uniform convergence. Let K be a

compact subset of CnJs. Then c WD dist .K;Js/ > 0. By (9.21), the convergence in
(9.22) is uniform on K provided this holds for the convergence in (9.23). Let " > 0
be given. Since K is compact, there are finitely many numbers z1; : : : ; zk such that
the open discs centered at zj with radius " cover K. Given z 2 K we choose j such
that jz � zjj < ". Therefore, we have

ˇ̌
ˇ̌ 1

x � z
� 1

x � zj

ˇ̌
ˇ̌ D jz � zjj
j.x � z/.x � zj/j �

"

c2
for x 2 Js:

Let k 2 N. Then, using that supp�k 	 Js; supp� 	 Js, and �k.R/ D �.R/ D s0,
we derive

ˇ̌
ˇ̌
Z

d�k.x/

x � z
�
Z

d�.x/

x � z

ˇ̌
ˇ̌ (9.24)

�
ˇ̌
ˇ̌ Z d�k.x/

x � z
�
Z

d�k.x/

x � zj

ˇ̌
ˇ̌C
ˇ̌
ˇ̌ Z d�k.x/

x � zj
�
Z

d�.x/

x � zj

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ Z d�.x/

x � zj
�
Z

d�.x/

x � z

ˇ̌
ˇ̌

� s0
"

c2
C
ˇ̌
ˇ̌ Z d�.x/

x � zj
�
Z

d�k.x/

x � zj

ˇ̌
ˇ̌C s0

"

c2
: (9.25)

For each j D 1; : : : ; k, the middle term in (9.25) converges to zero by (9.23). Hence
for sufficiently large k the expression in (9.24) is less than 3"s0c�2. This proves that
the convergence in (9.23) is uniform on K. ut

9.3 The Reproducing Kernel and the Christoffel Function

Throughout this section, s D .sj/2njD0 is again a real positive definite 2n-sequence.
Let .CŒx�n; h�; �is/ be the complex Hilbert space with scalar product defined by

h p; qis D Ls. p q/, p; q 2 CŒx�n, where q.x/ WDPj ajx
j for q.x/ DPj ajx

j 2 CŒx�n:
As above, p0; : : : ; pn denote the corresponding orthonormal polynomials. Recall

that pj 2 RŒx� and hence pj.y/ D pj.y/ for y 2 C. Then

Kn.x; y/ WD
nX

kD0
pk.x/pk.y/ ; x; y 2 C; (9.26)
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is a reproducing kernel on the Hilbert space .CŒx�n; h�; �is/, that is, we have

p.y/ D h p.x/;Kn.x; y/is and hKn.x; y/; p.x/is D p.y/; p 2 CŒx�n; y 2 C:

(9.27)

As a sample we prove the second equality; the proof of the first equality is similar.
We write p DPn

jD0 cjpj.x/ and derive

hKn.x; y/; p.x/is;x D
nX

j;kD0
pk.y/ cj h pk.x/; pj.x/is D

nX
j;kD0

cjpk.y/ ıjk D p.y/:

Note that Kn.z; z/ DPn
kD0 jpk.z/j2 > 0 for all z 2 C, since p0.z/ > 0.

Definition 9.10 The n-th Christoffel function is

	n.z/ WD Kn.z; z/
�1 D

� nX
kD0
jpk.z/j2

��1
; z 2 C: (9.28)

The following proposition expresses the kernel Kn.x; y/ and the Christoffel
function 	n.z/ D Kn.z; z/�1 in terms of determinants involving the moments.

Proposition 9.11 For x; y 2 C and n 2 N0 we have

Kn.x; y/ D �D�1
n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

0 1 x : : : xn

1 s0 s1 : : : sn
y s1 s2 : : : snC1
y2 s2 s3 : : : snC2
: : : : : : : : : : : : : : :

yn sn snC1 : : : s2n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

: (9.29)

Proof Let G.x; y/ denote the determinant on the right. Fix y 2 C and j 2 f0; : : : ; ng.
We compute Ls;x.xjG.x; y//. That is, we multiply the first row in the determinant by
xj and then apply the functional Ls;x by using the multilinearity of determinants. As a
result, the first row of G.x; y/ is replaced by .0; sj; sjC1; : : : ; snCj/. Then we subtract
the . jC 2/-th row .yj; sj; sjC1; : : : ; snCj/. This does not change the determinant and
yields the first row .�yj; 0; : : : ; 0/. Finally, we develop the resulting determinant
after the first row and get Ls;x.G.x; y/xj/ D �yjDn:

Set H.x; y/ WD �D�1
n G.x; y/. Since G.x; y/ 2 RŒx; y�, we have

hxj;H.x; y/is;x D �D�1
n Ls;x.x

j G.x; y// D �D�1
n .�yjDn/ D yj:

This implies that h p.x/;H.x; y/is;x D p.y/ for all p 2 CŒx�n. In particular,

hKn.x; z/;H.x; y/is;x D Kn.y; z/ for y; z 2 C: (9.30)
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On the other hand, it follows from the definition of G that G.z; y/ D G.y; z/.
This implies that H.z; y/ D H.y; z/. Therefore, by the second equality of (9.27),

hKn.x; z/;H.x; y/is;x D H.z; y/ D H.y; z/ for y; z 2 C: (9.31)

Comparing (9.30) and (9.31) we get Kn.y; z/ D H.y; z/, which is the assertion. ut
The next proposition characterizes the function 	n by an extremal property.

Proposition 9.12 For any z 2 C we have

min fLs. p p/ W p 2 CŒx�n; p.z/ D 1g D Kn.z; z/
�1 D 	n.z/ (9.32)

and the minimum is attained at p if and only if p.x/ D Kn.x; z/	n.z/.

The proof will be derived below from Proposition 9.14. Since the latter result is
used in Sect. 10.7 in the real setting, we formulate it in the real and complex cases.
It is based on the following fact from elementary Hilbert space theory.

Lemma 9.13 Let f ¤ 0 be an element of a real or complex unitary spaceH. Then

min fkgk2 W g 2 H; hg; f i D 1g D k fk�2 (9.33)

and the minimum (9.33) is attained at g if and only if g D fk fk�2.
Proof Put g0 D fk fk�2. If hg; f i D 1, then hg � g0; f i D hg; f i � k fk�2h f ; f i D 0:
Thus g � g0?g0. Therefore, by Pythagoras’ theorem,

kgk2 D kg0 C g � g0k2 D kg0k2 C kg � g0k2:

Hence the minimum is attained at g if and only if g D g0. ut
Proposition 9.14 Let K D C or K D R. Suppose that s D .sj/2njD0 is a
positive definite real sequence and let p0; : : : ; pn be the corresponding orthonormal
polynomials. Then, for any z 2 K we have

min fLs. p p/ W p 2 KŒx�n; p.z/ D 1g D
� nX

jD0
jpj.z/j2

��1
(9.34)

and the minimum is attained at p if and only if

p.x/ D
nX

jD0
pj.x/ pj.z/

� nX
iD0
jpi.z/j2

��1
: (9.35)
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Proof Let p 2 KŒx�n. We develop p with respect to the orthonormal basis f pjg of
the unitary space .KŒx�n; h�; �is/ and obtain

p D
nX

jD0
cjpj; where cj D h p; pjis; and Ls. p p/ D kpk2s D

nX
jD0
jcjj2:

Then p.z/ D P
j cjpj.z/. Hence, the problem in (9.34) is to minimize

P
j jcjj2 for

g WD .c0; : : : ; cn/T 2 KnC1 under the constraint
P

j cjpj.z/ D 1. This is solved by

Lemma 9.13, applied to the unitary space KnC1 and f WD . p0.z/; : : : ; pn.z/ /T . The
minimum is k fk�2 and it is attained if and only if cj D pj.z/ k fk�2 for j D 0; : : : ; n.
Inserting these facts yields the asserted formulas (9.34) and (9.35). ut
Proof of Proposition 9.12 We apply Proposition 9.14 in the case K D C. By (9.28)
the minimum in (9.34) is 	n.z/. Comparing (9.35) and (9.26) we conclude that the
minimum is attained if and only if p.x/ D Kn.x; z/	n.z/. ut

9.4 Positive Semidefinite 2n-Sequences

In the rest of this chapter we investigate positive semidefinite finite sequences.
The following theorem characterizes the positive semidefiniteness of a 2n-

sequence in terms of an integral representation (9.36).

Theorem 9.15 For any real sequence s D .sj/2njD0 the following five statements are
equivalent:

(i) s is positive semidefinite, that is,

nX
k;lD0

skClckcl � 0 for .c0; : : : ; cn/
T 2 RnC1:

(ii) Hn.s/ � 0.
(iii) Ls. p2/ � 0 for all p 2 RŒx�n.
(iv) There exists a Radon measure � on R and a real number a � 0 such that

RŒx�2n 	 L1.R; �/,

sj D
Z
R

xj d�.x/ for j D 0; : : : ; 2n � 1; and s2n D aC
Z
R

x2n d�.x/:

(9.36)

(v) There exists a k-atomic measure � on R, where k � 2n C 1, and a constant
a � 0 such that (9.36) holds.
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Proof The equivalence of (i), (ii), and (iii) is easily verified by the same reasoning
used in the proof of Hamburger’ theorem 3.8; we do not repeat it here.

(iii)!(v) The proof is based on Proposition 1.26. Let X WD R[ f1g denote the
one point compactification of R. Then the functions

uj.x/ WD xj.1C x2n/�1; j D 0; : : : ; 2n;

extend to continuous functions on X by setting uj.1/ D 0 for j D 0; : : : ; 2n � 1
and u2n.1/ D 1. Let E be the span of these functions in C.X IR/.

We define a linear functional QL on E by QL.uj/ D Ls.xj/; j D 0; : : : ; 2n. Let
f 2 EC. Then g WD .1 C x2n/f 2 RŒx�2n is nonnegative on R. Therefore, by
Proposition 3.1, we have g D p2 C q2 with polynomials p; q 2 RŒx�n. Thus we
obtain f D . p2 C q2/.1C x2n/�1 and hence QL. f / D Ls. p2 C q2/ by the definition
of QL. Since Ls. p2/ � 0 and Ls.q2/ � 0 by (iii), QL. f / � 0. Thus, Proposition 1.26
applies with g D u2n and there is a k-atomic positive measure Q� on X , k � 2nC 1;
such that QL. f / D R f d Q� for f 2 E.

Set a D Q�.f1g/. We define atomic measures O� and � on R by O�.M/ WD Q�.M/
for M 	 R and d� WD .1C x2n/�1d O�. For j D 0; : : : ; 2n we compute

sj D Ls.x
j/ D QL.uj/ D

Z
X
uj.x/ d Q� D auj.1/

C
Z
R

xj

1C x2n
d O� D aıj;2n C

Z
R

xj d�;

which proves (v).
(v)!(iv) is trivial.
(iv)!(ii) Let .c0; : : : ; cn/T 2 RnC1. Using (9.36) we derive

nX
k;lD0

skClckcl D ac2n C
nX

k;lD0

Z
R

ckclx
kCld� D ac2n C

Z
R

� nX
kD0

ckx
k

�2
d� � 0;

(9.37)

since a � 0. This proves (ii). ut
The positive semidefiniteness of s is not sufficient for representing all numbers sj

as moments sj D
R
xjd�, see Example 9.17 below. It implies only a representation

(9.36) with s2n �
R
x2n d�. Some authors consider (9.36) as the “right version”

of the Hamburger truncated moment problem. We require that s2n is the .2n/-th
moment of � as well, that is, s2n D

R
x2n d�. To obtain the latter equality

additional conditions are needed; they depend on whether or not we are dealing
with the Hamburger or Stieltjes truncated moment problem and in the even or odd
case.
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Our main existence results on the Hamburger truncated moment problem are
derived from the following corollary.

Corollary 9.16 Let s D .sj/2njD0 be a real sequence and suppose that Hn.s/ � 0.
(i) There is a k-atomic positive measure � on R, k � 2nC 1; such that

Ls. p/ D
Z
R

p.x/ d� for p 2 RŒx�2n�1: (9.38)

If Ls. f 2/ D 0 for some f 2 RŒx�n, then supp� 	 Z. f /.
(ii) Suppose that there exists a polynomial f 2 RŒx� of degree n such that Ls. f 2/ D

0. Then s is a truncated Hamburger moment sequence and supp� 	 Z. f / for
each representing measure � of s:

Proof

(ii) Let f .x/ DPn
kD0 cnxn. Using (9.36) and (9.37) we get

0 D Ls. f
2/ D

nX
k;lD0

skClckcl D ac2n C
Z
R

f .x/2 d�: (9.39)

Since deg. f / D n, cn ¤ 0. Hence a D 0, so that s is truncated moment sequence
by (9.36). Inserting a D 0 into (9.39), Proposition 1.23 implies that supp� 	
Z. f /.

(i) The first assertion is only a reformulation of Theorem 9.15 (i)!(v).
If deg. f / D n, the second assertion follows from (ii). If deg. f / < n,
then Ls. f 2/ D

R
f 2 d� D 0 by (9.38), so that supp� 	 Z. f / again by

Proposition 1.23. ut
Example 9.17 Let s D .0; 0; 1/. Then H1.s/ � 0. Since s0 D 0, s cannot be
given by a Radon measure on R, but s has a representation (9.36) with � D 0

and a D 1. ı
Example 9.18 Let s D .16; 0; 4; 0; 4/. Then the sequence s has a representation
(9.36) with � D 8ı� 1

2
C 8ı 1

2
and a D 3. Since detH2.s/ > 0, s is positive definite,

so it also has representing measures on R by Corollary 9.2; one such measure is
� WD 2ı�1 C 12ı0 C 2ı1. ı

The next theorem is the counterpart of Theorem 9.15 for the positive half-line.

Theorem 9.19 Let s D .sj/mjD0 be a real sequence and set Es WD .s1; : : : ; sm/: The
following are equivalent:

(i) m D 2n: Hn.s/ � 0 and Hn�1.Es/ � 0, that is,
nX

k;lD0
skClckcl � 0 and

n�1X
k;lD0

skClC1ckcl � 0 for .c0; : : : ; cn/
T 2 RnC1:
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m D 2nC 1: Hn.s/ � 0 and Hn.Es/ � 0, that is,
nX

k;lD0
skClckcl � 0 and

nX
k;lD0

skClC1ckcl � 0 for .c0; : : : ; cn/
T 2 RnC1:

(ii) m D 2n W Ls. p2/ � 0 and Ls.xq2/ � 0 for p 2 RŒx�n; q 2 RŒx�n�1.
m D 2nC 1 W Ls. p2/ � 0 and Ls.xq2/ � 0 for p; q 2 RŒx�n:

(iii) There exists a Radon measure � on RC and a real number a � 0 such that
RŒx�m 	 L1.RC; �/,

sj D
Z 1

0

xj d�.x/ for j D 0; : : : ;m� 1; and sm D aC
Z 1

0

xm d�.x/:

(9.40)

(iv) There exists a k-atomic measure � on RC, where k � mC 1, and a constant
a � 0 such that (9.40) holds.

Proof The proof follows the same reasoning as the proof of Theorem 9.15. We
sketch only the proof of the main implication (ii)!(iv). Let X D RC [ fC1g
denote the one point compactification of RC and E the span of continuous functions

uj.x/ WD xj.1C xm/�1; j D 0; : : : ;m;

on X , where uj.C1/ WD 0 if j D 0; : : : ;m� 1 and um.C1/ WD 1.
We define a linear functional QL on E by QL.uj/ WD Ls.xj/. Let f 2 EC. Then

g D .1 C xm/f 2 RŒx�m is nonnegative on RC. Therefore, by Proposition 3.2, the
polynomial g is of the form g D pC xq, where p 2P2

n; q 2
P2

n�1 if m D 2n and
p; q 2 P2

n if m D 2nC 1. Because of these formulas the conditions in (ii) imply
that QL. f / � 0. Therefore, by Proposition 1.26, QL is given by some k-atomic positive
measure Q� on X , where k � mC 1. Continuing as in the proof of Theorem 9.15 the
formulas in (9.40) are derived. ut
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Let s D .sj/2njD0 be a real sequence. We define the kernel vector space of s by

Ns WD f p 2 RŒx�n W Ls. pq/ D 0 for q 2 RŒx�n g:

The first assertion of the following lemma gives another description of Ns.
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Lemma 9.20

(i) For p D Pn
jD0 ajxj 2 RŒx�n, set Ep WD .a0; : : : ; an/T 2 RnC1. Then the map

p 7! Ep is a bijection of Ns on kerHn.s/. In particular,

dim Ns D dim kerHn.s/ and rankHn.s/ D nC 1 � dimNs: (9.41)

(ii) If s is positive semidefinite, then Ns D fp 2 RŒx�n W Ls. p2/ D 0 g:
Proof

(i) For p DPn
jD0 ajxj 2 RŒx�n and q DPn

jD0 bjxj 2 RŒx�n, we compute

L. pq/ D
2nX

i;jD0
Ls.x

iCj/aibj D
2nX

i;jD0
siCjaibj D EqT Hn.s/Ep:

Therefore, p 2 Ns if and only if Ep 2 kerHn.s/: Hence p 7! Ep is a bijection of
Ns on kerHn.s/. Obviously, this implies (9.41).

(ii) The left-hand side is contained in the right-hand side by setting p D q.
Since s is positive semidefinite, Ls. f 2/ � 0 for f 2 RŒx�n. Hence the

Cauchy–Schwarz inequality (2.7) holds, that is, Ls. pq/2 � Ls. p2/Ls.q2/ for
p; q 2 RŒx�n. Therefore, Ls. p2/ D 0 implies Ls. pq/ D 0. ut

Clearly, Ns is a linear subspace of RŒx�n. Therefore, if Ns ¤ f0g, there exists a
unique monic polynomial f 2 RŒx�n, fs ¤ 0; of lowest degree in Ns.

Definition 9.21 If Ns ¤ f0g, we call fs the minimal polynomial associated with s
and the number rk.s/ D deg. fs/ the Hankel rank of s. In the case Ns D f0g we set
rk .s/ D nC 1.

The Hankel rank plays a crucial role in the truncated moment problem.
Clearly, rk .s/ D 0 if and only if fs D 1, or equivalently, s0 D � � � D sn D 0:

Further, by definition and Lemma 9.20(i), we have rk .s/ D n C 1 if and only if
Ns D f0g; or equivalently, rankHn.s/ D nC 1.

Let us write the Hankel matrix Hn.s/ as

Hn.s/ D Œv0; : : : ; vn�;

where vj D .sj; : : : ; sjCn/
T , j D 0; : : : ; n; are the column vectors of Hn.s/.

The second assertion of the following lemma is usually called Frobenius’ lemma
in the literature, see e.g. [Gn, Lemma X.10.1].

Lemma 9.22 Suppose that 1 � rk .s/ � n:

(i) rk .s/ is the smallest integer r, 1 � r � n; such that the column vector vr is in
the span of v0; : : : ; vr�1, or equivalently, there are reals �0; : : : ; �r�1 such that

sjCr D �r�1sjCr�1 C � � � C �0sj for j D 0; : : : ; n: (9.42)
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If this is true, then we have

fs.x/ D xr � �r�1xr�1 � � � � � �1x � �0:

(ii) Drk.s/�1.s/ ¤ 0 and Drk.s/.s/ D 0:
Proof

(i) Since 1 � rk .s/ � n, the minimal polynomial fs is defined and we have
deg. fs/ � 1; as noted above. Let f .x/ D xr � �r�1xr�1 � � � � � �1x � �0;
where r 2 f1; : : : ; ng and �0; : : : ; �r�1 2 R: Then

Ls.x
jf / D sjCr � �r�1sjCr�1 � � � � � �1sjC1 � �0sj; j D 0; : : : ; n: (9.43)

Hence f 2 Ns if and only if (9.42) holds, or equivalently, vr D �0v0 C � � � C
�r�1vr�1. Thus the smallest r such that vr 2 spanfv0; : : : ; vr�1g is obtained if
and only if the monic polynomial f has the lowest possible degree in Ns; that
is, if f D fs.

(ii) Let Ak D Œv0; : : : ; vk�1� denote the matrix with columns v0; : : : ; vk�1. By
(i), rk .s/ is the smallest index r such that vr belongs to the linear span of
v0; : : : ; vr�1.

Since vr is in the span of v0; : : : ; vr�1, we have rankArC1 < r C 1: Thus
Dr.s/ D 0:

Because r is the smallest such number, v0 : : : ; vr�1 are linearly independent
and hence rankAr D r: Further, by (i) there are real numbers �0; : : : ; �r�1 such
that the equations (9.42) hold. It follows from (9.42) that each row of Ar is a
linear combination of the r preceding rows. Therefore, each row of Ar is in the
span of the first r rows of Ar. Since rankAr D r is also the maximal number of
linearly independent rows, the first r rows of Ar are linearly independent. This
implies Dr�1.s/ ¤ 0. ut

Example 9.23 Let n D 4 and s D .1; 1; 1; 1; 0; 0; 0; 0; 0/. Since D4.s/ D 0; we
easily derive from Proposition 9.25(i) that rk .s/ D 4. Then fs D x4; D0.s/ D
D3.s/ D 1; and D1.s/ D D2.s/ D 0: Since Ls..1 � x2/2/ D �1, s is not positive
semidefinite! ı

In the rest of this section, the sequence s is positive semidefinite. Then we have
Hn.s/ � 0 and Ls. p2/ � 0 for p 2 RŒx�n. From formula (9.41) and some elementary
linear algebra we obtain the following lemma; we omit its simple proof.

Lemma 9.24 If s is positive semidefinite, then the following are equivalent:

(i) s is positive definite.
(ii) Hn.s/ � 0.

(iii) Dn.s/ ¤ 0.
(iv) rk.s/ D nC 1.

Some important properties of rk .s/ are collected in the next proposition.
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Proposition 9.25 Suppose that sD.sj/2njD0 is positive semidefinite and rk.s/ � n.

(i) If n � 1 � rk .s/ � 0, then pfs 2 Ns for p 2 RŒx�n�1�rk .s/:

(ii) rk .s/ � rankHn.s/ � rk .s/C 1.
(iii) rk .s/ D rankHn.s/ if and only if xn�rk .s/fs 2 Ns.
(iv) rk .s/ is the smallest number r 2 N0 such that Dr.s/ D 0:More precisely,

D0.s/ > 0; : : : ;Drk .s/�1.s/ > 0; Drk.s/.s/ D 0; : : : ;Dn.s/ D 0: (9.44)

(In the case rk .s/ D 0, the set of inequalities should be omitted.)
Proof

(i) Since fs 2 Ns, Corollary 9.16(i) applies, so there exists a Radon measure �
such that supp� 	 Z. fs/ and Ls.q/ D

R
q d� for q 2 RŒx�2n�1. Therefore, if

p 2 RŒx�n�1�rk .s/, then . pfs/2 2 RŒx�2n�2 and pfs 2 Ns. since

Ls.. pfs/
2/ D

Z
Z. fs/

p.x/2fs.x/
2 d�.x/ D 0:

(ii) First we note that the following set is a basis of the vector space RŒx�n W

fxi; xjfs W i; j 2 N0; 0 � i � rk.s/ � 1; 0 � j � n � rk.s/g: (9.45)

If rk.s/ D n, then the assertion is obvious. Hence we can assume that
rk.s/ < n: By (i) we have xjfs 2 Ns for j D 0; : : : ; n � 1 � rk.s/. Thus,
dimNs � n � rk.s/.

Now we prove that dim Ns � n C 1 � rk.s/. Assume the contrary, that
is, dimNs � n C 2 � rk.s/. Since (9.45) is a vector space basis of RŒx�n, it
follows from (i) that there exists a polynomial f 2 RŒx�n; f ¤ 0;with deg. f / <
rk.s/ D deg. fs/ in Ns. This contradicts the choice of fs. Hence dim Ns �
nC 1 � rk.s/: Therefore, rk .s/ � rankHn.s/ � rk .s/C 1 by (9.41).

(iii) By (9.41), rk .s/ D rankHn.s/ if and only if dimNs D nC 1 � rk.s/. Since
rk.s/ is the lowest degree of nonzero polynomials in Ns and (9.45) is a basis
of RŒx�n, we conclude from (i) that the latter is equivalent to xn�rk .s/fs 2 Ns.

(iv) Set r WD rk .s/: If r D 0, then s0 D � � � D sn D 0, as noted above. Hence sj D
0 for all j, since c is positive semidefinite, so that Dk.s/ D 0 for k D 0; : : : ; n.

Assume now that r � 1: Then, by Lemma 9.22(ii), Dr�1.s/ ¤ 0 and
Dr.s/ D 0: Since Hn.s/ � 0 by assumption, Dr�1.s/ > 0. Hence the matrix
Hr�1.s/ is positive definite and therefore Dk.s/ > 0 for k D 0; : : : ; r� 1. Since
Dr.s/ D 0; the sequence .sj/2rjD0 is not positive definite, hence neither is the
sequence .sj/2kjD0 and so Dk.s/ D 0 for k D r C 1; : : : ; n: This completes the
proof of (9.44). ut
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Let us illustrate the preceding in an important special case.

Example 9.26 Suppose s has a k-atomic representing measure� DPk
jD1mjıtj with

k � n. Let f 2 RŒx�n. Then f 2 Ns if and only if Ls. f 2/ DPk
jD1mjf .tj/2 D 0, or

equivalently, f .t1/ D � � � D f .tk/ D 0. Therefore, fs.x/ D .x � t1/ : : : .x � tk/ and
rk.s/ D k: By Theorem 9.27 (i)!(iii) below, we also have rankHn.s/ D k. ı

9.6 Truncated Hamburger and Stieltjes Moment Sequences

In this section, we settle the truncated Hamburger and Stieltjes moment problems
for real sequences s D .sj/2njD0 (even case) and s D .sj/2nC1

jD0 (odd case).

Theorem 9.27 (The Hamburger Truncated Moment Problem; Even Case) For
any real sequence s D .sj/2njD0 the following are equivalent:

(i) s is a truncated Hamburger moment sequence.
(ii) There exist reals s2nC1; s2nC2 such that HnC1.Qs/ � 0, where Qs WD .sj/2nC2

jD0 .
(iii) Hn.s/ � 0 and rankHn.s/ D rk.s/:

If rk.k/ � n, or equivalently, if Ns ¤ f0g, these conditions are equivalent to:
(iv) Hn.s/ � 0 and xn�rk.s/fs 2 Ns:

(v) Hn.s/ � 0 and there exists a polynomial of degree n in Ns:

Suppose that (i) is satisfied. Then s has an rk.s/-atomic representing measure.
Further, s has a unique representing measure � if and only if rk.s/ � n, or
equivalently, Dn.s/ D 0. The atoms of this measure are the zeros of fs and

jsupp�j D jZ. fs/j D rk.s/ D rankHn.s/: (9.46)

Proof
(i)!(ii) From (i) and Corollary 1.25 it follows that s has a finitely atomic

representing measure �. Hence � has all moments. Then, setting sl D
R
xl d� for

l D 2nC 1; 2nC 2, Qs is a truncated moment sequence and hence HnC1.Qs/ � 0.
(ii)!(i) Since HnC1.Qs/ � 0, Corollary 9.16(i) applies with s replaced by Qs and n by
nC 1. Then Eq. (9.38) therein implies that sj D

R
xj d� for j D 0; : : : ; 2n.

Next we treat the case rk.s/ D nC1: Then Ns D f0g and rankHn.s/ D nC1 by
(9.41) and Definition 9.21. The implication (i)!(iii) is clear. We prove (iii)!(i).
Since Hn.s/ � 0 and rankHn.s/ D n C 1, the sequence s is positive definite.
Therefore, by Theorem 9.7, s has a one-parameter family of .n C 1/-atomic
representing measures. Thus in the case rk.s/ D nC1 all assertions of the theorem
are proved.

In the rest of this proof we assume that rk.s/ � n: Then Ns ¤ f0g and the
minimal polynomial fs is defined.
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(i)!(iv) By (i), s has a representing measure �. Hence Hn.s/ � 0. Since fs 2 Ns,
we have supp� 	 Z. fs/ by Proposition 1.23 and therefore

Ls..x
n�rk.s/fs/

2/ D
Z
Z. fs/

x2.n�rk.s//fs.x/
2 d� D 0:

That is, xn�rk.s/fs 2 Ns and (iv) is proved.
(iv)!(v) is trivial, since xn�rk.s/fs belongs to Ns and has degree n.
(v)!(i) follows at once from Corollary 9.16(ii).
(iii)$(iv) is clear by Proposition 9.25(iii).
This completes the proof of the equivalence of statements (i)–(v).
Suppose that (i) holds. Let � be a representing measure for s. As noted above,

supp� 	 Z. fs/, so � is k-atomic with k � deg. fs/ D rk.s/ D rankHn.s/ by
(iii). By assumption, rk.s/ � n. Thus, k � n: Hence, as noted in Example 9.26,
k D rk.s/: The preceding proves all equalities of (9.46).

Let Q� be another representing measure for s. Let Z. fs/ D ft1; : : : ; tkg. Then
there are nonnegative numbers mj; nj such that � DPk

jD1mjıtj and Q� DPk
jD1 njıtj .

Since k � n, there are interpolation polynomials pi 2 RŒx�n such that pi.tj/ D ıij
for i; j D 1; : : : ; n. Then Ls. pi/ D

R
pi d� D mi and Ls. pi/ D

R
pi d Q� D ni, so

that mi D ni for all i. Hence � D Q�. Thus s has a unique representing measure if
rk.s/ � n: ut
Remark 9.28 The proof of (i)!(iv) uses the same reasoning as the proof of
Proposition 9.25(i), now applied with p D xn�rk.s/. Such arguments and the
uniqueness proof based on interpolation polynomials often appear (for instance, in
the proofs of Theorem 10.7 and Proposition 17.18) and in slightly different settings
in this book. ı

We illustrate Theorem 9.27 with two simple examples.

Example 9.29 Let n D 2 and s D .sj/4jD0, where s0 D s1 D s2 D s3 D 1, s4 D ˛ �
1: Clearly, s has a representation (9.36) with � D ı1 and a D ˛ � 1 � 0. Hence

H2.s/ D
0
@1 1 11 1 1

1 1 ˛

1
A � 0 :

Case 1: ˛ > 1.
Then fs D x � 1, rk.s/ D 1, and Ns D R�fs. Since x2�1fs … Ns, s is not a truncated
Hamburger moment sequence. Note that .x � 1/ 2 Ns, but .x � 1/2 … Ns:

Case 2: ˛ D 1.
Then fs D x � 1 and rk.s/ D 1, but xfs 2 Ns, so s is a truncated moment sequence
with unique representing measure � D ı1: ı
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Example 9.30 Set � WD ı0C 1
k2n
ık for fixed k 2 N and n � 2. Clearly, the moment

sequence s D .sj/2njD0 of � is given by

s0 D 1C k�2n; sj D k�.2n�j/ for 1 � j < 2n; s2n D 1:

In the limit k ! 1 we obtain the positive semidefinite sequence Qs D
.1; 0; : : : ; 0; 1/: It is not a moment sequence, since fQs D x 2 N .Qs/ and
xn D xn�1fQs … N .Qs/. This shows that the set of all truncated moment 2n-sequences
is not closed in R2nC1. ı

The following lemma about positive block matrices is a special case of Theo-
rem A.24. We identify Rk with the column matrices Mk;1.R/.

Lemma 9.31 Let k 2 N, A 2 Mk.R/, b 2 Rk, c 2 R, and suppose that A � 0:

Consider the block matrix QA 2 MkC1.R/ defined by

QA D
�
A b
bT c

�
: (9.47)

(i) QA � 0 if and only if b D Au for some u 2 Rk and c � uTAu.
(ii) Let b D Au with u 2 Rk and c � uTAu. Then rank QA D rankA if and only if

c D uTAu.

The three remaining existence theorems of this section use Lemma 9.31.

Theorem 9.32 (The Hamburger Truncated Moment Problem; Odd Case) For
a real sequence s D .sj/2nC1

jD0 the following three statements are equivalent:

(i) s is a truncated Hamburger moment sequence.
(ii) There exists a real number s2nC2 such that HnC1.Qs/ � 0, where Qs WD .sj/2nC2

jD0 .
(iii) Hn.s/ � 0 and .snC1; : : : ; s2nC1/T 2 range .Hn.s//:

Suppose that (i) holds and set Os WD .sj/2njD0: Then s has an rk.Os/-atomic representing
measure. Further, s has a unique representing measure if and only if rk.Os/ � n, or
equivalently, Dn.Os/ D 0I this unique measure is rk.Os/-atomic and its set of atoms
is the zero set Z. fOs/ of fOs.

Proof The proof of (i)$(ii) is almost verbatim the same as for Theorem 9.27. In the
proof of (ii)!(i) we apply Corollary 9.16 with n replaced by nC1. Hence Eq. (9.38)
holds for j D 0; : : : ; 2nC 1 which gives (i).

To prove (ii)$(iii) we consider HnC1.Qs/ as a block matrix (9.47) with

A D Hn.s/; b D .snC1; : : : ; s2nC1/T ; c D s2nC2: (9.48)

(ii)!(iii) Since HnC1.Qs/ � 0, we have Hn.s/ � 0 and b 2 range .Hn.s// by the
only if direction of Lemma 9.31(i).

(iii)!(ii) Then b 2 range .Hn.s//, say b D Hn.s/u with u 2 RnC1. Therefore,
choosing s2nC2 � uTHn.s/u, we have HnC1.Qs/ � 0 by the if part of Lemma 9.31(i).
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This completes the proof of the equivalences (i)–(iii). Now suppose that (i) holds.
First we assume that rk.Os/ D n C 1. Then rankHn.Os/ D n C 1 by Proposi-

tion 9.25(ii). Hence, since Hn.s/ D Hn.Os/, there exists a v 2 RnC1 such that b D
Hn.s/v. We fix v and choose s2nC2 > vTHn.s/v. Then, applying Lemma 9.31(ii) to
the block matrix HnC1.Qs/ yields rankHnC1.Qs/ > rankHn.s/ D rankHn.Os/ D nC 1.
Therefore, rankHnC1.Qs/ D n C 2. Hence, by Corollary 9.2 (or by Theorem 9.27
(iii)!(i)), Qs is a truncated moment sequence. Obviously, any representing measure
for Qs is one for s. Since these measures have the moment s2nC2, they are different
as s2nC2 varies. Thus s has a one-parameter family of representing measures.

Assume now that rk.Os/ � n. Any representing measure � for s is a representing
measure for Os. Therefore, by Theorem 9.27 applied to Os, � is uniquely determined
and has the properties stated above. ut

The next proposition shows how Lemma 9.31 can be used to obtain additional
information about the structure of the extended sequence Qs in Theorem 9.27(ii).

Proposition 9.33 Let s D .sj/2njD0 be a positive semidefinite real sequence such
that r WD rk.s/ � n: Suppose that there exist real numbers s2nC1; s2nC2 such that
HnC1.Qs/ � 0, where Qs WD .s0; : : : ; s2n; s2nC1; s2nC2/. Further, let �0; : : : ; �r�1 be the
numbers from Eq. (9.42). Then

sjCr D �0sj C � � � C �r�1sjCr�1 for j D 0; : : : ; 2nC 1 � r; (9.49)

s2nC2 � �0s2nC2�r C � � � C �r�1s2nC1: (9.50)

There is equality in (9.50) if and only if rk.s/ � rankHn.s/ D rankHnC1.Qs/:
Proof We consider the Hankel matrix HnC1.Qs/ as a block matrix (9.47) with entries
(9.48). Since HnC1.Qs/ � 0, we have Hn.s/ � 0 and Lemma 9.31(i) applies.
Therefore, we have b D Au with u 2 RnC1 and c � uTAu. Equation b D Au
means that

snCkC1 D
nX

lD0
skClul; k D 0; : : : ; n: (9.51)

We prove by induction that Eq. (9.49) holds for j D 0; : : : ; 2n C 1 � r: If j D
0; : : : ; n, then (9.49) is just one of the equations (9.42). Assume that (9.49) is true
for all j, where n � j � 2n� r. Using (9.51) and the induction hypothesis (9.49) we
derive

sjC1Cr D
nX

lD0
sjCr�nClul D

nX
lD0

r�1X
iD0

sj�nClCi�iul

D
r�1X
iD0

� nX
lD0

sj�nClCiul

�
�i D

r�1X
iD0

sjC1Ci�i;
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which is (9.49) for j C 1. This completes the induction proof of (9.49). (The
preceding computation is not valid for j D 2n C 1�r, since (9.51) does not hold
for k D nC 1.)

By Lemma 9.31(i), s2nC2 D c � uTAu: Using (9.51) and (9.49) we compute

ssnC2 � utAu D utb D
nX

lD0
snC1Clul D

nX
lD0

r�1X
iD0

snC1�rClCi�iul D
r�1X
iD0

s2nC2�rCi�i;

which is the inequality (9.50).
Theorem 9.27 (ii)!(iii) implies that rk.s/ D rankHn.s/. According to

Lemma 9.31(ii), we have rankHn.s/ D rankHnC1.Qs/ if and only if s2nC2 �
c D uTAu, or equivalently, if there is equality in (9.50). ut
Remark 9.34

1. Let us retain the assumptions of Proposition 9.33. Equation (9.49) is a recursive
relation for the numbers sj; j � 2n C 1: In particular, s2nC1 is determined by
(9.49) for j D 2nC 1� r. From Lemma 9.31(ii) it follows that each real number
ssnC2 satisfying (9.50) gives an extension Qs such that HnC1.Qs/ � 0: In particular,
we can choose s2nC2 WD �0s2nC2�rC� � �C�r�1s2nC1; then we have rankHn.s/ D
rankHnC1.Qs/.

2. Let s D .sj/2njD0 be a positive definite real sequence. Then rankHn.s/ D
n C 1: (This case is not covered by Proposition 9.33, since the assumptions
of Proposition 9.33 and Theorem 9.27 imply that s is a moment sequence and
rankHn.s/ D rk.s/ � n.) Since Hn.s/ is regular, the vector b from (9.48) is in
the range of A D Hn.s/, say b D Hn.s/u. Hence, by Lemma 9.31(i), for arbitrary
reals s2nC1; s2nC2 such that s2nC2 � uTHn.s/u, the extension Qs D .sj/

2nC2
jD0 of s

satisfies HnC1.Qs/ � 0; so s is a moment sequence by Theorem 9.27. If we choose
s2nC2 > uTHn.s/u, Lemma 9.31(ii) implies that rankHn.Qs/ D n C 2; so Qs is
also positive definite. This recovers the extension procedure for positive definite
sequences from Lemma 9.1. ı
Now we turn to the truncated Stieltjes moment problem and begin with the odd

case. Let Es D .s1; : : : ; sm/ denote the shifted sequence of s D .s0; s1; : : : ; sm/.
Theorem 9.35 (The Stieltjes Truncated Moment Problem; Odd Case) A real
sequence s D .sj/2nC1

jD0 is a truncated Stieltjes moment sequence if and only if

Hn.s/ � 0; Hn.Es/ � 0; and .snC1; : : : ; s2nC1/T 2 range .Hn.s//: (9.52)

Suppose s is a truncated Stieltjes moment sequence. Then s has an rk.Os/-atomic
representing measure on RC. Moreover, the sequence s has a unique representing
measure onRC if and only if rk.s/ � n or rk.Es/ � n, or equivalently, Dn.s/ D 0
or Dn.Es/ D 0.
Proof By Theorem 9.32 (i)$(ii), s is a truncated Hamburger moment sequence if
and only if Hn.s/ � 0 and .snC1; : : : ; s2nC1/T 2 range .Hn.s//:
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Suppose s has a representing measure � supported on RC. Then the positive (!)
measure � given by d� D xd� has the moment sequence Es, so that Hn.Es/ � 0.

Conversely, assume that Hn.Es/ � 0. By Theorem 9.32, s has an rk.Os/-atomic
representing measure � D Prk.Os/

jD1 mjıtj . Since rk.Os/ � n C 1; there are Lagrange
interpolation polynomials pi 2 RŒx�n such that pi.tj/ D ıij, i; jD1; : : : ;rk.Os/. Then

L.xp2i / D
Z

xpi.x/
2 d�.x/ D

rk.Os/X
jD0

mjtjp
2
i .tj/ D miti � 0:

Since � is rk.Os/-atomic, we have mi > 0 and therefore ti � 0. Thus � is supported
on RC and s is a truncated Stieltjes moment sequence.

We turn to the proof of the uniqueness assertions. Note that rk.s/ � n (resp.
rk.Es/ � n) if and only if Dn.s/ D 0 (resp. Dn.Es/ D 0) by Lemma 9.24 (iii)$(v).

First, let us assume that

Dn.s/ ¤ 0 and Dn.Es/ ¤ 0: (9.53)

Let Qs D .sj/2nC3
jD0 with unknown s2nC2; s2nC3. There are polynomials f ; g such that

DnC1.Qs/ D s2nC2Dn.s/C f .s0; : : : ; s2nC1/; (9.54)

DnC1.EQs/ D s2nC3Dn.Es/C g.s1; : : : ; s2nC2/: (9.55)

Since Hn.s/ � 0 and Hn.Es/ � 0, both determinants in (9.53) are positive. Hence
we can find s2nC2 > 0 such that (9.54) is positive and there exists a c > 0 such that
(9.55) is positive for s2nC3 � c. Then the sequence Qs fulfills (9.52) with n replaced
by n C 1. (Since DnC1.Qs/ > 0, HnC1.Qs/ is positive definite and hence its range is
RnC2.) Therefore, by the existence assertion of Theorem 9.35 proved above, Qs is a
truncated Stieltjes moment sequence. Since s2nC3 � c was arbitrary, we obtain a
family of different measures on RC which have the same moments s0; : : : ; s2nC1:

Now suppose that Dn.s/ D 0. Then, by Theorem 9.32, s has a unique
representing measure on R, so we have uniqueness on RC as well.

Finally, we suppose that Dn.Es/ D 0: Let �1 and �2 be representing measures
for s. We will show that �1 D �2: Define measures �j by d�j D xd�j, j D 1; 2.
Then Es is a truncated Hamburger sequence with representing measures �j. Since
Dn.Es/ D 0; Theorem 9.27 yields �1 D �2. Since d�j D xd�j, this implies that
�1.N/ D �2.N/ for all Borel sets N 	 Rnf0g. We have s0 D �j.f0g/C�j.Rnf0g/,
j D 1; 2. Therefore, since �1.Rnf0g/ D �2.Rnf0g/, we obtain �1.f0g/ D �2.f0g/.
Thus �1 D �2. This completes the proof of the uniqueness assertions. ut
Theorem 9.36 (The Stieltjes Truncated Moment Problem; Even Case) A real
sequence s D .sj/2njD0 is a truncated Stieltjes moment sequence if and only if

Hn.s/ � 0; Hn�1.Es/ � 0; and .snC1; : : : ; s2n/T 2 range .Hn�1.Es//:
(9.56)

In this case s has an rk.s/-atomic representing measure on RC.
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Further, the truncated Stieltjes moment sequence s has a unique representing
measure supported onRC if and only if rk.s/ � n, or equivalently, if Dn.s/ D 0:
Proof First assume that the three conditions (9.56) are fulfilled. Our aim is to apply
Theorem 9.35 to the extended sequence Qs D .sj/2nC1

jD0 for some real number s2nC1:
Since b WD .snC1; : : : ; s2n/T 2 range .Hn�1.Es// by (9.56), there exists a u 2

Rn such that b D Hn�1.Es/u. Put c D s2nC1 WD uTHn�1.Es/u and A WD Hn�1.Es/:
Since Hn�1.Es/ � 0 by (9.56), the block matrix QA in (9.47) is positive semidefinite
by Lemma 9.31(i). But QA is the Hankel matrix Hn.EQs/, where EQs D .s1; : : : ; s2nC1/.
Thus, Hn.EQs/ � 0.

We set w WD .s0; : : : ; sn�1/T and write Hn.s/ as block matrix

Hn.Qs/ D Hn.s/ D

0
BBB@

s0 s1 : : : sn
s1 s2 : : : snC1
:::
:::

: : :
:::

sn snC1 : : : s2n

1
CCCA D

�
w Hn�1.Es/
sn bT

�
:

Applying Hn.Qs/ to the column vector .0; u/T 2 RnC1 we obtain

Hn.Qs/
�
0

u

�
D
�
Hn�1.Es/u
bTu

�
D
�
b
uTHn�1.Es/u

�
D
�
b
s2nC1

�
;

that is, .snC1; : : : ; s2n; s2nC1/T 2 range .Hn.Qs//. Thus, since Hn.Qs/ D Hn.s/ � 0

by (9.56) and Hn.EQs/ � 0 as shown above, Qs satisfies (9.52). Therefore, by
Theorem 9.35, Qs is a truncated Stieltjes moment sequence which has an rk.s/-
atomic representing measure. Hence this holds for s as well.

Conversely, suppose s is a truncated Stieltjes moment sequence. It is obvious that
Hn.s/ � 0 and Hn�1.Es/ � 0, so it remains to show the range condition in (9.56).
We argue as in the proofs of Theorems 9.27 and 9.32. By Corollary 1.25, s has a
finitely atomic representing measure � with atoms in RC. Setting sl D

R
xl d�.x/

for l D 2nC 1; 2nC 2, Qs D .sj/2nC2
jD0 is a truncated Stieltjes moment sequence. Since

the Hankel matrix Hn.EQs/ is a block matrix (9.47) with

A D Hn�1.Es/; b D .snC1; : : : ; s2n/T ; c D s2nC1

and Hn.EQs/ � 0, Lemma 9.31(i) implies that b 2 range .Hn�1.Es//.
It remains to verify the uniqueness assertions. First, suppose that Dn.s/ D 0.

Then the representing measure of s for the even truncated Hamburger problem is
unique by Theorem 9.27, so it is unique for the even Stieltjes case as well.

Now assume that Dn.s/ ¤ 0. As above we set Qs D .sj/
2nC1
jD1 with unknown real

s2nC1. We consider Hn.EQs/ as a block matrix

Hn.EQs/ D
�
Hn�1.s.1// b
bT s2nC1

�
; where b WD .snC1; : : : ; s2n/T :
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Since s is a truncated moment sequence, it has a finitely atomic representing measure
�. Putting s2nC1 D

R
x2nC1 d�, Qs is an odd truncated Stieltjes moment sequence,

so Hn.EQs/ � 0 by Theorem 9.35. From Lemma 9.31(i) we obtain Hn.EQs/ � 0

if s2nC1 is sufficiently large. Fix such a number s2nC1. Then Qs satisfies (9.52).
Indeed, Hn.Qs/ D Hn.s/ � 0, since s is a moment sequence, and range .Hn.Qs// D
RnC1, since Dn.Qs/ D Dn.s/ ¤ 0: Therefore, by Theorem 9.35, Qs is a Stieltjes
moment sequence. The representing measures for Qs are different as s2nC1 varies,
but all of them have the same moments s0; : : : ; s2n. Thus, we have nonuniqueness
if Dn.s/ ¤ 0. ut

9.7 Exercises

1. Determine Hankel rank and minimal polynomial:

a. s D .3; 0; 2; 0; 2; 0; 2/, m D 6.
b. s D .2; 2; 4; 8; 16/, m D 4.
c. Set sj D 1 for j D 0; 1; 2; 3 and sj D 0 for j D 4; : : : ; 2n; where n � 4.

2. Decide whether or not the following sequences are truncated Hamburger moment
sequences:

a. s D .4; 5; 9/, m D 3.
b. s D .2; 0; 2; 0; 5/, m D 4.
c. s D .3; 2; 6; 10; 18; 35/, m D 6.
d. s D .3; 0; 2; 0; 2; 0; 2; 0/, m D 7.

3. Decide whether or not the following sequences are truncated Stieltjes moment
sequences:

a. s D .1; 2; 4; 8; 20/, m D 4.
b. s D .3; 5; 9; 17; 33/, m D 4.
c. s D .3; 2; 2; 2; 2; 3/, m D 5.
d. s D .3; 5; 11; 29/, m D 3.

9.8 Notes

Quadrature formulas of the form (9.9) were discovered by C.F. Gauss (1814) and
studied by K.G.J. Jacobi [Jac] and E.B. Christoffel [Chl]. Our treatment of the
positive definite case in Sect. 9.1 follows N.I. Akhiezer and M.G. Krein [AK, §1].
The representation formula (9.36) for positive semidefinite sequences was proved
by E. Fischer [Fi]. The results for the truncated Hamburger and Stieltjes moment
problems in Sect. 9.6 are due to R. Curto and L. Fialkow [CF1].



Chapter 10
The One-Dimensional Truncated Moment
Problem on a Bounded Interval

Throughout this chapter a and b are fixed real numbers such that a < b and m 2 N.
We consider the truncated moment problem on the interval Œa; b�:

Given a real m-sequence s D .sj/mjD0, when is there a Radon measure � on Œa; b�

such that sj D
R b
a xj d�.x/ for j D 0; : : : ;m?

In this case we say that s is a truncated Œa; b�-moment sequence and � is a
representing measure for s.

In Sect. 10.1 truncated Œa; b�-moment sequences are described in terms of
positivity conditions (Theorems 10.1 and 10.2). If a solution exists, there are always
atomic solutions. The main part of this chapter deals with atomic solutions of “small
size”. In Sect. 10.2 the cone SmC1 of all moment sequences and the index of atomic
representing measures are introduced. Boundary points of SmC1 are characterized
as moment sequences with unique representing measures and of index at most m
(Theorem 10.7). The rest of this chapter is devoted to a detailed study of interior
points of SmC1. In Sects. 10.3, 10.4, and 10.6 representing measures of index
m C 1 and m C 2 are investigated. Each interior point of SmC1 has precisely two
representing measures of index m C 1 (Theorem 10.17) and for each � 2 Œa; b�
a distinguished measure with root � and index at most m C 2 (Corollary 10.13).
The maximal mass of a point among all representing measures is studied in
Sect. 10.5 (Theorem 10.21). In Sect. 10.7 orthogonal polynomials are developed and
a description of the maximal mass in terms of orthonormal polynomials is given
(Theorem 10.29).

10.1 Existence of a Solution

First we collect some notation that will be used throughout this chapter.
Let s D .sj/mjD0 be a real sequence. Recall that Ls is the Riesz functional on RŒx�n

given by Ls.xj/ D sj, j D 0; : : : ; n; and Hk.s/, 2k � m, denotes the Hankel matrix

© Springer International Publishing AG 2017
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Hk.s/ WD .siCj/
k
i; jD0. The shifted sequence Es is Es WD .s1; : : : ; sm/ D .sjC1/m�1

jD0 :
Recall that A � 0 means that the matrix A D AT 2 Mm.R/ is positive semidefinite.

The following notation differs between the two cases m D 2n and m D 2nC 1:

H2n.s/ WD Hn.s/ � .siCj/
n
i; jD0;

H2n.s/ WD Hn�1..b � E/.E � a/s/ � ..aC b/siCjC1 � siCjC2 � absiCj/
n�1
i; jD0;

H2nC1.s/ WD Hn.Es� as/ � .siCjC1 � asiCj/
n
i; jD0;

H2nC1.s/ WD Hn.bs� Es/ � .bsiCj � siCjC1/ni; jD0:

Here the lower index always refers to the highest moment in the corresponding
matrix and the highest moment occurs only in the right lower corner. The upper and
lower bar notation and the lower indices will be seen to be useful later. An advantage
is that they allow us to treat the even and odd cases at once.

Further, we abbreviate the corresponding Hankel determinants by

Dm.s/ WD detHm.s/; Dm.s/ WD detHm.s/: (10.1)

For f D Pk
jD0 ajxj 2 RŒx�k let Ef WD .a0; : : : ; ak/T 2 RkC1 denote the coefficient

vector of f . Then for p; q 2 RŒx�n and f ; g 2 RŒx�n�1 simple computations yield

Ls. pq/ D EpT H2n.s/Eq; Ls..b � x/.a � x/fg/ D Ef T H2n.s/Eg; (10.2)

Ls..x � a/pq/ D EpT H2nC1.s/Eq; Ls..b � x/pq/ D EpT H2nC1.s/Eq: (10.3)

From Proposition 3.3 we restate the formulas (3.8) and (3.9) describing the
positive polynomials Pos.Œa; b�/m on Œa; b� of degree at most m:

Pos.Œa; b�/2n D
˚
f C .b � x/.x � a/g W f 2 ˙2

n ; g 2 ˙2
n�1
�
; (10.4)

Pos.Œa; b�/2nC1 D
˚
.b � x/f C .x � a/g W f ; g 2 ˙2

n

�
: (10.5)

The following two existence theorems rely essentially on these descriptions.

Theorem 10.1 (Truncated Œa; b�-Moment Problem; Even Case m D 2n) For a
real sequence s D .sj/2njD0 the following statements are equivalent:

(i) s is a truncated Œa; b�-moment sequence.
(ii) Ls. p2/ � 0 and Ls..b � x/.x � a/q2/ � 0 for p 2 RŒx�n and q 2 RŒx�n�1.

(iii) H2n.s/ � 0 and H2n.s/ � 0:
Theorem 10.2 (Truncated Œa; b�-Moment Problem; Odd Case m D 2nC 1) For
a real sequence s D .sj/2nC1

jD0 the following are equivalent:

(i) s is a truncated Œa; b�-moment sequence.
(ii) Ls..x � a/p2/ � 0 and Ls..b � x/p2/ � 0 for all p 2 RŒx�n.

(iii) H2nC1.s/ � 0 and H2nC1.s/ � 0:
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Proofs of Theorems 10.1 and 10.2:
(i)$(ii) We apply Proposition 1.9 to the subspace E D RŒx�m of C.Œa; b�IR/.

Then Ls is a truncated Œa; b�-moment functional if and only if Ls. p/ � 0 for all
p 2 EC D Pos.Œa; b�/m: By (10.4) and (10.5) this is equivalent to condition (ii).

(ii)$(iii) follows at once from the identities (10.2) and (10.3). ut
Remark 10.3 Since p2 D .b � a/�1Œ.b � x/p2 C .x � a/p2�, condition (ii) in
Theorem 10.2 implies that Ls. p2/ � 0 for p 2 RnŒx�: ı

By Theorem 1.26, we can have finitely atomic representing measures in Theo-
rems 10.1 and 10.2. In the subsequent sections we study such representing measures.

10.2 The Moment Cone SmC1 and Its Boundary Points

The following notions play a crucial role in this chapter.

Definition 10.4 The moment cone SmC1 and the moment curve cmC1 are defined by

SmC1 D
�
s D .s0; s1; : : : ; sm/ W sj D

Z b

a
t j d�.t/; j D 0; : : : ;m; � 2 MC.Œa; b�/

�
;

cmC1 D fs.t/ WD .1; t; t2; : : : ; tm/ W t 2 Œa; b� g

That is, SmC1 is the set of moment sequences s D .s0; s1; : : : ; sm/ of all Radon
measures on Œa; b�. The curve cmC1 is contained in SmC1, since s.t/ is the moment
sequence of the delta measure ıt.

By a slight abuse of notation we consider SmC1 and cmC1 as subsets of RmC1 by
identifying the row vectors s and s.t/ with the corresponding column vector sT and
s.t/T in RmC1:

We denote by @SmC1 the set of boundary points, by IntSmC1 the set of
interior points of SmC1, and by CmC1 the conic hull of cmC1. Since the polynomials
1; t; : : : ; tm are linearly independent, the points s.t/ 2 CmC1 span RmC1. Hence the
interior of CmC1 is not empty by Proposition A.33(i).

From Theorem 1.26, applied to E D RŒx�m and X D Œa; b�, it follows that each
s 2 SmC1; s ¤ 0, has a k-atomic representing measure

� D
kX

jD1
mjıtj ; (10.6)

where k � mC1 and tj 2 Œa; b� for all j. Since� is k-atomic, the points tj are pairwise
distinct and mj > 0 for all j. The numbers tj are called roots or atoms of � and the
numbers mj are the weights of �. We can assume without loss of generality that

a � t1 < t2 < � � � < tk � b: (10.7)
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That the measure � in (10.6) is a representing measure of s means that

s D
kX

jD1
mjs.tj/:

Thus s belongs to the conic hull of the moment curve cmC1. Hence SmC1 D CmC1.
By Theorem 1.26(ii), the set of functionals Ls, where s 2 SmC1, is closed in the dual
space E�. This implies that CmC1 is closed in RmC1: We state these results.

Proposition 10.5 The moment cone SmC1 is a closed convex cone in RmC1 with
nonempty interior. It is the conic hull CmC1 of the moment curve cmC1.

By Definition A.38, a convex subset B of a cone C is a base of C if for each
u 2 C, u ¤ 0, there exists a unique � > 0 such that �u 2 B. It is easily seen that

Sm D f.1; s1; : : : ; sm/ 2 SmC1g

is a base of the cone SmC1: It is just the set of moment sequences of all probability
measures on Œa; b�.

Clearly, jsjj D j
R b
a t jd�j � b � a for s 2 Sm. Hence Sm is bounded in RmC1.

Obviously, Sm is a closed subset of the closed cone SmC1. Therefore, the set Sm is a
convex compact base of the moment cone SmC1.

Definition 10.6 Let s 2 SmC1; s ¤ 0. The index ind.�/ of the k-atomic
representing measure (10.6) for s is the sum

ind.�/ WD
kX

jD1
�.tj/; where �.t/ WD 2 for t 2 .a; b/ and �.a/ D �.b/ WD 1:

The index ind.s/ of s is the minimal index of all representing measures (10.6) for s.

The reason why boundary points and interior points are counted differently lies in
the following fact, which enters into many proofs given in this chapter: If t0 2 Œa; b�
is a zero with multiplicity k of a polynomial p 2 Pos.Œa; b�/m, then we have k � 2
if t0 2 .a; b/, while k D 1 is possible if t0 D a or t0 D b.

Let us recall some further notions. For s 2 SmC1 let Ms denote the set of all
representing measures for s, that is, Ms is the set of � 2 MC.Œa; b�/ such that

sj D
Z b

a
t j d�.t/ for j D 0; : : : ;m:

If the set Ms is a singleton, then s is called Œa; b�-determinate.
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The following theorem brings a number of important properties together.

Theorem 10.7 For s 2 SmC1, s ¤ 0, the following statements are equivalent:
(i) s is a boundary point of the convex cone SmC1.

(ii) ind.s/ � m.
(iii) There exists a p 2 Pos.Œa; b�/m, p ¤ 0, such that Ls. p/ D 0.
(iv) Dm.s/ D 0 or Dm.s/ D 0:
(v) s is Œa; b�-determinate, that is, Ms is a singleton.

If p is as in (iii), then supp� 	 Z. p/ for the unique measure � 2Ms.

Proof Let fe0; : : : ; emg denote the canonical vector space basis of RmC1.
(i)!(iii) Let � 2 Ms. Since s is a boundary point of the cone SmC1, there is a

supporting hyperplane of SmC1 at s (by Proposition A.34(ii)), that is, there exists a
linear functional F ¤ 0 on RmC1 such that F.s/ D 0 and F � 0 on SmC1. Then
p.t/ D F.s.t// is a polynomial in t of degree at most m. From s.t/ 2 SmC1 we get
p 2 Pos.Œa; b�/. Since f ¤ 0, p is not the zero polynomial. Then

Ls. p/ D L.F.s.t// D
Z b

a
F.s.t//d�.t/ D

Z b

a
.F.e0/C � � � C F.em/t

m/d�.t/

D F.e0/s0 C � � � C F.em/sm D F.s/ D 0:

This proves (iii).
(iii)!(i) Let p.t/ D Pm

jD0 ajt j be a polynomial as in (iii). Define a linear
functional F on RmC1 by F.ej/ D aj, j D 0; : : : ;m. Reversing the preceding
reasoning, we get F.s/ D Ls. p/ D 0. Since p is not the zero polynomial, F ¤ 0.
Further, F.s.t// D p.t/ � 0 on Œa; b�, since p 2 Pos.Œa; b�/. Therefore, F � 0

on cmC1 and hence on its conic convex hull CmC1 D SmC1: Thus F is a supporting
functional to SmC1 at s. Hence s is a boundary point of SmC1 by Proposition A.34(ii).

(ii)!(iii) Assume that ind.s/ � m: Let p denote the product of quadratic factors
.t� tj/2 for all tj 2 .a; b/ and linear factors .b� t/ and .t � a/ provided that the end
points b or a are among the points tj, respectively. Clearly, then p 2 Pos.Œa; b�/ and
deg. p/ DPj �.tj/ D ind.s/ � m.

(iii)!(ii) Let p be a polynomial as in (iii). We choose a representing measure
(10.6) for which ind .s/ D ind .�/. Since Ls. p/ D 0, Proposition 1.23 yields
ft1; : : : ; tkg D supp� 	 Z. p/, that is, p.tj/ D 0 for j D 1; : : : ; k. Each root tj 2
.a; b/ has even multiplicity. (Otherwise p.t/ would change sign at tj. Since p.t/ � 0
on Œa; b�, this is impossible.) The only roots of multiplicity 1 are possibly the end
points a and b. Therefore, counting the roots tj with multiplicities and adding the
number �.tj/ we obtain ind.s/ DPj �.tj/ � deg. p/ � m:

(iii)$(iv) We carry out the proof in the even case m D 2n. The proof in the odd
case is similar; instead of (10.2) and (10.4) we use (10.3) and (10.5).
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Let f .x/ D Pn
iD0 aixi 2 RŒx�n and g.x/ D Pn�1

jD0 bjxj 2 RŒx�n�1. As above we

set Ef D .a0; : : : ; an/T 2 RnC1 and Eg D .b0; : : : ; bn�1/T 2 Rn. The Hankel matrices
H2n.s/ and H2n.s/ are positive semidefinite by Theorem 10.1. Therefore, by (10.2),

Ls. f
2/ DEf TH2n.s/Ef D kH2n.s/

1=2Ef k2; (10.8)

Ls..b � x/.x � a/g2/ D EqTH2n.s/Eg D kH2n.s/
1=2Egk2; (10.9)

where k � k denotes the Euclidean norm of Rd. By (10.4), Pos.Œa; b�/2n consists
of sums of polynomials of the form p D f 2 C .b � x/.x � a/g2. Clearly, for such a
polynomial p we have Ls. p/ D 0 if and only if Ls. f 2/ D 0 and Ls..b�x/.x�a/g2/ D
0: Therefore, by (10.8) and (10.9), Ls. p/ D 0 for p 2 Pos.Œa; b�/2n implies p D 0

if and only if both matrices H2n.s/ and H2n.s/ are regular, that is, D2n.s/ ¤ 0 and
D2n.s/ ¤ 0. Hence (iii) holds if and only if D2n.s/ D 0 or D2n.s/ D 0.

(iii)!(v) Let � 2 Ms. By Proposition 1.23, supp � 	 Z. p/. In particular,
this proves the last assertion. Let Z. p/ D fx1; : : : ; xrg. Then � D Pr

iD1 niıxi for
some numbers ni � 0. Since r � deg. p/ � m, there exist Lagrange interpolation
polynomials pj 2 RŒx�m such that pj.xi/ D ıij, i; j D 1; : : : ; r. Then

Ls. pj/ D
Z b

a
pj d� D

rX
iD1

nipj.xi/ D nj; j D 1; : : : ; r:

This shows that � is uniquely determined by s and p.
(v)!(i) If s is not in @SnC1, then s 2 IntSmC1; hence s has infinitely many

representing measures by Proposition 10.9 below. ut
We briefly discuss the preceding theorem. Let s be a boundary point of SmC1.

Then s has a unique representing measure � 2 MC.Œa; b�/: This measure � has the
form (10.6) and ind .�/ D ind.s/ � m. If all tj are in the open interval .a; b/, then
k � m

2
. If precisely one tj is an end point, then k � mC1

2
and if both end points are

among the tj, then k � m
2
C 1. The case k D m

2
C 1 can only happen if m is even and

both a and b are among the tj. Thus, all boundary points of SmC1 can be represented
by k-atomic measures with k � m

2
C 1:

10.3 Interior Points of SmC1 and Interlacing Properties
of Roots

The following result is often used in the sequel. Condition (ii) and (iii) therein should
be compared with conditions (ii) and (iii) in Theorems 10.1 and 10.2.
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Theorem 10.8 For a sequence s 2 SmC1 the following are equivalent:

(i) s is an interior point of SmC1.
(ii) The Hankel matrices Hm.s/ and Hm.s/ are positive definite.

(iii) m D 2n W
Ls. p2/ > 0 and Ls..b� x/.x� a/q2/ > 0 for p 2 RŒx�n, q 2 RŒx�n�1; p; q¤0:
m D 2nC 1 W
Ls..x � a/p2/ > 0 and Ls..b � x/p2/ > 0 for all p 2 RŒx�n; p ¤ 0.

(iv) Dm.s/ > 0 and Dm.s/ > 0:
(v) D0.s/ > 0;D0.s/ > 0;D1.s/ > 0;D1.s/ > 0; : : : ;Dm.s/ > 0;Dm.s/ > 0.

Proof (i)$(iv) is only a restatement of Theorem 10.7 (i)$(iv). The equivalence
(ii)$(iv) is a well-known fact from linear algebra. The equivalence of (iii) and
(iv) follows from formulas (10.2) and (10.3). (v)!(iv) is trivial. Obviously, s 2
IntSmC1 implies that s. j/ WD .s0; : : : ; sj/ 2 IntSjC1 for j D 0; : : : ;m. Therefore,
(i)!(v) follows by applying the implication (i)!(ii) to the sequences s. j/. ut
Proposition 10.9 Let s 2 IntSmC1. For each � 2 Œa; b� there exists a representing
measure �� of s with � as an atom which has index mC 1 or mC 2 if � 2 .a; b/ and
index mC 1 if � D a or � D b.

Proof Clearly, c.�/ is a boundary point, because ind.c.�// � 1. The line through
the two different points s and c.�/ of SmC1 intersects the boundary of SmC1 in a
second point s0. Then s D �s0 C .1 � �/c.�/ for some � 2 .a; b/. The unique
representing measure �0 of s0 satisfies ind.�0/ � m by Theorem 10.7. It is clear
that � D ��0 C .1� �/ı� is a representing measure of s. Its index is at most mC 2
if � 2 .a; b/ and at most m C 1 if � D a or � D b. We have ind.s/ > m, since
otherwise s would be a boundary point by Theorem 10.7. ut
Definition 10.10 A representing measure � of s 2 IntSmC1 is called canonical
if � is of the form (10.6) and ind .�/ � mC 2.

Each representing measure �� from Proposition 10.9 is canonical.
The following two propositions are useful for deriving interlacing properties of

roots for different canonical measures of the same moment sequence s 2 IntSmC1:

Proposition 10.11 Suppose that � is a canonical representing measure of s 2
IntSmC1 with roots t1 < t2 < � � � < tk and weights m1; : : : ;mk. Let Q� be a
representing measure of s such that Q� ¤ �. Then we have:

(i) supp Q�\ .tj; tjC1/ ¤ ; for tj; tjC1 2 .a; b/.
(ii) If ind .�/ D mC 1, then supp Q� \ .tj; tjC1/ ¤ ; for all tj; tjC1 2 Œa; b�.

(iii) If t1 D a, then supp Q�\ Œt1; t2/ ¤ ;:
(iv) If tk D b, then supp Q� \ .tk�1; tk� ¤ ;:
Proof

(i) The proof is a modification of the proof of Theorem 10.7 (iii)!(iv).
Fix tj; tjC1 2 .a; b/. Let p.t/ denote the product of .t�tjC1/.t�tj/; all factors

.t�ti/2 with ti 2 .a; b/; ti ¤ tj; tjC1, and possibly .t�a/ resp. .b�t/ if a resp. b
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are among the roots. Then p.tj/ D 0 for all j. Since ind.�/ � mC 2, we have
deg. p/ � m: (Note that each of the two interior roots tj; tjC1 is counted with 2
in the definition of ind .s/, but it appears only with degree 1 in p.) Hence the
functional Ls applies to p and we obtain

Ls. p/ D
Z b

a
p d� D

kX
jD1

mjp.tj/ D 0:

Assume to the contrary that supp Q� \ .tj; tjC1/ D ;: By the definition of p
we have p.t/ � 0 on Mj WD Œ0; tj� [ ŒtjC1; 1�. Therefore, since 0 D Ls. p/ DR
Mj
p d Q�, Proposition 1.23 implies that supp Q� 	 Z. p/ D ft1; : : : ; tkg. Thus,

Q� D Pk
iD1 niıti for some numbers ni � 0: Since ind .�/ � m C 2 by

assumption, we have k � m
2
C 2 and hence k � mC 1, because k is an integer

and m � 1. Hence there exist interpolation polynomials pj of degree deg. pj/ �
m satisfying pj.xi/ D ıij, i; j D 1; : : : ; k. Finally, Ls. pj/ D

R
pj d Q� D nj and

Ls. pj/ D
R
pj d� D mj imply that nj D mj for all j. Thus � D Q�; which is the

desired contradiction.
(ii) In the case ind .�/ D m C 1 the preceding reasoning also works for the

end points among the roots. We illustrate this for t1 D a. Let p.t/ denote the
product of .t � a/.t � t2/, all factors .t � ti/2 with ti 2 .a; b/; ti ¤ tj; tjC1, and
.b � t/ if b is a root. Then deg. p/ D m, because ind .�/ D m C 1. Since
p.tj/ D 0 for all j and p.t/ � 0 on Œt2; b�, we can proceed as above and derive
that supp Q� \ .t1; t2/ ¤ ;:

(iii) Assume to the contrary that supp Q� \ Œa; t2/ D ;:
First we note that t2 ¤ b. Indeed, otherwise Q� has support fbg and hence

ind. Q�/ D 1 which contradicts the assumption s 2 IntSmC1.
Let q be the product of factors .t�t2/, .t�ti/2 if i � 3 and ti ¤ b, and .tk�t/

if tk D b. Since t1 D a, t2 < b, and ind .�/ � mC2, we have deg.q/ � m. The
polynomial q vanishes exactly at t2; : : : ; tk. Hence Ls.q/ D

R b
a q d� D m1q.a/.

By construction, q � 0 on Œt2; b� and therefore Ls.q/ D
R b
a q d Q� D R b

t2
q d Q� �

0. But q.a/ < 0; so we obtain a contradiction.
(iv) follows in a similar manner as (iii). ut
Proposition 10.12 Let � and �0 be two different canonical representing measures
of s 2 IntSmC1 with roots t1 < t2 < � � � < tk and t01 < t02 < � � � < t0l and weights
mi and m0

j, respectively.

(i) The roots ti and t0j contained in .a; b/ strictly interlace.
(ii) Suppose that t1 D t01 D a. Then m1 ¤ m0

1. Further, m
0
1 > m1 if and only if

t02 > t2:
(iii) If tk D t0l D b, then mk ¤ m0

l and we have m0
l > mk if and only if tl�1 > t0k�1:
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Proof

(i) By assumption � and �0 have index mC 1 or mC 2. Considering the even and
the odd case separately we see that the numbers of their roots in .a; b/ differ
by at most one. By Proposition 10.11 (i) and (iii), the smallest inner roots of
� and �0 are different. Therefore it follows from Proposition 10.11(i) that the
inner roots of � and �0 strictly interlace.

(ii) The crucial step of the proof is to show that t02 > t2 implies m0
1 > m1: Let q be

the polynomial defined in the proof of Proposition 10.11(iii). Let us recall that
deg.q/ � m, q � 0 on Œt2; b� and q vanishes exactly at the roots t2; : : : ; tk. The
root t02 cannot be equal to all roots ti; i � 3. (This would imply that t02 D t3 D b
and k D 3, so ind.�0/ D 2 and ind.�/ D 4, which is impossible.) Therefore,R b
t2
q d�0 > 0 and

m1q.a/ D
Z b

a
q d� D Ls.q/ D

Z b

a
q d�0 D m0

1q.a/C
Z b

t2

q d�0 > m0
1q.a/:

Since q.a/ < 0, the latter yields m0
1 > m1.

By interchanging the role of � and �0 it follows that t2 > t02 implies m1 >
m0
1:

Finally, we show that m1 ¤ m0
1: Assume to the contrary that m1 D m0

1: Then
we have t2 D t02 by the preceding. Since inner roots strictly interlace by (i), this
can only happen if t2 D t02 D b: But since � and �0 have the same total mass
s0 and m1 D m0

1; it follows that � D �0. This contradicts our assumption.
(iii) is proved in a similar manner as (ii). ut
Corollary 10.13 Let s 2 IntSnC1. For each � 2 .a; b/ there exists a unique
canonical representing measure �� of s with atom �.

Proof The existence has been already stated in Proposition 10.9, so it remains
to verify the uniqueness. If there were two different such measures, their roots
contained in .a; b/ would strictly interlace by Proposition 10.12(i). Since both
measures have the same root � 2 .a; b/, this is impossible. ut

10.4 Principal Measures of Interior Points of SmC1

Now we turn to the minimal possible index m C 1 for interior points of SmC1.
Throughout this section we suppose that s 2 IntSmC1.

Definition 10.14 A representing measure � of the form (10.6) for s is called

� principal if ind .�/ D mC 1,
� upper principal if it is principal and b is an atom of �,
� lower principal if it is principal and b is not an atom of �.
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That is, for principal measures the index is equal to the number of prescribed
moments. The representing measures constructed in the proof of Proposition 10.9
for � D 0 and for � D 1 are principal. We will return to these measures later.

Given a fixed sequence s D .s0; : : : ; sm/ 2 SmC1 we define

sC
mC1 D sup

�2Ms

Z b

a
xmC1 d�.x/ D sup

.s0;:::;sm;smC1/2SmC1

smC1 (10.10)

s�
mC1 D inf

�2Ms

Z b

a
xmC1 d�.x/ inf

.s0;:::;sm;smC1/2SmC1

smC1: (10.11)

Since Ms is weakly compact (by Theorem 1.19) and
R 1
0
xmC1 d� is a continuous

function on the compact space Ms, the supremum in (10.10) and the infimum
in (10.11) are attained. Thus, sC

mC1 is the maximum and s�
mC1 is the minimum of

the moment smC1 over the set Ms of all measures which have the given moments
s0; : : : ; sm: These extremal values sC

mC1 and s�
mC1 play a crucial role in our approach

to the principal measures �˙, but they are also of interest in themselves.
Let s˙ denote the sequence .s0; : : : ; sm; sṁC1/ 2 SmC2. Since sC

mC1 is a maximum
and s�

mC1 is a minimum, sC and s� are not in IntSmC2. Hence s˙ belongs to the
boundary of SmC2, so by Theorem 10.7 it has a unique representing measure �˙ of
index ind .�˙/ � m C 1: Obviously, �C and �� are also representing measure
for the sequence s. Since s 2 IntSmC1, ind .s/ > m by Theorem 10.7. Hence
ind .�˙/ D mC 1, that is, �C and �� are principal representing measures for s:

The next proposition characterize the numbers sṁC1 in terms of determinants of
Hankel matrices.

Proposition 10.15 Let Qs D .s0; : : : ; sm; smC1/ 2 SmC2: Then sC
mC1 and s�

mC1 are
the unique numbers smC1 satisfying DmC1.Qs/ D 0 and DmC1.Qs/ D 0, respectively.
Further, we have sC

mC1 > s�
mC1 and

DmC1.sC/ D 0; DmC1.sC/ > 0; DmC1.s�/ D 0; DmC1.s�/ > 0: (10.12)

Proof We develop DmC1.Qs/ and DmC1.Qs/ by the last row and obtain

DmC1.Qs/ D smC1Dm�1.s/C cC; DmC1.Qs/ D �smC1Dm�1.s/C c� (10.13)

for some numbers c˙ depending only on the given moments s0; : : : ; sm.
We prove that s�

mC1 is the unique number smC1 for which DmC1.Qs/ D 0. Since s 2
IntSmC1, we have Dm�1.s/ > 0 by Theorem 10.7 (i)$(iv). Therefore, by (10.13),
DmC1.Qs/ is a strictly increasing function of smC1. Let us take some Qs 2 IntSmC2.
Then DmC1.Qs/ > 0 and DmC1.Qs/ > 0 by Theorem 10.8. Now we decrease smC1
untill s�

mC1 to obtain DmC1.Qs/ D 0. Then DmC1.Qs/ increases by (10.13) and remains
positive. Hence s�

mC1 is the lower bound of the numbers smC1 for which DmC1.Qs/ �
0. Since Hm.s/ is positive definite because s 2 IntSmC1, s�

mC1 is also the lower
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bound of the numbers smC1 such that HmC1.Qs/ � 0, or equivalently, Qs 2 SmC2.
Thus, s�

mC1 is the number defined by (10.11).
Similarly it follows that the number sC

mC1 from (10.10) is uniquely determined
by the equation DmC1.Qs/ D 0: Moreover, the proof shows that sC

mC1 > s�
mC1: ut

Before we continue we note an interesting by-product of the preceding.

Corollary 10.16 Let s D .s0; : : : ; sm/ 2 IntSmC1 and let smC1 be a real number.
Then Qs D .s0; : : : ; sm; smC1/ 2 SmC2 if and only if sC

mC1 � smC1 � s�
mC1.

Proof The only if part is clear from the definition of sṁC1. Conversely, suppose that
sC
mC1 � smC1 � s�

mC1. Then smC1 D �sC
mC1 C .1 � �/s�

mC1 for some � 2 Œ0; 1�.
Therefore, ��CC .1� �/�� is a representing measure for Qs, so that Qs 2 SmC2. ut

Next we show that the two measures �˙ defined above are the only prinicipal
representing measures of s. Let � be an arbitrary principal measure for s. Clearly,
Qs WD .s0; : : : ; sm; smC1/ 2 SmC2, where smC1 WD

R b
a xmC1 d�. Since ind .�/ D

m C 1, DmC1.Qs/ D 0 or DmC1.Qs/ D 0 by Theorem 10.7 (ii)!(iv). Hence, by
Proposition 10.15, smC1 D s�

mC1 or smC1 D sC
mC2, which implies that Qs D s� or

Qs D s�: Since �˙ is the unique representing measure of s˙, we conclude that
� D �� or � D �C.

We denote by tj̇ the roots and bymj̇ the weights of�˙ and assume that the roots

are ordered as in (10.7). Since ind .�˙/ D mC1, it follows from Proposition 10.11
that the roots of �C and�� are strictly interlacing. To describe their location further
we distinguish between the even and odd cases.

Case m D 2n:
Since both measures �˙ have index 2n C 1, they have exactly n roots contained
in .a; b/ and one end point a or b as root. Let f .x/ D Pn

iD0 aixi 2 RŒx�n. Setting
Ef D .a0; : : : ; an/T 2 RnC1 and using (10.3) we compute

Ef T HmC1.sC/Ef D LsC..b � x/f 2/ D
Z b

a
.b � x/f .x/2 d�C D

nC1X
jD1

mC
j .b � tCj /f .t

C
j /

2:

Since DmC1.sC/ D 0, the Hankel matrix HmC1.sC/ has a nontrivial kernel. Hence
there exists an f ¤ 0 such that LsC..b� x/f 2/ D 0, that is, .b� tCj /f .tCj / D 0 for all
j D 1; : : : ; nC 1. Since there are nC 1 roots and deg. f / � n, this is only possible
if tCnC1 D b. A similar reasoning using HmC1.s�/ instead of HmC1.sC/ shows that
t�1 D a. Thus, �C is upper principal and �� is lower principal.

Since s has only two principal measures, we conclude that �C and �� are the
principal representing measures �� from Proposition 10.9 for � D b and � D a; that
is, �C D �b and �� D �a:

Case m D 2nC 1:
Since ind .�˙/ D 2n C 2, �˙ has either n C 1 inner roots or n inner roots and
both end points as roots. Thus �C has k � nC 1 roots. Let f 2 RŒx�n: Using (10.2)
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we derive

Ef T HmC1.sC/Ef D LsC..b � x/.x � a/f 2/ D
kX

jD1
mC

j .b � tCj /.t
C
j � a/f .tCj /

2:

As in the even case, HmC1.sC/ has a nontrivial kernel, so there is a polynomial
f ¤ 0 such that LsC..b � x/.x � a/f 2/ D 0. Then .b � tCj /.t

C
j � a/f .tCj / D 0 for

j D 1; : : : ; k. Since k � nC1 and deg. f / � n, one root of �C must be an end point.
Therefore, since ind .�C/ D 2nC 2, it follows that tC1 D a, tCnC2 D b, k D nC 2.

By Proposition 10.11, the roots of �C and �� strictly interlace. Therefore, tCj <

t�j and t�i < tCiC1. Hence �C has both end points as roots, while �� has only inner
roots. As in the even case, �C is upper principal and �� is lower principal.

In contrast to the even case, �C is equal to both principal measures �� from
Proposition 10.9 for � D b; a; that is, �C D �b D �a: The second principal
measure �� has only inner roots and it is not obtained from Proposition 10.9.

We illustrate the location of roots tj̇ of the principal measures �˙ in the even
and odd cases by the following scheme:

m D 2n; �C W a < tC1 < tC2 < � � � < tCnC1 D b; (10.14)

m D 2n; �� W a D t�1 < t�2 < � � � < t�nC1 < b; (10.15)

m D 2nC 1; �C W a D tC1 < tC2 < � � � < tCnC1 < tCnC2 D b; (10.16)

m D 2nC 1; �� W a < t�1 < t�2 < � � � < t�nC1 < b: (10.17)

Further, from Proposition 10.12 we obtain

m D 2n W a D t�1 < tC1 < t�2 < tC2 < � � � < tCn < t�nC1 < tCnC1 D b;

(10.18)

m D 2nC 1 W a D tC1 < t�1 < tC2 < t�2 < � � � < tCnC1 < t�nC1 < tCnC2 D b:

(10.19)

The following theorem summarizes some of the preceding results.

Theorem 10.17 Let s be an interior point of SmC1. Then �C is the unique upper
principal representing measure and �� is the unique lower princical representing
measure for s. The roots of �C and �� are stricly interlacing.

Now we define a distinguished canonical representing measure �� and a related
polynomial q� 2 Pos.Œa; b�/ for each � 2 Œa; b�. Both will play a crucial role in the
next sections.

Definition 10.18 Let s 2 IntSmC1. For � 2 .a; b/, �� is the unique canonical
measure of s which has � as a root (see Corollary 10.13). For � D a or � D b, �� is
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the unique principal measure of s which has � as a root, that is, �a D ��; �b D �C
for m D 2n and �a D �b D �C for m D 2nC 1.

If � 2 .a; b/ is root of a principal measure �˙, then �� D �˙ has index mC 1.
Note that �a resp. �b is the only principal measure with root a resp. b, but there are
many canonical measures with root a resp. b, see Theorems 10.25 and 10.26 below.

Definition 10.19 For � 2 Œa; b� let the polynomial q�.x/ be the product of factors
.x � tj/2 for all roots tj 2 .a; b/, tj ¤ �, of the measure �� and .x � a/ resp. .b � x/
if a resp. b is a root of �� .

Lemma 10.20 Let � 2 Œa; b� and let �; t1; : : : ; tk denote the roots of �� . Then, up to
a constant positive factor, q� is the unique polynomial q 2 Pos.Œa; b�/ such that

q.�/ > 0; deg.q/C �.�/ � ind.��/ and q.tj/ D 0 for j D 1; : : : ; k: (10.20)

Proof From its definition it is clear that q� has these properties. Since in Defini-
tion 10.19 no factor was taken for the root �, we even have deg.q�/ C �.�/ D
ind.��/.

Let Qq be another such polynomial. Since Qq 2 Pos.Œa; b�/; its zeros in .a; b/ have
even multiplicities. Hence we conclude that deg.q�/ � deg.Qq/: But

deg.Qq/C �.�/ � ind.��/ D deg.q�/C �.�/

by (10.20) implies that deg.Qq/ � deg.q�/. Thus deg.Qq/ D deg.q�/. Since Qq.�/ > 0

and q�.�/ > 0, it follows that Qq is a positive multiple of q� . ut

10.5 Maximal Masses and Canonical Measures

Let s 2 SmC1 and � 2 Œa; b�. Then we define

	s.�/ D sup f�.f�g/ W � 2Msg; (10.21)

that is, 	s.�/ is the supremum of masses at � of all representing measures of s. We
will say that a measure � 2Ms has maximal mass at � if �.f�g/ D 	s.�/.

Further, we need the following number


s.�/ WD inf fLs. p/ W p 2 Pos.Œa; b�/m; p.�/ D 1 g (10.22)

D inf

�
Ls.q/

q.�/
W q 2 Pos.Œa; b�/m

�
; (10.23)

where c
0
WD C1 for c � 0. The equality in (10.23) is easily verified.
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For arbitrary � 2Ms and p 2 Pos.Œa; b�/m, p.�/ D 1; we obviously have

Ls. p/ D
Z b

a
p d� � �.f�g/p.�/ D �.f�g/:

Taking the infimum over p and the supremum over �, we derive


s.�/ � 	s.�/: (10.24)

Theorem 10.21 Suppose that s 2 IntSmC1. Let � 2 Œa; b�.
Then the supremum in (10.22) and the infimum in (10.23) are attained and

	s.�/ D 
s.�/ > 0:

The measure �� from Definition 10.19 is the unique representing measure of s
which has maximal mass 	s.�/ at �.

The infimum in (10.23) is attained at the polynomial q� from Definition 10.19. If
� is not an inner root of a principal measure of s, then q� is up to a positive multiple
the only polynomial p 2 Pos.Œa; b�/m for which the infimum in (10.23) is attained.

Proof We denote the roots and masses of �� by t0 D �; t1; : : : ; tk and m0; : : : ;mk.
For the polynomial q� from Definition 10.19 we have deg.q�/ � ind .��/��.�/ D
m by (10.20), so Ls applies to q� and we get

Ls.q�/ D
Z b

a
q� d�� D

kX
jD0

mjq�.tj/ D m0q�.�/:

Therefore, since q� 2 Pos.Œa; b�/m, we obtain

	s.�/ � m0 D Ls.q�/

q�.�/
� inf

�
Ls.q/

q.�/
W q 2 Pos.Œa; b�/m

�
D 
s.�/:

Combined with (10.24) we conclude that we have equality throughout, that is,

��.f�g/ D m0 D 	s.�/ D Ls.q�/

q�.�/
D 
s.�/: (10.25)

The first equalities of (10.25) mean that the measure �� has maximal mass at �. The
last equality of (10.25) says that the infimum in (10.23) is attained at q� .

Let � be an arbitrary representing measure for s which has maximal mass 	s.�/
at �. Then � WD � � 	s.�/ı� is a positive measure satisfying

Z b

a
q�d� D

Z b

a
q�d� � 	s.�/q�.�/ D Ls.q�/� 	s.�/q�.�/ D 0 (10.26)
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by (10.25). Since q� 2 Pos.Œa; b�/m, (10.26) implies that supp� 	 Z.q�/ by
Proposition 1.23. Hence supp � 	 f�g [ Z.q�/. Therefore, � is atomic and all
atoms of � are roots of �� . Thus ind.�/ � ind.��/ and � has � as an atom, since
�.f�g/ D 	s.�/ > 0. If � 2 .a; b/, then �� is canonical, hence is �, and therefore
� D �� by Corollary 10.13. If � D a or � D b, then �� , hence �, is principal. Since
there is only one principal measure with root at a given endpoint, we obtain � D ��
in this case as well.

Now let q 2 Pos.Œa; b�/m be another polynomial for which the infimum 
s.�/ in
(10.23) is attained, so that 
s.�/q.�/ D Ls.q/ and q.�/ > 0. Then, by (10.25),

m0q.�/ D 
s.�/q.�/ D Ls.q/ D
kX

jD0
mjq.tj/ D m0q.�/C

kX
jD1

mjq.tj/:

Since q 2 Pos.Œa; b�/m and mj > 0, we conclude that q.tj/ D 0 for j D 1; : : : ; k.
Suppose that � is not an inner root of a principal measure for s. Then we have

ind.��/ D mC 2 if � 2 .a; b/ and ind.��/ D mC 1 if � D a or � D b. In both
cases, m D ind.��/ � �.�/, so that deg.q/ C �.�/ � ind .��/. Thus q satisfies
(10.20). Hence q is a positive constant multiple of q� by Lemma 10.20. ut
Remark 10.22

1. The preceding proof shows that for a polynomial q 2 Pos.Œa; b�/m the infimum in
(10.23) is attained if and only if q.tj/ D 0 for all roots tj ¤ � of �� and q.�/ > 0.
Let � be an inner root of a principal measure of s. Then deg.q�/ D m� 1 and the
infimum in (10.23) is attained at q 2 Pos.Œa; b�/m if and only if q D fq� for some
constant or linear polynomial f 2 Pos.Œa; b�/.

2. Let s be a boundary point of SmC1. Then s has a unique representating measure
� by Theorem 10.7, so 	s.�/ is the corresponding weight if � is a root of � and
	s.�/ D 0 if � is not a root of �. ı
We derive two important consequences of the preceding theorem.

Corollary 10.23 Let � be a canonical representing measure of s 2 IntSmC1 with
roots tj; j D 1; : : : ; k: Then � has maximal mass at each root tj contained in .a; b/.
If � is principal, � has maximal mass at all roots.

Proof If � is canonical and tj 2 .a; b/ is a root of �, then �tj D � by
Corollary 10.13 and Definition 10.18. If � is principal and if tj D a or tj D b,
then also �tj D � by Definition 10.18. In both cases � has maximal mass at tj by
Theorem 10.21. ut
Corollary 10.24 For each s 2 SmC1; s ¤ 0; there is a representing measure � of s
such that ind .�/ � mC 1 and � has maximal mass at each root.

Proof First let s 2 @SmC1. Then, by Theorem 10.7, ind.�/ � m and s is Œa; b�-
determinate, so � obviously has maximal mass at all its roots. If s 2 IntSmC1,
each principal measure has the desired properties by Corollary 10.23. ut
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The following two theorems deal with canonical measures having prescribed
masses at the end points. Because of the different behaviour of principal measures
at end points we distinguish between the even and odd cases.

Theorem 10.25 (Odd case m D 2nC 1) Suppose that � and � 0 are numbers such
that 0 < � < 	s.a/ and 0 < � 0 < 	s.b/. Then there exist unique canonical measures
�a.�/ and �b.� 0/ for s which have masses � and � 0 at a and b, respectively.

Let a D ta1.�/ < ta2.�/ < � � � < tak.�/ and tb1.�
0/ < tb2.�

0/ < � � � < tbl .�
0/D b

denote the roots of �.�/ and �.� 0/, respectively. Each root tj.�/ is a strictly
increasing continuous function of � on the interval .0; 	s.a//, while tj.� 0/ is a strictly
decreasing continuous function of � 0 on .0; 	s.b//. Further, k D l D nC 2 and

t�j�1 D lim
�!C0 t

a
j .�/; tCj D lim

�!	s.a/�0
taj .�/; j D 2; : : : ; nC 2;

a D tC1 D ta1.�/ <t
�
1 < ta2.�/ < tC2 < t�2 < � � � < t�nC1 < tanC2.�/ < tCnC2 D b;

tCj D lim
� 0!C0 t

b
j .�

0/; t�j D lim
� 0!	s.b/�0

tbj .�
0/; j D 1; : : : ; nC 1;

a D tC1 < tb1.�
0/ < t�1 < tC2 < � � � < tCnC1 < tbnC1.� 0/ < t�nC1 < tbnC2.� 0/ D tCnC2 D b:

Proof We carry out the proof for the end point a and define a sequence r.�/ WD
.sj � �a j/mjD0. Since �C has the root a by (10.16) and maximal mass at tC1 D a by
Corollary 10.23,�C��ıa is a positive measure. Obviously, its moments are sj��aj,
so r.�/ is a moment sequence and

Lr.�/. p/ D Ls. p/� �p.a/ D .	s.a/� �/p.a/C
nC2X
jD2

mjp.t
C
j /; p 2 RŒx�m:

Since 	s.a/�� > 0, Lr.�/. p/ D 0 implies that p.tCj / D 0 for all j D 1; : : : ; nC2, that
is, Lr.�/. p/ D 0 is equivalent to Ls. p/ D 0. Hence, by Theorem 10.8, s 2 IntSmC1
implies that r.�/ 2 IntSmC1. Thus, r.�/ has a lower principal measure�.�/� with
roots tj.�/ written as a < t2.�/ < � � � < tnC2.�/ < b: Then �.�/ WD �.�/� C �ıa is
a canonical representing measure of s with roots

a D t1.�/ < t2.�/ < � � � < tnC2.�/ < b:

Since t1.�/ D tC1 D a and � < 	s.a/ D �C.fag/, Proposition 10.12(ii) applies and
yields t2.�/ < tC2 : Applying Proposition 10.12(i) by using this fact we obtain the
interlacing inequalities stated in the theorem.

Suppose that Q�.�/ is an arbitrary canonical measure for s with mass � at a. Then
Q�.�/ � �ıa is a lower principal measure for r.�/. Therefore, Q�.�/ � �ıa D �.�/�,
which yields Q�.�/ D �.�/:

Suppose that 0 < � 0 < � 00 < 	s.a/. Then t2.� 0/ < t2.� 00/ by Propo-
sition 10.12(ii). By the strict interlacing of roots (proposition 10.12(i)) we get
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tj.� 0/ < tj.� 00/ for j D 2; : : : ; n C 1. Thus, tj.�/ is a strictly increasing function
of � on .0; 	s.a//.

Finally, we prove the continuity of tj.�/ and the limit equalities in the theorem.
Since tj.�/ is increasing, all one-sided limits lim�!�0˙ tj.�/ for �0 2 .0; 	s.a//,
lim�!C0 tj.�/, and lim�!	s.a/�0 tj.�/ exist. It only remains to show the correspond-
ing equalities. As a sample we assume the contrary for some �0 2 .0; 	s.a// and j
and choose ˛; ˇ such that

tCj�1 < t�j�1 � lim
�!�0�0

tj.�/ < ˛ < ˇ < lim
�!�0C0

tj.�/ � tCj : (10.27)

Let � 2 Œ˛; ˇ�. By Corollary 10.13, there is a canonical measure �� for s which
has � as a root. Then �� WD ��.fag/ is in Œ0; 	s.a/�. If �� < 	s.a/, then �� D �C
by Theorem 10.21, which contradicts (10.27). We prove that �� > 0. Assume to
the contrary that �� D 0. Since ind.��/ D m C 2 D 2n C 3, then b must be
a root of �� . Let �1 < �2 < : : : ; < �nC1 < �nC2 D b be the roots of �� . Since
�nC2 D tCnC2 D b and ��.fbg/ < �C.fbg/ again by Theorem 10.21, it follows
from Proposition 10.12(iii), applied with � D �� and �0 D �C, that tCnC1 < �nC1.
Proposition 10.11(iv), applied with � D �� and Q� D ��; yields �nC1 < t�nC1. Thus
tCnC1 < �nC1 < t�nC1. Therefore, by the interlacing property in Proposition 10.12(i)
we get t�j�1 < � < tCj < �j < t�j . Thus �� has no root between the inner roots � and
�j of �� . This contradicts Proposition 10.11(i) and proves that �� > 0. Thus we have
shown that �� 2 .0; 	s.a//.

By construction, � D tj.��/. From the strict monotonocity of the function tj.�/
and (10.27) it follows that �� D �0. Then � D tj.�0/. Since � 2 Œ˛; ˇ� was arbitrary,
this is impossible. ut
Theorem 10.26 (Even Case m D 2n) Let � be a number such that 0 < � < 	s.a/.
Then there exists a unique canonical measure �.�/ for s which has mass � at a. Let
a D t1.�/ < t2.�/ < � � � < tk.�/ denote the roots of �.�/. Then k D n C 2. Each
root tj.�/ is a strictly increasing continuous function of � on the interval .0; 	s.a//
and

tCj�1 D lim
�!C0 tj.�/; t�j D lim

�!	s.a/�0
tj.�/; j D 2; : : : ; nC 1;

a D t�1 Dt1.�/ < tC1 < t2.�/ < t�2 < tC2 < : : : < tnC1.�/ < t�nC1 < tnC2.�/DtCnC1 D b:

The proof of Theorem 10.26 follows a similar pattern as the proof of Theo-
rem 10.25; we omit the details.

However, there is an essential difference between Theorems 10.25 and 10.26: In
the odd case Theorems 10.25 gives parametrizations of all canonical measures ��
when � is not a root of a principal measure in terms of the masses � 2 .0; 	s.a// at a
and � 0 2 .0; 	s.b// at b. In the even case this is not true, since the measures �� with
� contained in some interval .t�j ; t

C
j / are not obtained in Theorem 10.26.
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10.6 A Parametrization of Canonical Measures

Let us set J WD [jJj and K WD [lKl, where Jj and Kl are the intervals defined by

m D 2n W Kj D .tCj ; t�jC1/ for jD1; : : : ; n; Jl D .t�l ; tCl / for lD1; : : : ; nC 1;
m D 2nC 1 W Kj D .tCj ; t�j / and Jj D .t�j ; tCjC1/ for j D 1; : : : ; nC 1:

That is, J[K is the set of points � 2 Œa; b�which are not roots of a principal measure,
or equivalently, for which the measure �� from Definition 10.18 has index m C 2.
Our aim in this section is to give a parametrization of measures �� , � 2 J [ K, in
terms their smallest inner root.

Let us denote the roots of �� by tj.�/ and assume that they are numbered in
increasing order. Using the interlacing results of Propositions 10.11 and 10.12 and
arguing similarly as in the proof of Theorem 10.25 the following properties are
derived.

Even Case: m D 2n:
Let � 2 J1 D .a; tC1 /. The roots of �� are t1.�/ D � and t j.�/ 2 Jj, j D 1; : : : ; nC 1.
Each root t j.�/ is a strictly increasing continuous function on J1 and we have

� 2 J1 W lim
�!t�1 C0 t

j.�/ D t�j ; lim
�!tC1 �0

t j.�/ D tCj ; j D 1; : : : ; nC 1; (10.28)

a D t�1 < t1.�/ < tC1 < t�2 < t2.�/ < tC2 < � � � < t�nC1 < tnC1.�/ < tCnC1 D b:

Let � 2 K1 D .tC1 ; t�2 /. Then �� has the roots t1.�/ D a, t2.�/ D �, t jC1.�/ 2 Kj

for j D 1; : : : ; n, and tnC2.�/ D b: Each function tj.�/ is strictly increasing and
continuous on K1. Further,

� 2 K1 W lim
�!tC1 C0

t j.�/ D tCj�1 ; lim
�!t�2 �0 t

j.�/ D t�j ; j D 2; : : : ; nC 1; (10.29)

a D t�1 Dt1.�/ < tC1 < t2.�/ < t�2 < : : : < tCn < tnC1.�/ < t�nC1 < tnC2.�/ D tCnC1 D b:

Odd Case: m D 2nC 1:
Let � 2 K1 D .a; t�1 / D .tC1 ; t�1 /. The measure �� has roots t1.�/ D �, t j.�/ 2 Kj

for l D 1; : : : ; n C 1 and tnC2.�/ D b. Each root tl.�/ is a strictly increasing and
continuous function on K1 and

� 2 K1 W lim
�!tC1 C0

t j.�/ D tCj ; lim
�!t�1 �0 t

j.�/ D t�j ; j D 1; : : : ; nC 1; (10.30)

a D tC1 < t1.�/ < t�1 < tC2 < � � � < tCnC1 < tnC1.�/ < t�nC1 < tnC2.�/ D tCnC2 D b:
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Suppose that � 2 J1 D .t�1 ; t
C
2 /. Then �� has roots t1.�/ D a, t2.�/ D �, and

t jC1.�/ 2 Jj for j D 1; : : : ; n C 1: Each t j.�/ is a strictly increasing continuous
function on J1 and

� 2 J1 W lim
�!t�1 C0 t

j.�/ D t�j ; lim
�!tC2 �0

t j.�/ D tCjC1; j D 1; : : : ; nC 1; (10.31)

a D tC1 D t1.�/ < t�1 < t2.�/ < tC2 < t�2 < � � � < t�nC1 < tnC2.�/ < tCnC2 D b:

The preceding gives a continuous parametrization of the roots of the canonical
measures �� for � 2 J [ K in terms of their first inner root � contained in J1
resp. K1. Further, in all these cases the limits (10.28)–(10.31) show the one-sided
continuity of the functions t j.�/ at the corresponding inner roots of the principal
measure �˙.

Fix an interval Ji and let � 2 Ji. Recall that the polynomial q� from Defini-
tion 10.19 is a product of linear and quadratic factors involving the roots t j.�/ of �� .
This definition implies that the above parametrization of roots yields a continuous
parametrization of the polynomials q� on Ji. Here the vector space RŒx�m is equipped
with some norm. Let Ji D .�C; ��/. Then �C and �� are roots of principal
measures. From the limits (10.28)–(10.31) we conclude that each one-sided limit
p�

˙
D lim�!�

˙
˙0 q� exists and gives a polynomial p�

˙
2 Pos.Œa; b�/m which

is positive at �˙ and vanishes at the other roots of the corresponding principal
measure. Therefore, by the remarks after the proof of Theorem 10.21, the infimum
in (10.23) is attained for p� at � and for p�

˙
at �˙, that is, we have 
s.t/ D Ls. pt/

pt.t/

for all t 2 Œ�C; ���. Thus we have a continuous parametrization of minimizing
polynomials for (10.23) on the closed interval Ji D Œ�C; ���. (Recall that the
minimizing polynomial for (10.23) is uniquely determined up to a constant factor
for points in Ji, but not for inner roots of principal measures.) Therefore, since the
linear functional Ls on the finite-dimensional spaceRŒx�m is continuous, the function

s.t/ D Ls. pt/

pt.t/
is continuous on the closed interval Ji. Verbatim the same proof yields

the continuity of 
s on the closure Kj of each interval Kj. Further, each inner root is
a common end point of some Ji and Kj. Hence 
s is continuous on Œa; b�. We state
this as

Theorem 10.27 For each s 2 IntSmC1 the function 	s.t/ D 
s.t/ is continuous
on the interval Œa; b�.

In the preceding proof a continuous parametrization of minimizing polynomials on
intervals Ji and Kj was crucial. The following simple example shows that there is
no continuous parametrization of minimizing polynomials on Œa; b�.

Example 10.28 Let m D 2. Then a D t�1 < tC1 < t�2 < tC2 D b. Let us take
numbers � 2 J1 D .a; tC1 / and � 2 K1 D .tC1 ; t�2 /. Clearly,

q�.x/ D .x � t2.�//2; q�.x/ D .b � x/.x � a/:
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Let p� and p� be minimizing polynomials for (10.23) at � and �, respectively. Then
p� and p� are constant multiples of q� and q� , respectively. Since t2.�/ ! tC2 D b
as � ! tC1 � 0, all possible limits of these polynomials are of the form

lim
�!tC1 �0

p�.x/ D c1.x � b/2; lim
�!tC1 C0

p�.x/ D c2.b� x/.x � a/

with c1 > 0 and c2 > 0. These limits are different minimizing polynomials for

s.t

C
1 /. This shows that at the inner root tC1 of �C one cannot have two-sided

continuity of minimizing polynomials. ı

10.7 Orthogonal Polynomials and Maximal Masses

Throughout this section, we assume that s 2 IntSmC1.
First we define and develop four sequences of orthogonal polynomials. Put

Pk.x/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 s2 : : : sk
s1 s2 s3 : : : skC1
s2 s3 s4 : : : skC2
: : :

sk�1 sk skC1 : : : s2k�1
1 x x2 : : : xk

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

for 2k � 1 � m;

Pk.x/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

r0 r1 r2 : : : rk
r1 r2 r3 : : : rkC1
r2 r3 r4 : : : rkC2
: : :

rk�1 rk rkC1 : : : r2k�1
1 x x2 : : : xk

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

for 2kC 1 � m;

Q
k
.x/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s1 � as0 s2 � as1 : : : skC1 � ask
s2 � as1 s3 � as2 : : : skC2 � askC1
s3 � as2 s4 � as3 : : : skC3 � askC2
: : :

sk � ask�1 skC1 � ask : : : s2k � as2k�1
1 x : : : xk

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

for 2k � m;

Qk.x/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

bs0 � s1 bs1 � s2 : : : bsk � skC1
bs1 � s2 bs2 � s3 : : : bskC1 � skC2
bs2 � s3 bs3 � s4 : : : bskC2 � skC3
: : :

bsk�1 � sk bsk � skC1 : : : bs2k�1 � s2k
1 x : : : xk

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

for 2k � m;
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where we have set

rj WD .aC b/sjC1 � sj � sjC2 for j D 1; : : : ;m � 2:

The coefficients of xk in these determinants are D2k�2;D2k�2;D2k�1; and D2k�1,
respectively. Since s 2 IntSmC1, they are positive by Theorem 10.8. Hence each
of the above polynomials has degree k with positive leading coefficient.

Further, we consider the following four sequences

s D .sj/mjD0; .b � E/.E � a/s D .rj/m�2
jD0 ; (10.32)

Es � as D .sjC1 � asj/
m�1
jD0 ; bs� Es D .bsj � sjC1/m�1

jD0 : (10.33)

Their Hankel matrices are given by the formulas at the beginning of Sect. 10.1.
Since s 2 IntSmC1, the corresponding Hankel matrices are positive definite by
Theorem 10.8, hence are the sequences in (10.32) for even m and in (10.33) for
odd m.

The polynomials Pk;Pk;Qk
;Qk are orthogonal polynomials for the moment

sequences (10.32)–(10.33). That is, for any polynomial f 2 RŒx�k�1 we have

Ls.Pk f / D L.b�E/.E�a/s.Pk f / D LEs�as.Qk
f / D Lbs�Es.Qk f / D 0: (10.34)

A simple verification can be given in a similar manner as in Sect. 5.1.
Suppose that � is a representing measure for s. Then the moment sequences

.b�E/.E� a/s, Es� as, and bs�Es are represented by .b� t/.t� a/d�, .t� a/d�,
and .b� t/d�, respectively. Hence the above families of polynomials are orthogonal
with respect to the corresponding measures. That is, for all k ¤ j we have

Z b

a
Pk.t/Pj.t/ d� D

Z b

a
Pk.t/Pj.t/ .b � t/.t � a/d� D 0 (10.35)

Z b

a
Q

k
.t/Q

j
.t/ .t � a/d� D

Z b

a
Qk.t/Qj.t/ .b � t/d� D 0:

It should be emphasized that the polynomial Pk is defined if 2k� 1 � m, while Pj is
only if 2jC 1 � m. That is, Pj is not defined for the largest index of Pk.

Now we turn to the orthonormal polynomials. Let m D 2n or m D 2nC 1. For
k D 0; : : : ; n and l D 0; : : : ; n � 1 we define

p
k
.x/ D Pkp

D2k�2D2k
; pl.x/ D

Plq
D2lD2lC2

; (10.36)

q
k
.x/ D Q

kp
D2k�1D2kC1

; qk.x/ D
Qkq

D2k�1D2kC1
; (10.37)
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where the determinantsDi and Di with negative i are set to 1. All determinantsDj;Dj

occuring in (10.36)–(10.37) are positive by Theorem 10.8, since s 2 IntSmC1.
Arguing as in the proof of Proposition 5.3 (see e.g. (5.3)) it follows that the

polynomials in (10.36)–(10.37) have norm 1 in the corresponding norms, that is,

Ls..Pk/
2/ D

Z b

a
p
k
.t/2 d� D 1;

L.b�E/.E�a/s..Pl/
2/ D

Z b

a
pl.t/

2.b � t/.t � a/ d� D 1;

LEs�as..qk/
2/ D

Z b

a
q
k
.t/2.t � a/d� D 1;

Lbs�Es..qk/
2/ D

Z b

a
qk.t/

2.b� t/d� D 1:

Note that for m D 2nC 1 the polynomial PnC1 is defined (since only moments sj
with j � 2nC 1 are involved), but p

nC1 is not (because D2nC2 requires s2nC2/.
Our next theorem gives explicit formulas for the function 	s.�/ in terms of the

orthonormal polynomials introduced above. Recall that the intervals Jj and Kl have
been defined at the beginning of Sect. 10.6, J D [jJj and K D [lKl. As usual, J
and K denote the closures of the sets J and K, respectively. Define

m D 2n W P�.x/ D
� nX

jD0
p
j
.�/p

j
.x/

�2
; � 2 J; (10.38)

P�.x/ D .b � x/.x � a/

� n�1X
jD0

pj.�/pj.x/

�2
; � 2 K; (10.39)

m D 2nC 1 W Q
�
.x/ D .x � a/

� nX
jD0

q
j
.�/q

j
.x/

�2
; � 2 J; (10.40)

Q�.x/ D .b � x/

� nX
jD0

qj.�/qj.x/

�2
; � 2 K: (10.41)

Theorem 10.29 Suppose that s 2 IntSmC1.
Even Case m D 2n and � 2 J: P� is a minimizing polynomial for (10.23) and

	s.�/ D
� nX

jD0
p
j
.�/2

��1
:
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Even Case m D 2n and � 2 K: P� is a minimizing polynomial for (10.23) and

	s.�/ D 1

.b � �/.� � a/

� n�1X
jD0

pj.�/
2

��1
:

Odd Case m D 2nC 1 and � 2 J: Q
�
is a minimizing polynomial for (10.23) and

	s.�/ D 1

� � a

� nX
jD0

q
j
.�/2

��1
:

Odd Case m D 2nC 1 and � 2 K: Q� is a minimizing polynomial for (10.23) and

	s.�/ D 1

b � �
� nX

jD0
qj.�/

2

��1
:

Proof Since s 2 IntSmC1, Theorem 10.8 implies Dj.s/ ¤ 0 and Dj.s/ ¤ 0 for
j D 0; : : : ;m. Hence the four sequences (10.32)–(10.33) are positive definite. Recall
that by Theorem 10.21 the polynomial q� from Definition 10.19 is a minimizing
polynomial of (10.23). Analyzing q� in the various cases leads to the form stated
above. We carry out the proof in the even case m D 2n; the odd case is treated
similarly.

Let � 2 Ji. From the list of atoms of �� given in Sect. 10.6 we know that neither
a nor b are roots of �� . Therefore, by Definition 10.19, q� D g2 for some g 2 RŒx�n.
Recall that q�.�/ > 0 by (10.20) and hence g.�/ ¤ 0. Setting p� WD g.�/�1g
we have p�.x/2 D q� .x/

q� .�/
, so that 
s.�/ D Ls.q� /

q� .�/
D Ls. p2�/ by Theorem 10.21. Since


s.�/ D Ls. p2�/ and p�.�/ D 1, it follows at once from the definition (10.22) of 
s.�/

that p� is a minimizer of Ls. p2/ for p 2 RŒx�n under the constraint p.�/ D 1. This
problem was settled by Proposition 9.14. By (9.34) the corresponding minimum is
.
Pn

jD0 pj.�/
2/�1 and by (9.35) the unique minimizer is a constant multiple of the

polynomial p.x/ DPn
jD0 p

j
.�/p

j
.x/: (Note that p

j
.�/ is real, since � is real.) Hence

p2 � P� is a minimizer for (10.23). This proves the assertions for � 2 Ji.
By Theorem 10.27 and the discussion preceding it, 	s is continuous on Œa; b�

and the continuous extension of a continuous minimizing family of polynomials for
(10.23) on Ji yields minimizers for the end points of Ji. Hence the assertions remain
valid for � in the closure Ji.

Now let � 2 Ki. We proceed as in the case � 2 Ji with s replaced by the
positive definite sequence .b � E/.E � a/s: Since � 2 Ki, it follows from the
description in Sect. 10.6 that both end points a and b are roots of �� . Therefore, by
Definition 10.19, we have q� D .b� x/.x � a/g2 with g 2 RŒx�n�1. Again g.�/ ¤ 0
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by (10.20) and we set p� WD g.�/�1g. For q D .b� x/.x� a/f 2 with f 2 RŒx�n�1 we
compute

Ls.q/

q.�/
D Ls..b � x/.a � x/f 2/

q.�/
D Œ.b � �/.a � �/��1 L.b�E/.E�a/s. f 2/

f .�/2
: (10.42)

Using Theorem 10.21, Eq. (10.42), and the relation p�.�/ D 1 we obtain


s.�/ D Ls.q�/

q�.�/
D Œ.b � �/.a � �/��1 L.b�E/.E�a/s. p

2
�/:

Hence it follows from the definition of 
s.�/ that the polynomial p� is a minimizer of
L.b�E/.E�a/s. f 2/ for f 2 RŒx�n�1 under the constraint f .�/ D 1: The orthonormal
polynomials for the sequence .b � E/.E � a/s are p0; p1; : : : ; pn�1. By Proposi-
tion 9.14, applied to the sequence .b � E/.E � a/s, the corresponding minimum is
.
Pn�1

jD0 pj.�/2/�1 and the minimizer is a multiple of p.x/ DPn�1
jD0 pj.�/pj.x/:Hence,

by (10.42), the minimum 
s.�/ is

Œ.b � �/.a � �/��1
0
@n�1X

jD0
pj.�/

2

1
A

�1

and each multiple of .b � x/.a � x/p.x/2 � P�.x/ is a minimizer for (10.23). Thus
the assertions are proved in the case � 2 Ki. Arguing as in the preceding paragraph,
the assertions hold for � in Ki as well. ut

We close this chapter by showing how the roots of principal measures �˙ and
canonical measures �� can be detected from orthogonal polynomials and quasi-
orthogonal polynomials, respectively.

Proposition 10.30 The roots of the upper and lower principal representing mea-
sures �C and �� of s are exactly the zeros of the following polynomials:

m D 2n �C W .b � x/Qn.x/; �� W .x � a/Q
n
.x/; (10.43)

m D 2nC 1 �C W .b � x/.x � a/Pn.x/; �� W PnC1.x/: (10.44)

All these zeros are simple.

Proof We carry out the proof for m D 2nC1 and �C; the other cases can be treated
similarly. Recall that P0;P1; : : : ;Pn are orthogonal polynomials for the sequence
.b � E/.E � a/s. Hence Pn 2 RŒx�n is orthogonal to all polynomials f 2 RŒx�n�1
with respect to .b � t/.t � a/d�C, that is, by (10.34) and (10.35) we have

L.b�E/.E�a/s.Pk f / D
Z b

a
Pn.t/f .t/.b � t/.t � a/d�C D 0:
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By formula (10.16),�C has n inner roots tC2 ; : : : ; t
C
nC1 2 .a; b/. Thus, we can choose

f to vanish at all but one such root tCi and obtain Pn.ti/.b� tCi /.tCi � a/ D 0. Hence
Pn.ti/ D 0. Since tC1 D a and tCnC2 D b, .b � x/.x � a/Pn.x/ vanishes at all nC 2
roots of �C. Because .b� x/.x� a/Pn.x/ has degree nC 2, the roots of �C exhaust
the zeros of .b � x/.x � a/Pn.x/ and all zeros are simple. ut

The roots of principal measures are described in Proposition 10.30. If � 2 Œa; b�
is not a root of a principal measure, then � 2 J [ K and �� has index m C 2. In
Sect. 10.6 these measures have been parametrized in terms of their smallest inner
root � 2 J1 [ K1. Then �� D �� , so it suffices to know the roots of �� . The next
proposition characterizes these roots as zeros of quasi-orthogonal polynomials.

We shall say (see also Definition 9.3 below) that a polynomial q 2 RŒx�n, q ¤ 0,
n � 2, is called quasi-orthogonal of order n for s if Ls.q f / D 0 for all f 2 RŒx�n�2.

Proposition 10.31 There exist strictly increasing continuous functions ' on J1 and
 on K1 with ranges .0;C1/ and .�1; 0/, respectively, such that for � 2 J1 [ K1
the roots of the canonical measure �� are precisely the zeros of the polynomial g�
defined by

m D 2n; � 2 J1 W g�.x/ D .x � a/Q
n
.x/� '.�/.b� x/Qn.x/; (10.45)

m D 2n; � 2 K1 W g�.x/ D .b � x/.x � a/ŒQ
n
.x/ �  .�/Qn.x/�; (10.46)

m D 2nC 1; � 2 J1 W g�.x/ D .x � a/ŒPnC1.x/� '.�/.b� x/Pn.x/�; (10.47)

m D 2nC 1; � 2 K1 W g�.x/ D .b � x/ŒPnC1.x/�  .�/.x � a/Pn.x/�: (10.48)

The polynomial g� is quasi-orthogonal of order n if m D 2n and nC1 if m D 2nC1:
Proof We carry out the proof in the case m D 2n and � 2 J1 D .t�1 ; t

C
1 / D .a; tC1 /;

the other cases can be treated in similar manner with necessary modifications.
First we fix l D 1; : : : ; nC 1 and define a function 'l on Jl by

'l.�/ D
.� � a/Q

n
.�/

.b � �/Qn.�/
; � 2 Jl D .t�l ; tCl /: (10.49)

First we note that Qn ¤ 0 on Jl by Proposition 10.30. Hence the denominator in
(10.49) is nonzero on Jl, so 'l is continuous on Jl. Since Q

n
and Qn have degree n,

positive leading terms, and no zeros in .�1; a� by Proposition 10.30,
Q
n
.�/

Qn.�/
> 0 for

� D a. This holds for all � 2 J1, because Q
n

and Qn do no vanish on J1. The roots

of �� and �C, hence the zeros Q
n

and Qn by Proposition 10.30, strictly interlace.

Therefore,
Q
n
.�/

Qn.�/
> 0 and hence 'l.�/ > 0 on Jl for all l. Since

lim
�!tCl �0

.b � �/Qn.�/ D .b � tCl /Qn.t
C
l / D 0 and .tCl � a/Q

n
.tCl / > 0;
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it follows that lim
�!tCl �0 'l.�/ D C1: Similarly, lim�!t�l C0 'j.�/ D 0: Therefore,

by the continuity of the function 'l on Jl its the range is .0;C1/:
We show that 'l is injective on Jl. Assume to the contrary that there exist numbers

�; � 0 2 Jl; � ¤ � 0; such that 'l.�/ D 'l.�
0/. Then the polynomial g�.x/ has at least

n C 2 zeros, that is, � and � 0 in the interval Jl and one in each of the remaining
n intervals Ji. But deg.g�/ � n C 1, so that g� D 0. Setting x D b we get a
contradiction, since b is not a root of �� and hence g�.b/ D .b � a/Q

n
.b/ ¤ 0

by Proposition 10.30. Summarizing, we have shown that 'l is a strictly increasing
continuous function on Jl with range .0;C1/.

Now we set ' WD '1. Recall that Q
n

and Qn are orthogonal polynomials with
respect to .x � a/d�� and .b � x/d�� , respectively. Hence, for f 2 RŒx�n�1,

Z b

a
g� f d�� D

Z b

a
Q

n
.x/f .x/.x � a/ d�� � '.�/

Z b

a
Qn.x/f .x/ .b � x/ d�� D 0:

(10.50)

The measure �� has nC 1 roots tl.�/ 2 Jl; l D 1; : : : ; nC 1, where t1.�/ D �. By
(10.49), we have g�.t1.�// D g�.�/ D 0: Thus, if we take a polynomial f 2 RŒx�n�1
that vanishes at all t j.�/, j D 2; : : : ; nC 1; except ti.�/, it follows from (10.50) that
g� vanishes at ti.�/. Hence all roots of �� are zeros of g� . Since deg.g�/ � n C 1,
these nC 1 roots exhaust the zeros of g� .

Finally, we show that g� is quasi-orthogonal. As a sample we verify this in the
case m D 2n, � 2 K1. Let f 2 RŒx�n�2. Using again the orthogonality of Qn and Q

n
we derive

Ls.g� f / D Ls..b � x/.a � x/ŒQn.x/ �  .�/ Qn
.x/� f /

D Ls..x � a/Qn.x/.b � x/f / �  .�/ Ls..b� x/Q
n
.x/.x � a/f /

D Lbs�Es.Qn.x/.x � a/f /�  .�/ LEs�as.Qn
.x/.b � x/f / D 0;

where the last equality follows from (10.34), since .x � a/f ; .b � x/f 2 RŒx�n�1:
Hence g� is a quasi-orthogonal polynomial of order n. ut

10.8 Exercises

1. Let Œa; b� D Œ0; 1� and s D .1; s1/ 2 S2. Draw a picture of S2 and compute the
numbers sC

2 and s�
2 .

2. Let Œa; b� D Œ�1; 1�, m D 2 and s D .1; 0; 0/. Compute the canonical measure
�� for � 2 Œa; b� and determine the principal measures �C and ��.

3. Suppose that a � 0 and b � 2. Let m D 4 and s D .8; 6; 12; 24; 48/:
a. Show that s 2 S5.
b. Show that s is determinate and compute the unique representing measure of s.
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c. Is s0 D .8; 6; 12; 24/ 2 S4 determinate?
d. Is s00 D .8; 6; 12; 24; 48; 96/ 2 S6 determinate?

4. Let c > 0; d > 0. Set Œa; b� D Œ�c; c�, m D 3 and s D .2dC 2; 0; 2c2; 0/:
a. Show that s 2 IntS4.
b. Prove that the two principal measures �C and �� are given by

�C D ı�c C 2dı0 C ıc; �� D .dC 1/ı�� C .dC 1/ı� ; where � WD c.d C 1/�1=2:

5. Let � D Pk
jD1mjıtj be a canonical representing measure for s 2 IntSmC1 and

let P 2 RŒx�m be a polynomial which has simple zeros at t1; : : : ; tk. Prove that

mj D Ls

�
P.x/

P0.tj/.x � tj/

�
for j D 1; : : : ; k:

6. Determine the extreme rays of the moment cone SmC1:

10.9 Notes

According to M.G. Krein [Kr2], the ideas of this chapter go back to the Russian
mathematicians P.L. Tchebycheff and A.A. Markov. Markov invented canonical
measures and applied them in his study of “limiting values” of integrals [Mv2]. The
theory of principal measures, canonical measures, and maximal masses presented
above is taken from the fundamental paper [Kr2].

The geometry of moment spaces SmC1 was elaborated by S. Karlin and L.S.
Shapley [KSh]. The volume of the projection of the base Sm of the moment cone in
Rm is computed in [KSh]. Theorem 10.29 is due to I.J. Schoenberg and G. Szegö
[SSz], improving a result of Krein. The two classical monographs of S. Karlin and
W.J. Studden [KSt] and of M.G. Krein and A.A. Nudelman [KN] contain further
results and a detailed study of Tchebyscheff systems, see also [DS]. We partly
followed these books. A description of all solutions of various types of truncated
moment problems is given by Krein [Kr3].



Chapter 11
The Moment Problem on the Unit Circle

This chapter is concerned with the trigonometric moment problem:
Let s D .sj/j2N0 be a complex sequence. When does there exist a Radon measure

� on the unit circle T such that for all j 2 N0,

sj D
Z
T

z�jd�.z/‹ (11.1)

The truncated trigonometric moment problem is the corresponding problem for a
finite sequence .sj/njD0 of prescribed moments. The aim of this chapter is to a give a
condensed treatment of some basic notions and results on these problems.

In Sect. 11.1 we prove the Fejér–Riesz theorem (Theorem 11.1) on nonnegative
Laurent polynomials on T. This is the key result for solving the trigonometric
moment problem (Theorem 11.3) in Sect. 11.2. Section 11.3 deals with orthogonal
polynomials on the unit circle. The Szegö recurrence relations (Theorem 11.9) and
Verblunsky’s theorem (Theorem 11.12) about the reflection coefficients occuring
in these relations are obtained. In Sect. 11.4 the truncated trigonometric moment
problem is investigated. In Sect. 11.5 we give a short digression into Carathéodory
and Schur functions and the Schur algorithm and prove Geronimus’ theorem
(Theorem 11.31) about the equality of reflection coefficients and Schur parameters.

Throughout this chapter we adopt the following notational convention which is
often used without mention: For a sequence .sj/njD0, where n 2 N or n D1, we set
s�j WD sj for j � 1. The reason is that (11.1) holds for �j provided it does for j.

11.1 The Fejér–Riesz Theorem

The solution of the moment problem on the unit circle is essentially based on the
following Fejér–Riesz theorem.

© Springer International Publishing AG 2017
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Theorem 11.1 Suppose that p.z/ D Pn
kD�n akz

k 2 CŒz; z�1�, p ¤ 0, is a Laurent
polynomial such that p.z/ is real and nonnegative for all z 2 T.

Then there exists a unique polynomial q.z/ D Pn
jD0 bkzk 2 CŒz� of the same

degree such that q.z/ ¤ 0 for jzj < 1, q.0/ > 0, and

p.z/ D jq.z/j2 for z 2 T: (11.2)

Proof Without loss of generality we can assume that n 2 N and an ¤ 0. Since p.z/
is real on T, we have a�k D ak for all k. Put f .z/ WD znp.z/. Then f 2 CŒz� has
degree 2n , f .0/ D an ¤ 0, and the nonzero zeros of f and p coincide. Clearly,

f .z/ D anz
2n C � � � C a0z

n C � � � C an D z2n f .z�1/; z 2 C; z ¤ 0: (11.3)

Equation (11.3) implies that the zeros of f are symmetric with respect to the unit
circle. More precisely, if w is a zero of f , then w ¤ 0 and w�1 is also a zero of f
with the same multiplicity. Let z1; z�1

1 ; : : : ; zm; z�1
m denote the zeros of f which are

not on T (if there are such zeros) counted according to their multiplicities.
Define g.x/ D p.eix/ for x 2 R. By differentiation it follows that each zero ei� 2

T of p has the same multiplicity as the zero � 2 R of g. Since g.x/ D p.eix/ � 0 on
R, each zero � of g, hence each zero ei� 2 T of p and so of f , is of even multiplicity.
If f has zeros on T, we denote them by �1; �1; : : : ; �l; �l, so that 2mC 2l D 2n.

Then the polynomial f and hence p factor as

p.z/ D z�nf .z/ D z�nan

mY
kD1
.z� zk/.z � z�1

k /

lY
jD1
.z � �j/2

D
mY

kD1
.z� zk/.z

�1 � zk/
lY

jD1
.z � �j/.z�1 � � j/

	
z�nan

mY
kD1
.�z/z�1

k

lY
jD1
.�z/�j



:

The factor in square brackets is czmCl�n for some c 2 C. Since mC l D n and p � 0
on T, it follows that czmCl�n D c > 0. Setting

q0.z/ D
p
c

mY
kD1
.z� zk/

lY
jD1
.z � �j/;

the preceding equality yields p.z/ D jq0.z/j2 for z 2 T. (One of the two groups of
zeros may be absent. In this case we set the corresponding product equal to one.)

Upon multiplying q0 by a constant of modulus one, we can have q0.0/ > 0.

Recall that z 7! 1�� z
z�� is a bijection of T for any � 2 C. Therefore, if � is a zero of

q0, the polynomial q0.z/
1�� z
z�� has the same degree as q0 and satisfies (11.2) as well.

Continuing in this manner, we can remove all zeros of q0 which are contained in
D D fz 2 C W jzj < 1g and obtain a polynomial q which has the desired properties.
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Let Qq be another polynomial with these properties. By (11.2), jq.z/j D Qq.z/j
on T: From this it follows that the zeros of q and Qq on T and their multiplicities
coincide. Since q.z/ ¤ 0 and Qq.z/ ¤ 0 on D, the functions f .z/ WD Qq.z/

q.z/ and 1
f .z/ are

holomorphic on D and satisfy j f .z/j D j 1f .z/ j D 1 on T. By the maximum principle

for holomorphic functions, j f .z/j � 1 and j 1f .z/ j � 1, hence j f .z/j D 1, on D.
Since j f .z/j attains its maximum in D, f is constant. From q.0/ > 0, Qq.0/ > 0; and
j f .0/j D 1 we get f .0/ D 1. Hence f .z/ � 1, so that q D Qq. ut
Remark 11.2 The polynomial q in Theorem 11.1 satisfies

p.z/ D q.z/ q.z�1/ for z 2 C; z ¤ 0: ı

11.2 Trigonometric Moment Problem: Existence
of a Solution

Recall that the group �-algebra CŒZ� of Z is the unital �-algebra CŒz; z�1� of all
Laurent polynomials p.z/ D Pn

jD�n cjz
j, where cj 2 C and n 2 N, with involution

p 7! p�.z/ D Pn
jD�n cjz

�j. In the �-algebra CŒZ� we have z� D z�1, that is, z is a
unitary element. The character space of CŒZ� is the torus T D fz 2 C W jzj D 1g,
where z 2 T acts on CŒZ� by the point evaluation �z. p/ D p.z/:

Note that CŒZ� can be considered as the �-algebra of trigonometric polynomials

f .�/ D
nX

jD�n

cje
ij� D c0 C

nX
lD1
.al cos l� C bl sin l�/; � 2 Œ��; ��;

where cj; al; bl 2 C and al D cl C c�l; bl D i.cl � c�l/, with involution given by
f 7! f �.�/ DPn

jD�n cje
�ij� :

Let s D .sj/j2N0 be a sequence. We denote by Ls the linear functional on CŒZ�

given by Ls.z�j/ WD sj; j 2 Z. Recall from Example 2.3.3 that the Hankel matrix is
now the infinite Toeplitz matrix H.s/ D .hjk/j;k2N0 with entries hjk WD sk�j; j; k 2
N0: Here we have set s�l D sl for l � 1 according to our notational convention.

If s D .sj/mjD0 is a sequence and n � m, then Hn.s/ D .hjk/nj;kD0 denotes the
.nC1/ � .nC1/ Toeplitz matrix with entries hjk D sk�j and we abbreviate

Dn WD Dn.s/ � detHn.s/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 : : : sn
s�1 s0 : : : sn�1
s�2 s�1 : : : sn�2
: : : : : : : : : : : :

s�n s�nC1 : : : s0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

(11.4)
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The next theorem, called the Carathéodory–Toeplitz theorem, provides a solution
of the trigonometric moment problem.

Theorem 11.3 For a complex sequence s D .sn/n2N0 the following are
equivalent:

(i) s is a moment sequence for the group Z, that is, there exists a Radon measure
� on T such that

sn D
Z
T

z�nd�.z/ for all n 2 Z: (11.5)

(ii) Ls.q�q/ � 0 for q 2 CŒZ�, i.e. Ls is a positive functional on the �-algebra
CŒZ�.

(iii) Ls.q�q/ � 0 for all q 2 CŒz�.
(iv) The infinite Toeplitz matrix H.s/ D .sk�j/

1
j;kD0 is positive semidefinite.

(v)
P1

j;kD0 sj�kck cj � 0 for all finite complex sequences .cj/j2N0 .

The measure � is uniquely determined by (11.5). Its support is an infinite set if
and only if the Toeplitz matrix H.s/ is positive definite, or equivalently, the moment
sequence s is positive definite, or equivalently, Dn.s/ > 0 for all n 2 N0.

Proof Let q.z/ DPn
kD0 ckzk 2 CŒz�. Then q�.z/ DPn

jD0 cj z�j and

Ls.q
�q/ D

nX
j;kD0

Ls.z
k�j/ck cj D

1X
j;kD0

sj�k ck cj D
1X

j;kD0
hkj ckcj: (11.6)

From (11.6) we conclude that (iii)$(iv)$(v). Further, (i)!(ii) by Proposition 2.7
and (ii)!(iii) is trivial. We prove the implication (iii)! (i).

Let p 2 CŒZ� be such that p.z/ � 0 on T. By the Fejér–Riesz theorem 11.1, there
is a polynomial q DPn

jD0 cjzj 2 CŒz� such that p D q�q. Then Ls. p/ D Ls.q�q/ �
0 by (iii). Hence the restriction of Ls to the real subspace E WD f p 2 CŒZ� W p D p�g
of C.TIR/ is EC-positive. Therefore, by Proposition 1.9, the restriction of Ls to E,
hence also Ls on CŒZ�, is given by a measure � 2 MC.T/. This implies (i).

Thus we have shown that the four conditions (i)–(iv) are equivalent.
Since the trigonometric polynomials are dense in C.T/ by Fejér’s theorem, the

measure � is uniquely determined by (i).
We verify the last assertion. If q.z/ is as above, from (11.6) and (i) we obtain

nX
j;kD0

hkj ck cj D
nX

j;kD0
ck cj

Z
T

zk�jd� D
Z
T

ˇ̌
ˇ̌ nX
kD0

ckz
k

ˇ̌
ˇ̌2d� D

Z
T

jq.z/j2d�:

(11.7)

If � has finite support, we can find q ¤ 0, which vanishes on supp�. Then
.c0; : : : ; cn/ ¤ 0 and

Pn
j;kD0 hkj ckcj D 0 by (11.7). That is, the matrix H.s/ and the

sequence s are not positive definite.
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If � has infinite support, for any vector .c0; : : : ; cn/ ¤ 0 the polynomial q does
not vanish on supp�. Hence it follows from (11.7) that

Pn
j;kD0 hkj ck cj > 0, that is,

H.s/ and s are positive definite.
Obviously, the infinite matrix H.s/ is positive definite if and only if all finite

matrices Hn.s/ are, or equivalently, Dn.s/ > 0 for all n 2 N0: ut
Remark 11.4

1. The minus signs in (11.5) and in the definition Ls.z�j/ D sj are notational
conventions following the standard literature [KN], [Sim2]. The minus sign in
(11.5) also fits into the usual definition of the Fourier transform for the group Z.
It should be noted that some authors define Ls.zj/ D sj and/or hjk D sk�j:

2. In (i), we have set s�n WD sn for n 2 N by our convention. In (iii), the condition
Ls.q�q/ � 0 is required only for “analytic” polynomials q.z/DPn

jD0 cjzj. ı
The following theorem is the counterpart of Theorem 11.3 for the truncated

trigonometric moment problem.

Theorem 11.5 Let n 2 N0. For a sequence.sj/njD0 the following are equivalent:

(i) There is a Radon measure � on T such that

sj D
Z

z�jd�.z/ for j D 0; : : : ; n: (11.8)

(ii) There is a k-atomic measure � on T, k � 2nC 1, such that (11.8) holds.
(iii) The Toeplitz matrix Hn.s/ is positive semidefinite.
(iv)

Pn
j;kD0 sj�kck cj � 0 for all .c0; : : : ; cn/T 2 CnC1.

Proof (ii)!(i) is trivial. Similarly, as in the proof of Theorem 11.3 the implications
(i)!(iii)$(iv) follow from (11.6). It suffices to prove that (iv) implies (ii). Let E be
the real vector space of polynomials p D p� 2 CŒZ� such that deg. p/ � n: Clearly,
dimE D 2nC 1. Let p 2 E be such that p.z/ � 0 on T. Then the polynomial q from
the Fejér–Riesz theorem also satisfies deg q � n. Hence it follows from (11.6) and
(iv) that Ls. p/ D Ls.q�q/ � 0. Thus Proposition 1.26 applies and yields (ii). ut

11.3 Orthogonal Polynomials on the Unit Circle

In this section, we suppose that s D .sj/j2Z is a moment sequence on Z such that its
representing measure � on T has infinite support. By Theorem 11.3 the latter holds
if and only if the infinite Toeplitz matrix H.s/ is positive definite.

Since H.s/ is positive definite, there is a scalar product h�; �is on CŒz� given by

h p; qis WD
nX

j;kD0
ajbk sk�j (11.9)
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for p D Pn
jD0 ajzj 2 CŒz� and q D Pn

kD0 bkzk 2 CŒz�. From the definition (11.9) it
is immediate that sk D h1; zkis for k 2 Z and

hzp; zqis D h p; qis: (11.10)

Next we define two families of polynomials Pk, P�
k associated with s. Put

D�1 WD 1 and P0.z/ WD 1. For k 2 N we set

Pk.z/ WD 1

Dk�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s1 : : : sk�1 1
s�1 s0 : : : sk�2 z
s�2 s�1 : : : sk�3 z2
: : : : : : : : : : : : : : :

s�k s�kC1 : : : s�1 zk

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
: (11.11)

Since the coefficient of zk in the determinant is Dk�1, Pk is a monic polynomial
of degree k for k 2 N0. The next lemma shows that Pk; k 2 N0, are orthogonal
polynomials of the unitary space .CŒz�; h�; �is/.
Lemma 11.6 hPk;Pjis D D�1

k�1Dkıkj and hPk; zkis D D�1
k�1Dk for k; j 2 N0.

Proof Let l D 0; : : : ; k: To compute hPk.z/; zlis we repeat the reasoning from the
proof of Proposition 5.3. Multiplying the last column by z�l and applying the func-
tional Ls the last column of the determinant will be replaced by .sl; sj�1; : : : ; sj�k/

T .
If l < k, the last column coincides with the j-th column and hence

hPk.z/; zlis D 0: Since Pk has degree k, this implies that hPk;Pjis D 0 for all
k ¤ j; k; j 2 N0.

Now let j D k. If j D k D 0, then obviously hP0;P0is D hP0; z0is D s0 D D0.
For j D k 2 N, the determinant becomes Dk, so that hPk; zkis D D�1

k�1Dk: Hence,
since the leading coefficient of Pk is 1, we get hPk;Pkis D hPk; zkis D D�1

k�1Dk: ut
Let p DPk

jD0 cjzj be a polynomial of degree at most k. Put p WDPk
jD0 cjzj. The

reciprocal polynomial Rk. p/ is defined by

Rk. p/.z/ WD zkp.z�1/ D
kX

jD0
ck�jz

j:

Clearly, deg.Rk. p// � k and deg.Rk. p// D k if and only if p.0/ ¤ 0. Then we have

.Rk. p//.z/ D zk p.z/ D zk p.1=z/ for z 2 T; (11.12)

hRk. p/;Rk.q/is D hq; pis: (11.13)

For p D Pk we abbreviate P�
k WD Rk.Pk/. Since Pk is monic, P�

k .0/ D 1. Clearly,

P0.z/ D P�
0 .z/ D 1; P1.z/ D z � s�1s�1

0 ; P�
1 .z/ D 1� s1s

�1
0 z:
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Combining the definition P�
k .z/ D Rk.Pk/.z/ D zkPk.z�1/ with (11.11) we obtain

the explicit formula

P�
k .z/ D

1

Dk�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

s0 s�1 : : : s�kC1 zk
s1 s0 : : : s�kC2 zk�1
s2 s1 : : : s�kC3 zk�2
: : : : : : : : : : : : : : :

sk sk�1 : : : s1 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
; k 2 N: (11.14)

Remark 11.7 The notation P�
k is standard in the literature. Note that P�

k should not
be confused with the adjoint of Pk in the �-algebra CŒZ�! ı

Some simple facts on these polynomialsP�
k are collected in the following lemma.

Lemma 11.8

(i) hP�
k ; z

jis D 0 for j D 1; : : : ; k and hP�
k ; 1is D D�1

k�1Dk.
(ii) kPkk2s D kP�

k k2s D hP�
k ; 1is D D�1

k�1Dk for k 2 N0.

Proof All assertions follow by a repeated application of Lemma 11.6 combined
with (11.13). For j D 1; : : : ; k we obtain

hP�
k ; z

jis D hRk.Pk/;Rk.z
k�j/is D hzk�j;Pkis D 0:

Further, again by (11.13), we have kP�
k k2 D kPkk2 and

hP�
k ; 1i D hRk.Pk/;Rk.z

k/i D hzk;Pki D kPkk2 D D�1
k�1Dk: ut

The following theorem is the first main result of this section. The formulas
(11.15) and (11.16) therein are called Szegö recursion formulas.

Theorem 11.9 Suppose that s D .sj/j2Z is a positive definite sequence on Z. Then
there exist uniquely determined complex numbers ˛n for n 2 N0 such that

PnC1.z/ D zPn.z/ � ˛nP�
n .z/; (11.15)

P�
nC1.z/ D P�

n .z/ � ˛nzPn.z/: (11.16)

Further, we have

˛n D �PnC1.0/ ; (11.17)

kPnC1k2s D .1 � j˛nj2/kPnk2s D s0

nY
jD0
.1 � j˛jj2/; (11.18)

DnC1 D Dn s0

nY
jD0
.1 � j˛jj2/: (11.19)
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Proof Using Lemma 11.6 and formula (11.10) we obtain for j D 1; : : : ; n;

hPnC1 � zPn; z
ji D hPnC1; z ji � hPn; z

j�1i D 0:

By Lemma 11.8, P�
n is also orthogonal to z; z2; : : : ; zn. Since PnC1 and Pn are monic,

PnC1� zPn has degree at most n. Thus PnC1� zPn and P�
n are both of degree at most

n and orthogonal to z; : : : ; zn. Therefore, since hP�
n ; 1i ¤ 0 by Lemma 11.8, setting

˛n WD hP�
n ; 1i�1s hPnC1 � zPn; 1is we conclude that PnC1 D zPn � ˛nP�

n which is
(11.15). Applying RnC1 to both sides of (11.15) yields (11.16).

Setting z D 0 in (11.15) and using that P�
n .0/ D 1 we obtain (11.17). In

particular, this implies that ˛n is uniquely determined by (11.15).
Next we prove (11.18). Recall that multiplication by z is unitary by (11.10),

PnC1?P�
n (since deg.P�

n / � n) and kPnk D kP�
nk by Lemma 11.8(ii). Using these

facts it follows from (11.15) that

kPnk2s D kzPnk2s D kPnC1 C ˛nP
�
nk2s D kPnC1k2s C j˛nj2kPnk2s ;

which implies the first equality of (11.18). The second follows by repeated
application of the first combined with fact that kP0k2s D h1; 1is D s0.

Inserting the equality kPnC1k2s D D�1
n DnC1 (from Lemma 11.8(ii)) into (11.18)

we obtain (11.19). ut
Definition 11.10 The numbers ˛n from (11.15) are called the reflection coefficients
of s; they are also denoted by ˛n.s/, or ˛n.�/, where � is the unique representing
measure of s.

Remark 11.11

1. The numbers ˛n also appear under the names Verblunsky coefficients in [Sim2],
canonical moments in [DS], or Schur parameters in the literature.

2. The choice of writing �˛n in (11.15) follows [Sim2]. The reason is that then
˛n.�/ becomes equal to the Schur parameter �n.�/ by Geronimus’ theorem
11.31 below.

3. Equations (11.15) and (11.16) can be rewritten in matrix form as

�
PnC1.z/
P�
nC1.z/

�
D
�

z �˛n

�˛nz 1

��
Pn.z/
P�
n .z/

�
: ı

The second main result of this section is the following Verblunsky theorem. It
states that sequences of numbers ˛n 2 D are precisely the sequences of possible
reflection coefficients of probability measures on T of infinite support. Since
the parameters ˛n appearing in the Szegö relation (11.15) are the counterpart
of the Jacobi parameters an; bn from Sect. 5.2, Theorem 11.12 might be called
“Favard’s theorem for the unit circle”.
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Theorem 11.12 For a complex sequence .˛n/1nD0 the following are equivalent:

(i) There is a positive definite sequence s D .sj/j2Z, where s0 D 1, on Z such that
˛n D ˛n.s/ for n 2 N0.

(ii) There exists a probability measure � on T of infinite support such that ˛n D
˛n.�/ for n 2 N0.

(iii) ˛n 2 D for all n 2 N0.

By Theorem 11.3, a moment sequence on Z is positive definite if and only if
its representing measure has infinite support. Hence Theorem 11.3 yields (i)$(ii).
(i)!(iii) follows at once from formula (11.18), since PnC1 ¤ 0 and (11.18) imply
that j˛nj < 1. The main implication (iii)!(i) will be proved at the end of the next
section.

We close this section by stating some facts on zeros of the polynomials Pn, P�
n .

Proposition 11.13 For n 2 N we have:

(i) If z0 2 C is a zero of Pn.z/, then jz0j < 1.
(ii) If z0 2 C is a zero of P�

n .z/, then jz0j > 1:
(iii) jP�

n .z/j D jPn.z/j for z 2 T.
(iv) jP�

n .z/j < jPn.z/j for z 2 D.

Proof

(i) Since Pn.z0/ D 0, p.z/ WD Pn.z/
z�z0

is a polynomial of degree n � 1. Hence Pn is
orthogonal to z0p in the unitary space .CŒz�; h�; �is/: Using this fact we derive

kpk2s D kzpk2s D k.z � z0/pC z0pk2s D kPn C z0pk2s D kPnk2s C jz0j2kpk2s ;

so that

.1 � jz0j2/kpk2s D kPnk2s : (11.20)

Since h�; �is is a scalar product, we have kpks > 0 and kPnks > 0. Therefore
(11.20) implies that jz0j < 1:

(ii) Recall that P�
n .z/ D Rn.Pn/.z/ D znPn.z�1/ and P�

n .0/ D 1. Hence P�
n .z0/ D 0

implies z0 ¤ 0 and Pn.z�1
0 / D 0, so that jz0j > 1 by (i).

(iii) follows from jP�
n .z/j D jznPn.z/j D jPn.z/j for z 2 T by (11.12).

(iv) By (ii), P�
n .z/ ¤ 0 for jzj � 1. Hence the function f .z/ WD Pn.z/

P�

n .z/
is holomorphic

on D, continuous on the closure of D, and of modulus one on T D @D by
(ii). Since n > 0, Pn.z/ has a zero in D, so in particular, f .z/ is not constant.
Therefore, by the maximum principle for holomorphic functions, j f .z/j < 1

and hence jP�
n .z/j < jPn.z/j for z 2 D. ut
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11.4 The Truncated Trigonometric Moment Problem

Definition 11.14 Let n 2 N. The moment cone SnC1 is given by

SnC1 WD
�
s D .s0; s1; : : : ; sn/ W sj D

Z
T

z�j d�.z/; j D 0; : : : ; n; � 2 MC.T/
�
:

As in Sect. 10.2, we consider SnC1 as a subset of CnC1 by identifying s with the
column vector sT 2 CnC1. By a similar reasoning as in the proof to Proposition 10.5
it follows that SnC1 is a closed convex cone in CnC1 and the conic convex hull of
the moment curve

cnC1 D fs.z/ D .1; z; z2; : : : ; zn/ W z 2 Tg:

The latter implies that each s 2 SnC1 has an atomic representing measure

� D
kX

jD1
mjızj ; (11.21)

where z1; : : : ; zk are pairwise different points of T and mj > 0 for j D 1; : : : ; k. For
such a measure � we set ind.�/ D 2k. (Since the unit circle T has no end points,
each atom of � is counted twice.) The index ind.s/ is defined as the minimum of
indices of all such representing measures (11.21) for s.

Let s D .sj/njD0 2 SnC1. By our notational convention, we have defined s�j WD sj
for j D 1; : : : ; n. Hence, if � is a representing measure for s, then

sj D
Z
T

z�j d� for j D �n;�nC 1; : : : ; n:

By a slight abuse of notation we denote the “double” sequence .sj/njD�n also by s.
Recall that by Theorem 11.5 a complex sequence s D .sj/njD0 belongs to SnC1 if

and only if the Toeplitz matrix Hn.s/ is positive semidefinite.
The following propositions characterizes boundary points and interior points of

the set SnC1. The proofs are verbatim the same as for its counterparts on a bounded
interval (Theorems 10.7 and 10.8) and will be omitted.

Proposition 11.15 A sequence s 2 SnC1 is a boundary point of SnC1 if and only
if ind.s/ � 2n. In this case s is determinate, that is, it has a unique representing
measure � 2 MC.T/.

Proposition 11.16 For s 2 SnC1 the following statements are equivalent:

(i) s 2 IntSnC1, that is, s is an interior point of SnC1.
(ii) The Toeplitz matrix Hn.s/ is positive definite.

(iii) Dj.s/ > 0 for j D 0; : : : ; n.
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Note in conditions (ii) and (iii) of Proposition 11.16 the numbers s�j D sj for j D
1; : : : ; n are required.

Now we fix s D .sj/njD0 2 IntSnC1. Then, by Proposition 11.16, Dj.s/ > 0 for
j D 0; : : : ; n and hence the sequence s D .sj/njD�n is positive definite, that is,

nX
j;kD0

sj�kck cj > 0 for all .c0; : : : ; cn/
T 2 CnC1; .c0; : : : ; cn/ ¤ 0:

This implies that Eq. (11.9) defines a scalar product on the vector space CnŒz�.
Further, proceeding as in the last section, we define the polynomials Pk and P�

k ,
k D 0; : : : ; n; and the reflection coefficients ˛j; j D 0; : : : ; n � 1, and derive the
corresponding properties from Theorem 11.9.

Let us denote byCs the set of numbers snC1 2 C for which the extended sequence
Qs WD .s0; : : : ; sn; snC1/ belongs to SnC2: In the proof of Proposition 11.17 below we
shall use the following notation:

�nC1.z/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

s0 s1 : : : sn z
s�1 s0 : : : sn�1 sn
: : : : : : : : : : : : : : :

z s�n : : : s�1 s0

ˇ̌
ˇ̌
ˇ̌
ˇ̌ ; (11.22)

An.z/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

s1 s2 : : : sn z
s0 s1 : : : sn�1 sn
: : : : : : : : : : : :

s�nC1 s�nC2 : : : s0 s1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ ; (11.23)

Bn.z/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

s�1 s0 : : : sn�2 sn�1
s�2 s�1 : : : sn�3 sn�2
: : : : : : : : : : : :

z s�nC1 : : : s�2 s�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ : (11.24)

The next proposition is the counterpart of Corollary 10.16 for the unit circle.

Proposition 11.17 Suppose that s D .sj/njD0 2 IntSnC1. Then the set Cs is a

closed disk with radius rnC1 D Dn.s/
Dn�1.s/

and center cnC1 D .�1/nC1An.0/

Dn�1.s/
.

Proof By Theorem 11.5 (i)$(iii), Cs is the set of complex numbers snC1 such
that HnC1.Qs/ is positive semidefinite. Since Dj.s/ > 0 for D 1; : : : ; n by Proposi-
tion 11.16, Cs is precisely the set of numbers z D snC1 2 C for which�nC1.z/ � 0:
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To describe this set we apply Sylvester’s formula (see e.g. [Gn, p. 58]) and
expand the determinant �nC1.z/ with respect to the first and last row and first and
last column. Then we obtain

Dn�1.s/�nC1.z/ D Dn.s/
2 � An.z/Bn.z/: (11.25)

Since sj D s�j, we have Bn.z/ D An.z/. Clearly, the determinant An.z/ is a linear
polynomial in z with leading coefficient .�1/nDn�1.s/. Therefore,

An.z/ D z.�1/nDn�1.s/C An.0/: (11.26)

Hence, since Dn�1.s/ > 0, it follows from (11.25) that �nC1.z/ � 0 if and only if

Dn.s/
2 � jAn.z/j2 D jz.�1/nDn�1.s/C An.0/j2;

or equivalently,

rnC1 � Dn.s/

Dn�1.s/
�
ˇ̌
ˇ̌z� .�1/nC1 An.0/

Dn�1.s/

ˇ̌
ˇ̌ � jz� cnC1j: (11.27)

This completes the proof of Proposition 11.17. ut
The closed disk Cs from Proposition 11.17 is the set of the possible .n C 1/-th

moments snC1, or more precisely, the set of numbers snC1 for which the extended
sequence Qs D .s0; : : : ; sn; snC1/ is in SnC2: Recall that DnC1.Qs/ D �.snC1/
by construction and Dj.s/ D Dj.Qs/ > 0 for j D 0; : : : ; n by the assumption
s 2 IntSnC1. Therefore, by Proposition 11.15, Qs belongs to boundary of MnC2
if and only if �.snC1/ D 0, or equivalently, snC1 lies on the circle @Cs.

For � 2 @Cs let PnC1.zI �/ denote the polynomial (11.11) with k D n C 1 and
s�.nC1/ D � . All other moments sj required in (11.11) are determined by s D .sj/njD0:

Let us call a representing measure � for s canonical if ind.�/ D 2nC 2.

Theorem 11.18 Suppose that s D .sj/njD0 2 IntSnC1: For each � on the circle
@Cs there exists a unique canonical representing measure �� for s such that

� D snC1.��/ D
Z
T

z�.nC1/d��.z/: (11.28)

The .n C 1/ atoms of �� are precisely the roots of the polynomial PnC1.zI �/. In
particular, PnC1.zI �/ has nC 1 distinct simple roots, all of them lying on T.

Proof Let Qs D .s0; : : : ; sn; snC1/, where snC1 WD �. Because � 2 @Cs, we have
DnC1.Qs/ D �nC1.�/ D 0, so Qs is a boundary point of SnC2. Therefore, by
Proposition 11.15, Qs has a unique representing measure�� . Clearly,�� is the unique
representing measure for s which satisfies (11.28).
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Since Qs belongs to the boundary of SnC2, ind.��/ � 2n C 2 by Proposi-
tion 11.15. Further, ind.��/ � 2n would imply that s is in the boundary of SnC1,
which contradicts the assumption s 2 IntSnC1: Thus ind.��/ D 2nC 2 and ��
is indeed a canonical measure for s.

Since HnC1.Qs/ is positive semidefinite, Eq. (11.9), with s replaced by Qs, defines a
nonnegative sesquilinear form h�; �iQs on CnC1Œz�. Repeating the proof of Lemma 11.6
and using that �� is a representing measure of Qs we derive

Z
T

jPnC1.zI �/j2d��.z/ D hPnC1;PnC1iQs D Dn.s/
�1DnC1.Qs/ D 0:

Therefore, all nC1 atoms of �� are zeros of PnC1.zI �/ (by Proposition 1.23). Since
Dn.s/ > 0 and hence deg.PnC1/ D n C 1, these atoms exhaust the zeros of PnC1
and all zeros are simple. The atoms of �� are in T. Hence the zeros of PnC1 are
in T. ut

Next we consider extensions Qs contained in IntSnC2. Our aim is to build the
bridge to the reflection coefficients. Since we assumed that s 2 IntSnC1, the
sequence s is positive definite and hence (11.9) defines a scalar product on the vector
space CnŒz�. Then, proceeding as in the last section, the orthogonal polynomials
Pk; k D 0; : : : ; n; and the reflection coefficients ˛j; j D 0; : : : ; n� 1; are defined and
the corresponding properties from Theorem 11.9 remain valid. By (11.19),

rnC1 D Dn�1.s/�1Dn.s/ D s0

n�1Y
jD0
.1 � j˛jj2/:

Obviously, z D snC1 is in the interior of Cs if and only if jsnC1 � cnC1j < rnC1:
Suppose that ˛n 2 D WD fz 2 C W Œzj < 1g is given. Then, setting

snC1 WD cnC1 C ˛nrnC1 � .�1/nC1An.0/

Dn�1.s/
C ˛n s0

n�1Y
jD0
.1 � j˛jj2/; (11.29)

snC1 belongs to the interior of Cs. Then DnC1.Qs/ D �.snC1/ > 0, so Qs D .sj/
nC1
jD0

belongs to Int SnC2 by Proposition 11.16. Conversely, if Qs 2 IntSnC2, then snC1
is in the interior of Cs and hence snC1 is of the form (11.29) for some unique ˛n 2 D.

Formula (11.29) describes the new moment snC1 in terms of the given number ˛n
and of the reflection coefficients ˛j and moments sj, j < n, of s.

The following formula expresses ˛n in terms of the moments sj; j D 0; : : : ; nC1:

˛n D .�1/n
Dn.s/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

s1 s2 : : : sn snC1
s0 s1 : : : sn�1 sn
: : : : : : : : : : : :

s�nC1 s�nC2 : : : s0 s1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ : (11.30)
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We prove formula (11.30). Indeed, first using (11.29), then the formulas for rnC1
and cnC1, and finally formula (11.26) we derive

˛n D r�1
nC1ŒsnC1 � cnC1� D Dn�1.s/

Dn.s/

�
snC1 � .�1/nC1An.0/Dn�1.s/�1

�

D .�1/n
Dn.s/

�
snC1.�1/nDn�1.s/C An.0/

� D .�1/n
Dn.s/

An.snC1/:

Inserting the definition (11.23) of An.snC1/ into the right-hand side we obtain
(11.30). This completes the proof of formula (11.30).

Finally, we prove that ˛n is the n-th reflection coefficient of the sequence Qs. Let
ęn denote the n-th reflection coefficient of Qs: If PnC1 is the .n C 1/-th orthogonal
polynomial for Qs, then ęn D �PnC1.0/ by (11.17). We develop the determinant in
formula (11.11) for PnC1.0/ by the last column and apply the complex conjugate.
Then �PnC1.0/ becomes the right-hand side of (11.30). Hence ęn D ˛n, that is, ˛n
is the n-th reflection coefficient of Qs.

We summarize the preceding considerations in the following theorem.

Theorem 11.19 Suppose that s D .sj/njD0 2 IntSnC1. There is a one-to-one
correspondence, given by the formulas (11.29) and (11.30), between numbers
˛n 2 D and numbers snC1 in the interior of the disk Cs: This yields a one-to-one
correspondence between numbers ˛n 2 D and extensions Qs D .s0; : : : ; snC1/ of s
belonging to the interior of the moment cone SnC2.

Remark 11.20

1. Set Os WD .s1; : : : ; snC1/. Then the determinant in (11.30) is just the determinant
Dn.Os/ for the sequence Os, that is, we have

˛n D .�1/nDn.Os/
Dn.s/

:

Therefore, if � is a representing measure for s, then the (complex!) measure O�
defined by d O�.z/ D z�1d�.z/ has the moments s1; : : : ; snC1:

2. We easily compute

˛0 D s1
s0

and ˛1 D s0s2 � s21
s20 � s1s�1

:

In fact, the reflection coeffients ˛n depend only on the quotients sj
s0
; j 2 N:

3. If s0 D 1, then (11.29) is a recursion formula which determines the moment
sequence s uniquely in terms of the sequence .˛n/

1
nD0. For this reason

we restricted ourselves to probability measures in Theorem 11.12 and in
Sect. 11.5. ı



11.5 Carathéodory Functions, the Schur Algorithm, and Geromimus’ Theorem 271

Proof of Theorem 11.12 (iii)!(i) Let ˛ D .˛n/n2N0 be a sequence of numbers
˛n 2 D:By induction we construct a positive definite sequence s D .sj/j2N0 , s0 D 1,
such that ˛n D ˛n.s/ for all n 2 N0.

Let n D 1 and set s WD .1; ˛0/. Then D1.s/ D 1 � j˛0j2 > 0, so that s 2 IntS2.
Further, P0.z/ D P�

0 .z/ D 1 and P1.z/ D z � ˛0 D zP0 � ˛0P�
0 :

Suppose now that sŒn� D .sj/njD0 2 IntSnC1 is constructed such that it has the
reflection coefficients ˛0; : : : ; ˛n�1. Then, by Theorem 11.19, there exists an snC1 2
C such that sŒnC1� D .s0; : : : ; snC1/ 2 IntSnC2 has the n-th reflection coefficient
˛n. By induction the preceding gives the desired positive definite sequence s. ut

Summarizing the main results of this and the preceding sections we have
established a one-to-one correspondence between the following three objects:

� probability measures � on T of infinite support,
� positive definite sequences s D .sj/j2Z on Z, where s0 D 1,
� sequences ˛ D .˛n/n2N0 of complex numbers ˛n 2 D.

Indeed, for the probability measure � on T, s is its moment sequence (given
by sj D

R
��jd�.�/, where j 2 Z). For the positive definite sequence s, ˛ is its

sequence of reflection coefficients from Theorem 11.9 (given by (11.30)) and � is
the unique solution of the moment problem for s from Theorem 11.3. Finally, for
the sequence ˛, s is the positive definite sequence from Theorem 11.12 (defined
inductively by (11.29) and s0 WD 1).

11.5 Carathéodory Functions, the Schur Algorithm,
and Geromimus’ Theorem

The following two notions on holomorphic functions are crucial in this section.

Definition 11.21 A holomorphic function f on D D fz 2 C W jzj < 1g is called a

� Carathéodory function if f .0/ D 1 and Re f .z/ � 0 for z 2 D,
� Schur function if j f .z/j � 1 for z 2 D.

For � 2 T, the constant function f .z/ D � is obviously a Schur function. For all
other Schur functions f we have j f .z/j < 1 on D by the maximum principle.

The next result is Herglotz’ representation theorem of Carathéodory functions.

Proposition 11.22 For each probability measure � on T, the function F�
defined by

F�.z/ D
Z
T

� C z

� � z
d�.�/; z 2 D; (11.31)

is a Carathéodory function. Each Carathéodory function is of the form F� and the
probability measure � is uniquely determined by the function F�.



272 11 The Moment Problem on the Unit Circle

It is easily verified that F� is a Carathéodory function. Indeed, F� is holomorphic
on D, F�.0/ D �.T/ D 1 and ReF�.z/ > 0 on D, since

Re
� C z

� � z
D 1 � jzj2
j� � zj2 > 0; z 2 D; � 2 T:

That each Carathéodory function of the form (11.31) is proved (for instance) in [Dn,
Theorem III on p. 21].

Using the representation (11.31) from Proposition 11.22 it is easy to relate the
Taylor coefficients of Carathéodory functions to moment sequences.

Proposition 11.23 Let F be a holomorphic function on D with Taylor expansion

F.z/ D 1C 2
1X
nD1

cnz
n: (11.32)

Then F is a Carathéodory function if and only if there is a probability measure � on
T such that

cn D sn.�/ �
Z
T

��nd�.�/ for n 2 N:

Proof Let F be a Carathéodory function. By Proposition 11.22, F is of the form
(11.31). For z 2 D and � 2 T we have the expansion

� C z

� � z
D 1C 2

1X
nD1

��nzn (11.33)

which converges uniformly on T. Hence, since �.T/ D 1, integrating over T gives

F.z/ D 1C 2
1X
nD0

sn.�/z
n; z 2 D:

Comparing the coefficients of zn yields cn D sn.�/ for n 2 N.
Conversely, suppose that cn D sn.�/, n 2 N, for some probability measure �.

Then, using (11.32) and the uniformly converging expansion (11.33) on T we obtain

F.z/ D 1C
1X
nD0

2

Z
T

��nd�.�/ zn D
Z
T

�
1C 2

1X
nD1

��nzn
�
d�.�/

D
Z
T

� C z

� � z
d�.�/;

that is, F D F�. Hence F is a Carathéodory function. ut
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The following simple fact will be used several times.

Lemma 11.24 If f is a Schur function such that f .0/ D 0, then f .z/
z is also a Schur

function.

Proof Since f .0/ D 0, Schwarz’ lemma applies and shows that j f .z/j � jzj for
z 2 D. Hence j f .z/z j � 1 on D, so that f .z/

z is a Schur function. ut
Next we note that the map

f 7! F WD 1C zf .z/

1� zf .z/
(11.34)

is a bijection of the Schur functions f onto the Carathéodory functions F with inverse

F 7! f D 1

z

F.z/� 1
F.z/C 1 : (11.35)

Indeed, since w 7! v D 1Cw
1�w is a holomorphic bijection of the open unit disc D on

the open half plane Re v > 0, the function F in (11.34) is a Carathéodory function
if f is a Schur function. The inverse v 7! w D v�1

vC1 maps the half plane Re v > 0

holomorphically onto D. Hence, if F is a Carathéodory function, the function zf .z/
defined by (11.35) is a Schur function and so is f by Lemma 11.24.

If F� is the Carathéodory function of a probability measure �, we denote by

f� WD 1

z

F�.z/� 1
F�.z/C 1 (11.36)

the corresponding Schur function. By the preceding we have developed one-to-one
correspondences between probability measures on T, Carathéodory functions and
Schur functions.

Recall that for any � 2 D the Möbius transformation

M� .w/ WD w � �
1 � �z ; w 2 D;

is a holomorphic bijection of D and a bijection of T. Hence, finite Blaschke
products

f .z/ D ei'
nY

jD1

z � �j
1 � �jz

(11.37)

of order n, where ' 2 R and �1; : : : ; �n 2 D, are Schur functions. Constant
functions of modulus one are interpreted as Blaschke products of order 0.

Lemma 11.25 For a probabilitiy measure � on T the following are equivalent:

(i) � has finite support.
(ii) F� is a rational function with all its poles in T.

(iii) f� is a finite Blaschke product.
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Proof Clearly, the points of supp� are the singularities of F�. This fact implies the
equivalence of (i) and (ii).

From (11.34) and (11.35) it follows that f� is rational if and only if F� is rational;
in this case f� has boundary values of modulus one on T. Hence (ii) holds if and
only if f� is an rational inner function. It is well-known (see e.g. [Y, p. 208]) that
the rational inner functions are precisely the Blaschke products of finite order. ut

Let S denote the set of Schur functions and Sf the finite Blaschke products.
Now we begin to develop the Schur algorithm. Let f be a fixed Schur function.

We define inductively f0.z/ WD f .z/ and

�n WD fn.0/; fnC1.z/ WD z�1M�n. fn.z// D
fn.z/� �n

z.1 � �nfn.z//
; n 2 N0: (11.38)

Conversely, from (11.38) we obtain

fn.z/ D M��n.zfnC1/ D �n C zfnC1.z/
1C �nzfnC1.z/

D �n C .1 � j�nj2/ zfnC1.z/
1C �nzfnC1.z/

:

Suppose that �n 2 D and fn 2 S. Since M�n is a holomorphic bijection of D,
M�n. fn/ 2 S and so fnC1 D z�1M�n. fn/ 2 S by Lemma 11.24. By induction this
proves that the functions fn.z/ are Schur functions if j�kj < 1 for k � n.

Assume in the above algorithm that �k 2 D for k D 0; : : : ; n � 1 and �n D fn.0/
is not in D. Then �n 2 @D D T, the algorithm terminates, and j�kj D 1 for k � n. It
is easy to verify that this happens if and only if f 2 Sf .

Definition 11.26 The numbers �n D �n. f /, n 2 N0, are called the Schur
parameters of the Schur function f .

Thus, if f 2 S and f … Sf , the Schur algorithm yields a sequence . fn/n2N0 of
Schur functions fn 2 SnSf and a sequence .�n/n2N0 of Schur parameters �n 2 D:

We shall write �n.�/ for the Schur parameters of the Schur function f� given
by (11.36). If the probability measure � has infinite support, then f� … Sf by
Lemma 11.25 and hence all Schur parameters �n.�/, n 2 N0, are in D.

For a Schur function f we denote by an. f / its n-th Taylor coefficient, that is,

f .z/ D
1X
nD0

an. f /z
n:

It can be shown [Su] that the Schur parameter �n. f / is a function of the Taylor
coeffients a0. f /; : : : ; an. f / and that the Taylor coefficient ak. f / is a function of the
Schur parameters �0. f /; : : : ; �k. f /. We shall use only the following results.

Proposition 11.27 For n 2 N there exists a real polynomial'n of 2n variables such
that for any Schur function f we have

an. f / D �n
n�1Y
jD0
.1 � j�jj2/C 'n.�0; �0; : : : ; �n�1; �n�1/: (11.39)
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Proof We prove by induction on n that for all k 2 N0 and n 2 N there exists a
polynomial 'n;k in �j and � j for j D 0; : : : ; kC n � 1 such that

an. fk/ D �nCk

nCk�1Y
jDk

.1 � j�jj2/C 'n;k.�0; �0; : : : ; �nCk�1; �nCk�1/: (11.40)

Since f D f0, the case k D 0 gives the assertion.
We compare the coefficient of z in the equation fk C � kzfkfkC1 D �k C zfkC1

by using that fj.0/ D �j. This yields a1. fk/ C � k�k�kC1 D �kC1. Hence we have
a1. fk/ D �kC1.1 � j�kj2/. This is the assertion (11.40) for n D 1 and k 2 N0.

Assume that (11.40) holds for n � 1. Comparing the coefficient of zn in the
identity

fk.z/ D �k C zfkC1.z/� � kzfkC1.z/fk.z/

by using the definition a0. fk/ D fk.0/ D �k we derive

an. fk/ D an�1. fkC1/� � kan�1. fkC1fk/

D an�1. fkC1/� � k
n�1X
jD0

an�1�j. fkC1/aj. fk/

D .1 � j�kj2/an�1. fkC1/ � � k
n�1X
jD1

an�1�j. fkC1/aj. fk/: (11.41)

For the terms an�1. fkC1/, an�1�j. fkC1/, aj. fk/ in (11.41) the induction hypothesis
(11.40) applies with n replaced by n�1. Hence an. fk/ is of the required form (11.40).
This completes the induction proof. ut
Corollary 11.28 Suppose that f and g are Schur functions such that �j. f / D �j.g/
for j D 0; : : : ; n. Then

j f .z/ � g.z/j � 2jzjnC1 for z 2 D: (11.42)

If f ; g 2 S have the same Schur parameters �k. f / D �k.g/ for k 2 N0, then f D g.

Proof First we note that f .0/ D �0. f / D �0.g/ D g.0/. By Proposition 11.27,
for any j 2 N the j-th Taylor coefficient of a Schur function is a polynomial in its
Schur parameters �0; �0; : : : ; �j; � j. Hence the assumption implies that the first nC1
Taylor coefficients of f and g coincide, so the Schur function h WD 1

2
. f � g/ has a

zero of order nC1 at the origin. Therefore, by repeated application of Lemma 11.24
we obtain jh.z/j � jzjnC1 on D which gives (11.42).

If �k. f / D �k.g/ for k 2 N0, then (11.42) holds for all n 2 N. Passing to the
limit n!1 yields f .z/ D g.z/ for z 2 D. ut
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Now we reverse the procedure and start with Schur parameters. For � 2 D; set

T�;z.w/ WD � C zw

aC � zw :

Then T�;z. f .z// is also a Schur function for any f 2 S. From (11.38) we obtain

fn.z/ D T�n ;z. fnC1.z// D �n C zfnC1.z/
1C �n zfnC1.z/

:

Let .�n/n2N0 be an arbitrary sequence of numbers �n 2 D. We develop the inverse
Schur algorithm and define the n-th Schur approximant f Œn�.z/ by

f Œn�.z/ D T�0;z.T�1;z.: : : T�n�1;z.�n///; n 2 N0:

(In fact, this is a kind of continued fraction algorithm.) It is not difficult to verify
that f Œn�.z/ a rational Schur function with Schur parameters given by

�j. f
Œn�/ D �j for j D 0; : : : ; n and �j. f

Œn�/ D 0 for j > n: (11.43)

Therefore, if n > m, it follows from by Corollary 11.28 that

j f Œn�.z/ � f Œm�.z/j � 2jzjnC1; z 2 D:

Hence . f Œn�.z//2N0 is a Cauchy sequence for fixed z 2 D which converges uniformly
on compact subsets of D to some holomorphic function f .z/ on D. Since f Œn� 2 S,
it is obvious that f 2 S. Further, �k. f / D �k. f Œn�/ D �k for n � k, that is, the Schur
function f has the prescribed Schur parameters �k; k 2 N0. Since �k 2 D for all
k 2 N0, f is not in Sf . Therefore, by Lemma 11.25, the unique probability measure
� such that f D f� has infinite support.

Now let g 2 SnSf be given. Then �n WD �n.g/ 2 D for n 2 N0. If we start the
inverse Schur algorithm with this sequence .�n/n2N0 , then the corresponding Schur
function f .z/ has the same Schur parameters as g.z/, so it coincides with g.z/ by
Corollary 11.28. Hence the sequence . f Œn�.z//2N0 of Schur approximants converges
to the Schur function g.z/ uniformly on compact subsets of D.

For later reference we state an outcome of the preceding considerations as

Proposition 11.29 For each sequence .�n/n2N0 of numbers �n 2 D there exists a
unique probability measure � on T with infinite support such that

�k.�/ � �k. f�/ D �k for k 2 N0:

The next proposition is needed in the proof of Theorem 11.31 below.

Proposition 11.30 Let � be a probability measure on T and let �j be its Schur
parameters. For n 2 N0 there exists a real polynomial  in 2n variables such that

snC1.�/ D �n
n�1Y
jD0
.1 � j�jj2/C  n.�0; �0; : : : ; �n�1; �n�1/: (11.44)
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Proof Recall that F� denotes the Carathéodory function and f� is the Schur function
assiciated with �. By (11.34) we then have

F�.z/ D 1C zf�.z/

1 � zf�.z/
D 1C 2zf�.z/

1 � zf�.z/
D 1C

1X
nD1

2. f�z/
n:

This formula implies that the Taylor coefficient anC1.F�/ is a sum of the number
2an. f�/ and a polynomial in the lower coefficients aj. f�/, where j � n�1. On the
other hand, anC1.F�/ D 2snC1.�/ by Proposition 11.23. Applying formula (11.39)
to the Taylor coefficients an. f�/ and aj. f�/; j � n � 1, we obtain the assertion. ut

The main result of this section is the following Geronimus theorem.

Theorem 11.31 For each probability measure � on T of infinite support we have

˛n.�/ D �n.�/ for n 2 N0:

Proof The assertion will be proved by induction on n. For n D 0 it is easily checked
that s1.�/ D ˛0.�/ D �0.�/.

Now suppose that ˛j.�/ D �j.�/ for j D 0; : : : ; n� 1. We fix these numbers and
abbreviate them by ˛j. Recall that ˛j 2 D for each j.

By Verblunsky’s Theorem 11.12, for each number � 2 D there is a probability
measure � with infinite support such that ˛n.�/ D � and ˛j.�/ D ˛j for j D
0; : : : ; n � 1. By (11.29) the corresponding moment snC1.�/ is of the form

snC1.�/ D ˛n.�/
n�1Y
jD0
.1 � j˛jj2/C cnC1; (11.45)

where cnC1 depends only on the moments s0; : : : ; sn and so on ˛1; : : : ; ˛n�1 by
formula (11.44). Note that cnC1 does not depend on ˛n.�/ D �.

On the other hand, by Proposition 11.29, for each � 2 D there exists a probability
measure Q� such that �n. Q�/ D � and �j. Q�/ D ˛j for j D 0; : : : ; n � 1. By
Proposition 11.30 the corresponding moment snC1. Q�/ is given by

snC1. Q�/ D �n. Q�/
n�1Y
jD0
.1 � j˛jj2/C  n; (11.46)

where  n depends only on ˛0; : : : ; ˛n�1, but not on �n. Q�/ D �.
Formulas (11.45) and (11.46) describe the sets of possible .n C 1/-th moments

when ˛n.�/ D � and �n. Q�/ D �, respectively, run through D. Both sets are open
disks with centers cnC1 and  n. Since these sets are the same, cnC1 D  n:
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Since ˛j.�/ D �j.�/ D ˛j for j D 0; : : : ; n � 1, we can set � D Q� D � in
the preceding formulas. Comparing the moment snC1.�/ in (11.45) and (11.46) by
using that cnC1 D  n we obtain

˛n.�/

n�1Y
jD0
.1 � j˛jj2/ D �n.�/

n�1Y
jD0
.1 � j˛jj2/:

Since j˛jj < 1, this yields ˛n.�/ D �n.�/. This completes the induction proof. ut

11.6 Exercises

1. Let k 2 N and s D .sj/j2Z, where s0 D 1; sk�nDsn�k D 1
2
; sj D 0 otherwise.

a. Show that s is a moment sequence for Z by “guessing” the representing
measure.

b. Compute the Toeplitz determinants Hn.s/; n 2 N0.

2. Let g.�/ D Pn
lD0 al cos l� be a trigonometric “cosine polynomial” such that

g.�/ � 0 for � 2 Œ��; ��. Show that there exists a polynomial q.z/ DPn
jD0 cjzj

with real coefficients cj such that g.�/ D jq.ei�/j2 for � 2 Œ��; ��.
Hint: Show that if zj is a nonreal zero with multiplicity kj of the polynomial f .z/
in the proof of Theorem 11.1, then so is its conjugate zj.

3. ([AK]) Let s D .sj/njD0, where s0 > 0 and n 2 N, be a real sequence. Define rk D
1
2k

Pk
jD0

�k
j

�
sk�2j for k D 0; : : : ; n: Show that the following are equivalent:

(i)

nX
j;kD0

sj�k ckcj � 0 for .c0; : : : ; cn/
T 2 CnC1:

(ii) There are numbers tj 2 Œ0; ��; mj � 0 for j D 1; : : : ; l; l � 1C n
2
; such that

sk D
lX

jD1
mj cos ktj; k D 0; : : : ; n:

(iii) r D .rk/nkD0 is a truncated Œ�1; 1�-moment sequence.

Hint: rk D Ls...zC z�1/=2/k/:
4. Formulate and prove the counterpart of Exercise 3 for an infinite real sequence

s D .sj/j2N0 .

More details and further results on Exercises 3 and 4 can be found in [AK, Theorems
13–17].
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In the following exercises we elaborate on the moment problem for a subarc of T,
see [KN, p. 294–295]. Suppose that ��

2
� ˛ < ˇ � �

2
. Let T˛;ˇ denote the subset

of numbers ei t, where t 2 Œ2˛; 2ˇ�, of T. We abbreviate a D tan ˛, b D tanˇ,
c D cos˛, d D cosˇ and define a Laurent polynomial '˛;ˇ by

'˛;ˇ.z/ D �2 cos.˛ � ˇ/C e.˛Cˇ/i z�1 C e�.˛Cˇ/i z:

5. Show that '˛;ˇ.z/ � 0 for z 2 T˛;ˇ and '˛;ˇ.z/ < 0 for z 2 TnT˛;ˇ :

Hint: Verify that '˛;ˇ.ei t/ D 4 sin.ˇ � t
2
/ sin. t

2
� ˛/.

6. Show that if p 2 CŒz; z�1� is nonnegative on T˛;ˇ , then there exist polynomials
q1; q2 2 CŒz� such that p.z/ D jq1.z/j2 C '˛;ˇ.z/jq2.z/j2 for z 2 T:

Hints: First suppose��
2
< ˛ < ˇ < �

2
. Set z D .1� ix/.1C ix/�1 and verify that

'˛;ˇ.z/ D 4.cd/�1.b � x/.x � a/.1 C x2/�1. Show that there exists a q 2 RŒx�
and n 2 N such that p.z/ D q.x/.1C x2/n and q.x/ � 0 for x 2 Œa; b�.

Now let ��
2
< ˛ < ˇ D �

2
: Set z D .1 C i.x � a//.1 � i.x � a//�1. Show

that '˛;ˇ.z/ D 4c�1x.1C .x� a/2/�1 and there are q 2 RŒx� and n 2 N such that
p.z/ D q.x/.1C .x � a/2/n and q.x/ � 0 for x 2 RC.

Apply Corollaries 3.24 and 3.25, respectively, to q.
7. (Moment problem on a circular arc)

Let s D .sn/n2N0 be a complex sequence and define a sequence Os WD .Osn/n2N0 by

Osn WD e.˛Cˇ/i snC1 � 2 cos.˛ � ˇ/ sn C e�.˛Cˇ/i sn�1; n 2 Z:

(Recall that s�n WD sn for n < 0.) Verify that Ls.'˛;ˇf / D LOs. f / for f 2 CŒz; z�1�:
Prove that s is a T˛;ˇ- moment sequence for Z, that is, there is a Radon

measure � on T supported on T˛;ˇ such that sn D
R
T
z�n d� for n 2 Z; if and

only if the two infinite Toeplitz matrices H.s/ and H.Os/ are positive semidefinite.

11.7 Notes

The Fejér–Riesz Theorem 11.1 was proved in [Fj] and [Rz1]. The solution of the
trigonometric moment problem in the present form is due to O. Toeplitz [To].
The Szegö recurrence relations (11.15) and (11.16) were obtained in Szegö [Sz],
while Verblunsky’s Theorem 11.12 was proved in [Ver]. The circle Cs and the results
on the truncated trigonometric moment problem are due to N.I. Akhiezer and M.G.
Krein [AK].

Carathéodory functions were first studied in [Ca1], [Ca2]. The Herglotz repre-
sentation (Proposition 11.22) was obtained in [Hz]. Schur functions and Schur’s
algorithm were invented in I. Schur’s two pioneering papers [Su], while Geronimus’
Theorem 11.31 was proved in [Gs]. B. Simon’s book [Sim2] has several proofs of
Verblunsky’s and Geronimus’ theorems; the proof of Geronimus’ theorem given in
the text is taken from [Sim2]. Concerning Schur analysis, a collection of classical
papers is [FK], a very readable discussion with many historical comments is [DK],
and a deeper analysis is given in [Kv].
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Chapter 12
The Moment Problem on Compact
Semi-Algebraic Sets

In this chapter we begin the study of the multidimensional moment problem. The
passage to dimensions d � 2 brings new difficulties and unexpected phenomena. In
Sect. 3.2 we derived solvability criteria of the moment problem on intervals in terms
of positivity conditions. It seems to be natural to look for similar characterizations in
higher dimensions as well. This leads us immediately into the realm of real algebraic
geometry and to descriptions of positive polynomials on semi-algebraic sets. In this
chapter we treat this approach for basic closed compact semi-algebraic subsets of
Rd. It turns out that for such sets there is a close interaction between the moment
problem and Positivstellensätze for strictly positive polynomials.

All basic notions and facts from real algebraic geometry that are needed for our
treatment of the moment problem are collected in Sect. 12.1. Section 12.2 contains
general facts on localizing functionals and supports of representing measures.
The main existence results for the moment problem (Theorems 12.25, 12.36(ii),
and 12.45) and the corresponding Positivstellensätze (Theorems 12.24, 12.36(i),
and 12.44) for compact semi-algebraic sets are derived in Sects. 12.3, 12.4, and 12.6.
The results in Sects. 12.3 and 12.4 are formulated in the language of prerorderings
and quadratic modules, that is, in terms of weighted sums of squares. In Sect. 12.6
we use another type of positivity condition which is based on the notion of a
semiring.

In Sect. 12.4 we develop a fundamental technical result, the representation
theorem for Archimedean quadratic modules and semirings (Theorem 12.35). In
Sects. 12.6 and 12.7, the main theorems are applied to derive a number of classical
results on the moment problem for concrete compact sets.

Apart from real algebraic geometry the theory of self-adjoint Hilbert space
operators is our main tool for the multidimensional moment problem. In Sect. 12.5
we develop this method by studying the GNS construction and the relations to the
multidimensional spectral theorem. This approach yields a very short and elegant
proof of the moment problem result for Archimedean quadratic modules.

© Springer International Publishing AG 2017
K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics 277,
DOI 10.1007/978-3-319-64546-9_12
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Throughout this chapter, A denotes a commutative real algebra with unit
element denoted by 1. For notational simplicity we write � for � � 1, where � 2 R.
Recall that

P
A2 is the set of finite sums

P
i a
2
i of squares of elements ai 2 A.

12.1 Semi-Algebraic Sets and Positivstellensätze

The following definition collects some basic notions needed in the sequel.

Definition 12.1 A quadratic module of A is a subset Q of A such that

QC Q 	 Q; 1 2 Q; a2Q 2 Q for all a 2 A: (12.1)

A quadratic module T is called a preordering if T � T 	 T.
A semiring is a subset S of A satisfying

SC S 	 S; S � S 	 S; � 2 S for all � 2 R; � � 0: (12.2)

A cone is a subset C of A such that CC C 	 C and � � C 	 C for � � 0.

In the literature “semirings” are also called “preprimes”. The name “quadratic
module” stems from the last condition in (12.1) which means that Q is invariant
under multiplication by squares. Setting a D p�, this implies that � � Q 	 Q for
� � 0. Hence quadratic modules are cones. While semirings and preorderings are
closed under multiplication, quadratic modules are not necessarily. Semirings do
not contain all squares in general. Clearly, a quadratic module is a preordering if
and only if it is a semiring. In this book, we work mainly with quadratic modules
and preorderings. Semirings will occur only in Theorems 12.35, 12.44, and 12.45
below.

Example 12.2 The subset S D fPn
jD0 ajxj W aj � 0; n 2 Ng of RŒx� is a semiring,

but not a quadratic module. Clearly, Q DPRdŒ x �2Cx1
P

RdŒ x �2Cx2
P

RdŒ x �2

is a quadratic module of RdŒ x �; d � 2, but Q is neither a semiring nor a preordering.
ı

Each cone C of A yields an ordering� on A by defining

a � b if and only if b � a 2 C:

Obviously,
P

A2 is the smallest quadratic module of A. Since A is commutative,P
A2 is invariant under multiplication, so it is also the smallest preordering of A.
Our guiding example for A is the polynomial algebra RdŒ x � WD RŒx1; : : : ; xd�.
Let f D f f1; : : : ; fkg be a finite subset of RdŒ x �. The set

K.f/ � K. f1; : : : ; fk/ D fx 2 Rd W f1.x/ � 0; : : : ; fk.x/ � 0g (12.3)
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is called the basic closed semi-algebraic set associated with f. It is easily seen that

Q.f/ � Q. f1; : : : ; fk/ D
˚
�0 C f1�1 C � � � C fk�k W �0; : : : ; �k 2

X
RdŒ x �

2
�

(12.4)

is the quadratic module generated by the set f and that

T.f/ � T. f1; : : : ; fk/ D
� X

eD.e1;:::;ek/2f0;1gk
f e11 � � � f ekk �e W �e 2

X
RdŒ x �

2

�

(12.5)

is the preordering generated by the set f. These three sets K.f/, Q.f/, and T.f/ play a
crucial role in this chapter and the next.

By the above definitions, all polynomials from T.f/ are nonnegative on K.f/, but
in general T.f/ does not exhaust the nonnegative polynomials on K.f/.

The following Positivstellensatz of Krivine–Stengle is a fundamental result of
real algebraic geometry. It describes nonnegative resp. positive polynomials on K.f/
in terms of quotients of elements of the preordering T.f/.

Theorem 12.3 Let K.f/ and T.f/ be as above and let g 2 RdŒ x �. Then we have:

(i) (Positivstellensatz) g.x/ > 0 for all x 2 K.f/ if and only if there exist
polynomials p; q 2 T.f/ such that pg D 1C q.

(ii) (Nichtnegativstellensatz) g.x/ � 0 for all x 2 K.f/ if and only if there exist
p; q 2 T.f/ and m 2 N such that pg D g2m C q.

(iii) (Nullstellensatz) g.x/ D 0 for x 2 K.f/ if and only if �g2n 2 T.f/ for some
n 2 N.

(iv) K.f/ is empty if and only if �1 belongs to T.f/:
Proof See [PD] or [Ms1]. The orginal papers are [Kv1] and [Ste1]. ut

All “if” assertions are easily checked and it is not difficult to show that all four
statements are equivalent, see e.g. [Ms1]. Standard proofs of Theorem 12.3 as given
in [PD] or [Ms1] are based on the Tarski–Seidenberg transfer principle. Assertion (i)
of Theorem 12.3 will play an essential role in the proof of Proposition 12.22 below.

Now we turn to algebraic sets. For a subset S of RdŒ x �; the real zero set of S is

Z.S/ D fx 2 Rd W f .x/ D 0 for all f 2 Sg: (12.6)

A subset V of Rd of the form Z.S/ is called a real algebraic set.
Hilbert’s basis theorem [CLO, p. 75] implies that each real algebraic set is of the

form Z.S/ for some finite set S D fh1; : : : ; hmg. In particular, each real algebraic set
is a basic closed semi-algebraic set, because K.h1; : : : ; hm;�h1; : : : ;�hm/ D Z.S/.

Let S be a subset of RdŒ x � and V WD Z.S/ the corresponding real algebraic set.
We denote by I the ideal of RdŒ x � generated by S and by OI the ideal of f 2 RdŒ x �
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which vanish on V . Clearly, Z.S/ D Z.I/ and I 	 OI . In general, I ¤ OI. (For
instance, if d D 2 and S D fx21 C x22g, then V D f0g and x21 2 OI , but x21 … I.)

It can be shown [BCRo, Theorem 4.1.4] that I D OI if and only if
P

p2j 2 I
for finitely many pj 2 RdŒ x � implies that pj 2 I for all j. An ideal that obeys this
property is called real. In particular, OI is real. The ideal I generated by a single
irreducible polynomial h 2 RdŒ x � is real if and only if h changes its sign on Rd,
that is, there are x0; x1 2 Rd such that h.x0/h.x1/ < 0, see [BCRo, Theorem 4.5.1].

The quotient algebra

RŒV� WD RdŒ x �= OI (12.7)

is called the algebra of regular functions on V . Since OI is real, it follows that

X
RŒV�2 \ � �XRŒV�2

� D f0g: (12.8)

Example 12.4 Let us assume that the set f is of the form

f D fg1; � � � ; gl; h1;�h1; : : : ; hm;�hmg:

If g WD fg1; : : : ; glg and I denotes the ideal of RdŒ x � generated by h1; : : : ; hm, then

K.f/ D K.g/ \Z.I/; Q.f/ D Q.g/C I; and T.f/ D T.g/C I: (12.9)

We prove (12.9). The first equality of (12.9) and the inclusions Q.f/ 	 Q.g/C I
and T.f/ 	 T.g/C I are clear from the corresponding definitions. The identity

phj D 1

4
Œ. pC 1/2hj C . p � 1/2.�hj/� 2 Q.f/; p 2 RdŒ x �;

implies that I 	 Q.f/ 	 T.f/. Hence Q.g/C I 	 Q.f/ and T.g/C I 	 T.f/: ı
Another important concept is introduced in the following definition.

Definition 12.5 Let Q be a quadratic module or a semiring of A. Define

Ab.Q/ WD fa 2 A W there exists a � > 0 such that � � a 2 Qand �C a 2 Qg:

We shall say that Q is Archimedean if Ab.Q/ D A, or equivalently, for every a 2 A
there exists a � > 0 such that � � a 2 A:

Lemma 12.6 Let Q be a quadratic module of A and let a 2 A. Then a 2 Ab.Q/ if
and only if �2 � a2 2 Q for some � > 0.

Proof If �˙ a 2 Q for � > 0, then

�2 � a2 D 1

2�

�
.�C a/2.� � a/C .� � a/2.�C a/

� 2 Q:
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Conversely, if �2 � a2 2 Q and � > 0, then

�˙ a D 1

2�

�
.�2 � a2/C .�˙ a/2

� 2 Q: ut

Lemma 12.7 Suppose that Q is a quadratic module or a semiring of A.

(i) Ab.Q/ is a unital subalgebra of A.
(ii) If the algebra A is generated by elements a1; : : : ; an, then Q is Archimedean if

and only if each ai there exists a �i > 0 such that �i ˙ ai 2 Q.

Proof

(i) Clearly, sums and scalar multiples of elements of Ab.Q/ are again in Ab.Q/. It
suffices to verify that this holds for the product of elements a; b 2 Ab.Q/.

First we suppose that Q is a quadratic module. By Lemma 12.6, there are
�1 > 0 and �2 > 0 such that �21 � a2 and �22 � b2 are in Q. Then

.�1�2/
2 � .ab/2 D �22.�21 � a2/C a2.�22 � b2/ 2 Q;

so that ab 2 Ab.Q/ again by Lemma 12.6.
Now let Q be a semiring. If �1 � a 2 Q and �2 � b 2 Q, then

�1�2 � ab D 1

2

�
.�1 ˙ a/.�2 � b/C .�2 � a/.�2 C b/

� 2 Q:

(ii) follows at once from (i). ut
By Lemma 12.7(ii), it suffices to check the Archimedean condition � ˙ a 2 Q

for algebra generators. Often this simplifies proving that Q is Archimedean.

Corollary 12.8 For a quadratic module Q of RdŒ x � the following are equiva-
lent:

(i) Q is Archimedean.
(ii) There exists a number � > 0 such that � �Pd

kD1 x2k 2 Q.
(iii) For any k D 1; : : : ; d there exists a �k > 0 such that �k � x2k 2 Q.

Proof (i)!(ii) is clear by definition. If � �Pd
jD1 x2j 2 Q, then

� � x2k D � �
X

j
x2j C

X
j¤k

x2j 2 Q:

This proves (ii)!(iii). Finally, if (iii) holds, then xk 2 Ab.Q/ by Lemma 12.6 and
hence Ab.Q/ D A by Lemma 12.7(ii). Thus, (iii)!(i). ut
Corollary 12.9 If the quadratic module Q.f/ ofRdŒ x � is Archimedean, then the set
K.f/ is compact.
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Proof By the respective definitions, polynomials of Q.f/ are nonnegative on K.f/.
Since Q.f/ is Archimedean, � �Pd

kD1 x2k 2 Q.f/ for some � > 0 by Corollary 12.8,
so K.f/ is contained in the ball centered at the origin with radius

p
�. ut

The converse of Corollary 12.9 does not hold, as the following example shows.
(However, it does hold for the preordering T.f/ as shown by Proposition 12.22
below.)

Example 12.10 Let f1 D 2x1 � 1, f2 D 2x2 � 1, f3 D 1 � x1x2. Then the set K.f/ is
compact, but Q.f/ is not Archimedean (see [PD], p. 146, for a proof). ı

The following separation result is used several times in the next sections.

Proposition 12.11 Let Q be an Archimedean quadratic module of A. If a0 2 A and
a0 … Q, there exists a Q-positive linear functional ' on A such that '.1/ D 1 and
'.a0/ � 0.
Proof Let a 2 A and choose � > 0 such that � ˙ a 2 Q. If 0 < ı � ��1, then
ı�1 ˙ a 2 Q and hence 1 ˙ ıa 2 Q. This shows that 1 is an internal point of Q.
Therefore, Eidelheit’s separation theorem (Theorem A.27) applies and there exists a
Q-positive linear functional ¤ 0 on A such that .a0/ � 0. Since ¤ 0, we have
 .1/ > 0. (Indeed, if  .1/ D 0, since  is Q-positive, �˙a 2 Q implies  .a/ D 0
for all a 2 A and so  D 0.) Then ' WD  .1/�1 has the desired properties. ut
Example 12.12 Let A D RdŒ x � and let K be a closed subset of Rd. If Q is the
preordering Pos.K/ of nonnegative polynomials on K, then Ab.Q/ is just the set of
bounded polynomials on K. Hence Q is Archimedean if and only if K is compact. ı

Recall that OA denotes the set of characters of A. For a subset Q of A we define

K.Q/ WD fx 2 OA W f .x/ � 0 for all f 2 Qg: (12.10)

Clearly, if Q is the quadratic module Q.f/ of A D RdŒ x � defined by (12.4), then
K.Q/ is just the semi-algebraic set K.f/ given by (12.3).

Let Q be a quadratic module. The set Qsat D Pos.K.Q// of all f 2 A which are
nonnegative on the set K.Q/ is obviously a preordering of A that contains Q. Then
Q is called saturated if Q D Qsat, that is, if Q is equal to its saturation Qsat.

Real algebraic geometry is treated in the books [BCRo, PD, Ms1]; a recent survey
on positivity and sums of squares is given in [Sr3].

12.2 Localizing Functionals and Supports
of Representing Measures

Haviland’s Theorem 1.12 shows that there is a close link between positive polyno-
mials and the moment problem. However, in order to apply this result reasonable
desriptions of positive, or at least of strictly positive, polynomials are needed.
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Recall that the moment problem for a functional L on the interval Œa; b� is solvable
if and only if L. p2C .x�a/.b� x/q2/ � 0 for all p; q 2 RŒx�. This condition means
that two infinite Hankel matrices are positive semidefinite and this holds if and only
if all principal minors of these matrices are nonnegative. In the multidimensional
case we are trying to find similar solvability criteria. It is natural to consider sets
that are defined by finitely many polynomial inequalities f1.x/ � 0; : : : ; fk.x/ � 0.
These are precisely the basic closed semi-algebraic sets K.f/, so we have entered
the setup of real algebraic geometry.

Let us fix a semi-algebraic set K.f/. Let L be a K.f/-moment functional, that is,
L is of the form L. p/ D L�. p/ � R

p d� for p 2 RdŒ x �, where � is a Radon
measure supported on K.f/. If g 2 RdŒx� is nonnegative on K.f/, then obviously

L.gp2/ � 0 for all p 2 RdŒ x �; (12.11)

so (12.11) is a neccesary condition for L being a K.f/-moment functional.
The overall strategy in this chapter and the next is to solve the K.f/-moment

problem by finitely many sufficient conditions of the form (12.11). That is, our aim
is to “find” nonnegative polynomials g1; : : : ; gm on K.f/ such that the following
holds:

Each linear functional L on RdŒ x � which satisfies condition (12.11) for g D
g1; : : : ; gm and g D 1 is a K.f/-moment functional. (The polynomial g D 1 is
needed in order to ensure that L itself is a positive functional.)

In general it is not sufficient to take only the polynomials fj themselves as gj. For
our main results (Theorems 12.25 and 13.10), the positivity of the functional on the
preordering T.f/ is assumed. This means that condition (12.11) is required for all
mixed products g D f e11 � � � f ekk , where ej 2 f0; 1g for j D 1; : : : ; k.

Definition 12.13 Let L be a linear functional on RdŒ x � and let g 2 RdŒ x �. The
linear functional Lg on RdŒ x � defined by Lg. p/ D L.gp/; p 2 RdŒ x �, is called the
localization of L at g or simply the localized functional.

Condition (12.11) means the localized functionalLg is a positive linear functional
on RdŒ x �: Further, if L comes from a measure � supported on K.f/ and g is
nonnegative on K.f/, then

Lg. p/ D L.gp/ D
Z
K.f/

p.x/ g.x/d�.x/; p 2 RdŒ x �;

that is, Lg is given by the measure � on K.f/ defined by d� D g.x/d�.
Localized functionals will play an important role throughout our treatment. They

are used to localize the support of the measure (see Propositions 12.18 and 12.19
and Theorem 14.25) or to derive determinacy criteria (see Theorem 14.12).

Now we introduce two other objects associated with the functional L and the
polynomial g. Let s D .s˛/˛2Nd

0
be the d-sequence given by s˛ D L.x˛/ and write
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g DP� g�x
� . Then we define a d-sequence g.E/s D ..g.E/s/˛/˛2Nd

0
by

.g.E/s/˛ WD
X

�
g�s˛C� ; ˛ 2 Nd

0;

and an infinite matrix H.gs/ D .H.gs/˛;ˇ/˛;ˇ2Nd
0

over Nd
0 �Nd

0 with entries

H.gs/˛;ˇ WD
X

�
g� s˛CˇC� ; ˛; ˇ 2 Nd

0: (12.12)

Using these definitions for p.x/ DP˛ a˛x
˛ 2 RdŒ x � we compute

Ls.gp
2/ D

X
˛;ˇ;�

a˛aˇg� s˛CˇC� D
X
˛;ˇ

a˛aˇ.g.E/s/˛Cˇ D
X
˛;ˇ

a˛aˇH.gs/˛;ˇ:

(12.13)

This shows that g.E/s is the d-sequence for the functional Lg and H.gs/ is a Hankel
matrix for the sequence g.E/s. The matrix H.gs/ is called the localized Hankel
matrix of s at g.

Proposition 12.14 Let Q.g/ be the quadratic module generated by the finite subset
g D fg1; : : : ; gmg of RdŒ x �. Let L be a linear functional onRdŒ x � and s D .s˛/˛2Nd

0

the d-sequence defined by s˛ D L.x˛/: Then the following are equivalent:

(i) L is a Q.g/-positive linear functional on RdŒ x �.
(ii) L;Lg1 ; : : : ;Lgm are positive linear functionals on RdŒ x �.

(iii) s; g1.E/s; : : : ; gm.E/s are positive semidefinite d-sequences.
(iv) H.s/;H.g1s/; : : : ;H.gms/ are positive semidefinite matrices.

Proof The equivalence of (i) and (ii) is immediate from the definition (12.4) of the
quadratic module Q.g/ and Definition 12.13 of the localized functionals Lgj .

By Proposition 2.7, a linear functional is positive if and only if the corresponding
sequence is positive semidefinite, or equivalently, the Hankel matrix is positive
semidefinite. By (12.13) this gives the equivalence of (ii), (iii), and (iv). ut

The solvabability conditions in the existence theorems for the moment problem
in this chapter and the next are given in the form (i) for some finitely generated
quadratic module or preordering. This means that condition (12.11) is satisfied for
finitely many polynomials g. Proposition 12.14 says there are various equivalent
formulations of these solvability criteria: They can be expressed in the language of
real algebraic geometry (in terms of quadratic modules, semirings or preorderings),
of �-algebras (as positive functionals on RdŒ x �), of matrices (by the positive
semidefiniteness of Hankel matrices) or of sequences (by the positive semidefinite-
ness of sequences).

The next proposition contains a useful criterion for localizing supports of
representing measures. We denote by MC.Rd/ the set of Radon measure � on
Rd for which all moments are finite, or equivalently,

R jp.x/j d� < 1 for all
p 2 RdŒ x �.
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Proposition 12.15 Let � 2 MC.Rd/ and let s be the moment sequence of �.
Further, let gj 2 RdŒ x � and cj � 0 be given for j D 1; : : : ; k: Set

K D fx 2 Rd W jgj.x/j � cj for j D 1; : : : ; kg: (12.14)

Then we have supp � 	 K if and only if there exist constants Mj > 0 such that

Ls.g
2n
j / � Mjc

2n
j for n 2 N; j D 1; : : : ; k: (12.15)

Proof The only if part is obvious. We prove the if direction and slightly modify the
argument used in the proof of Proposition 4.1.

Let t0 2 RdnK. Then there is an index j D 1; : : : ; k such that jgj.t0/j > cj. Hence
there exist a number � > cj and a ball U around t0 such that jgj.t/j � � for t 2 U.
For n 2 N we then derive

�2n�.U/ �
Z
U
gj.t/

2n d�.t/ �
Z
Rd

gj.t/
2n d�.t/ D Ls.g

2n
j / � Mjc

2n
j :

Since � > cj, this is only possible for all n 2 N if �.U/ D 0. Therefore, t0 …
supp �. This proves that supp � 	 K: ut

We state the special case gj.x/ D xj of Proposition 12.15 separately as

Corollary 12.16 Suppose that c1 > 0; : : : ; cd > 0. Let � 2 MC.Rd/ with
moment sequence s. Then the measure � is supported on the d-dimensional
interval Œ�c1; c1� � � � � � Œ�cd; cd� if and only if there are positive constants Mj

such that

Ls.x
2n
j / � s2n.0;:::;0;1;0;:::;0/ � Mjc

2n
j for n 2 N; j D 1; : : : ; d:

The following two propositions are basic results about the moment problem
on compact sets. Both follow from Weierstrass’ theorem on approximation of
continuous functions by polynomials.

Proposition 12.17 If � 2 MC.Rd/ is supported on a compact set, then � is
determinate. In particular, if K is a compact subset of Rd, then each K-moment
sequence, so each measure � 2M.Rd/ supported on K, is determinate.

Proof Let � 2MC.Rd/ be a measure having the same moments and so the same
moment functional L as �. Fix h 2 Cc.R

d;R/. We choose a compact d-dimensional
interval K containing the supports of � and h. From Corollary 12.16 it follows that
supp � 	 K. By Weierstrass’ theorem, there is a sequence . pn/n2N of polynomials
pn 2 RdŒ x � converging to h uniformly on K. Passing to the limits in the equality

Z
K
pn d� D L. pn/ D

Z
K
pn d�

we get
R
h d� D R h d�. Since this holds for all h 2 Cc.R

d;R/, we have� D �. ut
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Proposition 12.18 Suppose that � 2MC.Rd/ is supported on a compact set. Let
f D f f1; : : : ; fkg be a finite subset of RdŒ x � and assume that the moment functional
defined by L�. p/ D R p d�, p 2 RdŒ x �, is Q.f/-positive. Then supp � 	 K.f/:

Proof Suppose that t0 2 RdnK.f/. Then there exist a number j 2 f1; : : : ; kg, a ball U
with radius 	 > 0 around t0, and a number ı > 0 such that fj � �ı on 2U. We define
a continuous function h on Rd by h.t/ D p

2	�jjt � t0jj for jjt � t0jj � 2	 and
h.t/ D 0 otherwise and take a compact d-dimensional interval K containing 2U and
supp �. By Weierstrass’ theorem, there is a sequence of polynomials pn 2 RdŒ x �
converging to h uniformly on K. Then fjp2n ! fjh2 uniformly on K and hence

lim
n

L�.fjp
2
n/ D

Z
K
.lim

n
fjp

2
n/ d� D

Z
K
fjh

2 d� D
Z
2U

fj.t/.2	�jjt � t0jj/ d�.t/

�
Z
2U
�ı.2	�jjt � t0jj/ d� � �

Z
U
ı	 d�.t/ D �ı	�.U/: (12.16)

Since L� is Q.f/-positive, we have L�. fjp2n/ � 0. Therefore, �.U/ D 0 by (12.16),
so that t0 … supp �. This proves that supp � 	 K.f/: ut

The assertions of Propositions 12.17 and 12.18 are no longer valid if the
compactness assumptions are omitted. But the counterpart of Proposition 12.18 for
zero sets of ideals holds without any compactness assumption.

Proposition 12.19 Let � 2MC.Rd/ and let I be an ideal ofRdŒ x �. If the moment
functional L� of � is I-positive, then L� annihilates I and supp� 	 Z.I/.

(As usual, Z.I/ D fx 2 Rd W p.x/ D 0 for p 2 Ig is the zero set of I.)

Proof If p 2 I, then �p 2 I and hence L�.˙p/ � 0 by the I-positivity of L�, so
that L�. p/ D 0. That is, L� annihilates I.

Let p 2 I. Since p2 2 I, we have L�. p2/ D R
p2 d� D 0. There-

fore, from Proposition 1.23 it follows that supp� 	 Z. p2/ D Z. p/. Thus,
supp� 	 Z.I/. ut

For a linear functional L on RdŒ x � we define

NC.L/ WD ff 2 Pos.Rd/ W L. p/ D 0 g:

Proposition 12.20 Let L be a moment functional on RdŒ x �, that is, L D L� for
some � 2 MC.Rd/. Then the ideal IC.L/ of RdŒ x � generated by NC.L/ is
annihilated by L and the support of each representing measure of L is contained
in Z.IC.L//.

Proof Let � be an arbitrary representing measure of L. If f 2 NC.L/, then we
have L. f / D R

f .x/ d� D 0. Since f 2 Pos.Rd/, Proposition 1.23 applies and
yields supp � 	 Z. f /. Hence supp � 	 Z.NC.L/// D Z.IC.L//: In particular, the
inclusion supp � 	 Z.IC.L// implies that L D L� annihilates IC.L/: ut
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12.3 The Moment Problem on Compact Semi-Algebraic Sets
and the Strict Positivstellensatz

The solutions of one-dimensional moment problems have been derived from desrip-
tions of nonnegative polynomials as weighted sums of squares. The counterparts
of the latter in the multidimensional case are the so-called “Positivstellensätze”
of real algebraic geometry. In general these results require denominators (see
Theorem 12.3), so they do not yield reasonable criteria for solving moment
problems. However, for strictly positive polynomials on compact semi-algebraic
sets K.f/ there are denominator free Positivstellensätze (Theorems 12.24 and 12.36)
which provides solutions of moment problems. Even more, it turns out that there is
a close interplay between this type of Positivstellensätze and moment problems on
compact semi-algebraic sets, that is, existence results for the moment problem can
be derived from Positivstellensätze and vice versa.

We state the main technical steps of the proofs separately as Propositions 12.21–
12.23. Proposition 12.23 is also used in a crucial manner in the proof of Theo-
rem 13.10 below.

Suppose that f D f f1; : : : ; fkg is a finite subset of RdŒ x �. Let B.K.f// denote the
algebra of all polynomials of RdŒ x � which are bounded on the set K.f/.

Proposition 12.21 Let g 2 B.K.f// and � > 0. If �2 > g.x/2 for all x 2 K.f/, then
there exists a p 2 T.f/ such that

g2n � �2nC2p for n 2 N: (12.17)

Proof By the Krivine–Stengle Positivstellensatz (Theorem 12.3(i)), applied to the
positive polynomial �2 � g2 on K.f/, there exist polynomials p; q 2 T.f/ such that

p.�2 � g2/ D 1C q: (12.18)

Since q 2 T.f/ and T.f/ is a quadratic module, g2n.1 C q/ 2 T.f/ for n 2 N0.
Therefore, using (12.18) we conclude that

g2nC2p D g2n�2p � g2n.1C q/ � g2n�2p:

By induction it follows that

g2np � �2np: (12.19)

Since g2n.qC pg2/ 2 T.f/, using first (12.18) and then (12.19) we derive

g2n � g2n C g2n.qC pg2/ D g2n.1C qC pg2/ D g2n�2p � �2nC2p : ut
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Proposition 12.22 If the set K.f/ is compact, then the associated preordering T.f/
is Archimedean.

Proof Put g.x/ WD .1Cx21/ � � � .1Cx2d/. Since g is bounded on the compact set K.f/,
we have �2 > g.x/2 on K.f/ for some � > 0. Therefore, by Proposition 12.21 there
exists a p 2 T.f/ such that (12.17) holds.

Further, for any multiindex ˛ 2 Nd
0, j˛j � k, k 2 N, we obtain

˙2x˛ � x2˛ C 1 �
X
jˇj�k

x2ˇ D gk: (12.20)

Hence there exist numbers c > 0 and k 2 N such that p � 2cgk. Combining the
latter with g2n � �2nC2p by (12.17), we get g2k � �2kC22cgk and so

.gk��2kC2c/2 � .�2kC2c/2�1:

Hence, by Lemma 12.6, gk��2kC2c 2 Ab.T.f// and so gk 2 Ab.T.f//, where A WD
RdŒ x �. Since ˙xj � gk by (12.20) and gk 2 Ab.T.f//, we obtain xj 2 Ab.T.f// for
j D 1; � � �; d. Now from Lemma 12.7(ii) it follows that Ab.T.f// D A. This means
that T.f/ is Archimedean. ut
Proposition 12.23 Suppose that L is a T.f/-positive linear functional onRdŒ x �.

(i) If g 2 B.K.f// and kgk1 denotes the supremum of g on K.f/; then

jL.g/j � L.1/ kgk1: (12.21)

(ii) If g 2 B.K.f// and g.x/ � 0 for x 2 K.f/, then L.g/ � 0.
Proof

(i) Fix " > 0 and put � WDk g k1 C". We define a real sequence s D .sn/n2N0 by
sn WD L.gn/. Then Ls.q.y// D L.q.g// for q 2 RŒy�. For any p 2 RŒy�, we have
p.g/2 2 PRdŒ x �2 	 T.f/ and hence Ls. p.y/2/ D L. p.g/2/ � 0, since L is
T.f/-positive. Thus, by Hamburger’s theorem 3.8, there exists a Radon measure
� on R such that sn D

R
R
tnd�.t/, n 2 N0.

For � > � let �� denote the characteristic function of the set .�1;��� [
Œ�;C1/. Since �2 � g.x/2 > 0 on K.f/, we have g2n � �2nC2p by Eq. (12.17)
in Proposition 12.21. Using the T.f/-positivity of L we derive

�2n
Z
R

�� .t/ d�.t/ �
Z
R

t2nd�.t/ D s2n D L.g2n/ � �2nC2L. p/ (12.22)

for all n 2 N. Since � > �, (12.22) implies that
R
R
��.t/ d�.t/ D 0. Therefore,

supp � 	 Œ��; ��. (The preceding argument has been already used in the proof
of Proposition 12.15 to obtain a similar conclusion.) Therefore, applying the
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Cauchy–Schwarz inequality for L we derive

jL.g/j2 � L.1/L.g2/ D L.1/s2 D L.1/
Z �

��
t2 d�.t/

� L.1/�.R/�2 D L.1/2�2 D L.1/2.kgk1 C "/2:
Letting "! C0, we get jL.g/j � L.1/ k g k1.

(ii) Since g � 0 on K.f/, we clearly have k 1 � kgk1 � 2 gk1 D kgk1: Using this
equality and (12.21) we conclude that

L.1/kgk1 � 2 L.g/ D L.1 � kgk1 � 2 g/ � L.1/k1 � kgk1 � 2 gk1 D L.1/kgk1;

which in turn implies that L.g/ � 0. ut
The following theorem is the strict Positivstellensatz for compact basic closed

semi-algebraic sets K.f/:

Theorem 12.24 Let f D f f1; : : : ; fkg be a finite subset ofRdŒ x � and let h 2 RŒx�. If
the set K.f/ is compact and h.x/ > 0 for all x 2 K.f/, then h 2 T.f/.

Proof Assume to the contrary that h is not in T.f/. By Proposition 12.22, T.f/ is
Archimedean. Therefore, by Proposition 12.11, there exists a T.f/-positive linear
functional L on A such that L.1/ D 1 and L.h/ � 0. Since h > 0 on the compact
set K.f/, there is a positive number ı such that h.x/ � ı > 0 for all x 2 K.f/. We
extend the continuous function

p
h.x/� ı on K.f/ to a continuous function on some

compact d-dimensional interval containing K.f/. Again by the classical Weierstrass
theorem,

p
h.x/� ı is the uniform limit on K.f/ of a sequence . pn/ of polynomials

pn 2 RdŒ x �. Then p2n�hCı ! 0 uniformly onK.f/, that is, limn k p2n�hCı k1D 0.
Recall that B.K.f// D RdŒ x �, since K.f/ is compact. Hence limn L. p2n�hC ı/ D 0
by the inequality (12.21) in Proposition 12.23(i). But, since L. p2n/ � 0, L.h/ � 0,
and L.1/ D 1, we have L. p2n � hC ı/ � ı > 0 which is the desired contradiction.
This completes the proof of the theorem. ut

The next result gives a solution of the K.f/-moment problem for compact basic
closed semi-algebraic sets.

Theorem 12.25 Let f D f f1; : : : ; fkg be a finite subset of RdŒ x �. If the set K.f/ is
compact, then each T.f/-positive linear functional L on RdŒ x � is a K.f/-moment
functional.

Proof Since K.f/ is compact, B.K.f// D RdŒ x �. Therefore, it suffices to combine
Proposition 12.23(ii) with Haviland’s Theorem 1.12. ut
Remark 12.26 Theorem 12.25 was obtained from Proposition 12.23(ii) and Hav-
iland’s Theorem 1.12. Alternatively, it can derived from Proposition 12.23(i)
combined with Riesz’ representation theorem. Let us sketch this proof. By (12.21),
the functional L on RdŒ x � is k � k1- continuous. Extending L to C.K.f// by the
Hahn–Banach theorem and applying Riesz’ representation theorem for continuous
linear functionals, L is given by a signed Radon measure on K.f/. Setting g D 1 in
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(12.21), it follows that L, hence the extended functional, has the norm L.1/. It is not
difficult to show that this implies that the representing measure is positive. ı

The shortest path to Theorems 12.24 and 12.25 is probably to use Proposi-
tion 12.23 as we have done. However, in order to emphasize the interaction between
both theorems and so in fact between the moment problem and real algebraic
geometry we now derive each of these theorems from the other.

Proof of Theorem 12.25 (Assuming Theorem 12.24) Let h 2 RdŒ x �. If h.x/ > 0

on K.f/, then h 2 T.f/ by Theorem 12.24 and so L.h/ � 0 by the assumption.
Therefore L is a K.f/-moment functional by the implication (ii)!(iv) of Haviland’s
Theorem 1.12. ut
Proof of Theorem 12.24 (Assuming Theorem 12.25 and Proposition 12.22) Sup-
pose h 2 RdŒ x � and h.x/ > 0 on K.f/. Assume to the contrary that h … T.f/.
Since the preordering T.f/ is Archimedean by Proposition 12.22, Proposition 12.11
applies, so there is a T.f/-positive linear functional L on RdŒ x � such that L.1/ D 1

and L.h/ � 0. By Theorem 12.25, L is a K.f/-moment functional, that is, there
is a measure � 2 MC.K.f// such that L. p/ D R

K.f/ p d� for p 2 RdŒ x �. But
L.1/ D �.K.f// D 1 and h > 0 on K.f/ imply that L.h/ > 0. This is a contradiction,
since L.h/ � 0. ut

The preordering T.f/ was defined as the sum of sets f e11 � � � f ekk �
P

RdŒ x �2. It is
natural to ask whether or not all such sets with mixed products f e11 � � � f ekk are really
needed. To formulate the corresponding result we put lk WD 2k�1 and let g1; : : : ; glk
denote the first lk polynomials of the following row of mixed products:

f1; : : : ; fk; f1 f2; f1 f3; : : : ; f1 fk; : : : ; fk�1 fk; f1 f2 f3; : : : ; fk�2 fk�1 fk; : : : ; f1 f2 : : : ; fk:

Let Q.g/ denote the quadratic module generated by g1; : : : ; glk , that is,

Q.g/ WD
X

RdŒ x �
2 C g1

X
RdŒ x �

2 C � � � C glk
X

RdŒ x �
2:

The following result of T. Jacobi and A. Prestel [JP] sharpens Theorem 12.24.

Theorem 12.27 If the set K.f/ is compact and h 2 RdŒ x � satisfies h.x/ > 0 for all
x 2 K.f/, then h 2 Q.g/.

We do not prove Theorem 12.27; for a proof of this result we refer to [JP]. If we
take Theorem 12.27 for granted and combine it with Haviland’s theorem 1.12 we
obtain the following corollary.

Corollary 12.28 If the set K.f/ is compact and L is a Q.g/-positive linear func-
tional on RdŒ x �, then L is a K.f/-moment functional.

We briefly discuss Theorem 12.27. If k D 1, then Q.f/ D T.f/. However, for
k D 2,

Q.f/ D
X

RdŒ x �
2 C f1

X
RdŒ x �

2 C f2
X

RdŒ x �
2;
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so Q.f/ differs from the preordering T.f/ by the summand f1f2
P

RdŒ x �2. If k D 3,
then

Q.f/ D
X

RdŒ x �
2Cf1

X
RdŒ x �

2 C f2
X

RdŒ x �
2 C f3

X
RdŒ x �

2 C f1f2
X

RdŒ x �
2 ;

that is, the sets g
P

RdŒ x �2 with g D f1f3; f2f3; f1f2f3 do not enter into the definition
of Q.f/. For k D 4, no products of three or four generators appear in the definition
of Q.f/. For large k, only a small portion of mixed products occur in Q.f/ and
Theorem 12.27 is an essential strengthening of Theorem 12.24.

The next corollary characterizes in terms of moment functionals when a Radon
measure on a compact semi-algebraic set has a bounded density with respect to
another Radon measure. A version for closed sets is stated in Exercise 14.11 below.

Corollary 12.29 Suppose that the semi-algebraic set K.f/ is compact. Let � and �
be finite Radon measures on K.f/ and let L� and L� be the corresponding moment
functionals on RdŒ x �. There exists a function ' 2 L1.K.f/; �/, '.x/ � 0 �-a.e. on
K.f/, such that d� D 'd� if and only if there is a constant c > 0 such that

L�.g/ � cL�.g/ for g 2 T.f/: (12.23)

Proof Choosing c � k'kL1.K.f/;�/, the necessity of (12.23) is easily verified.
To prove the converse we assume that (12.23) holds. Then, by (12.23), L WD

cL� � L� is a T.f/-positive linear functional on RdŒ x � and hence a K.f/-moment
functional by Theorem 12.25. Let � be a representing measure of L, that is, L D L� .
Then we have L� C L� D cL�. Hence both � C � and c� are representing measures
of the K.f/-moment functional cL�. Since K.f/ is compact, c� is determinate by
Proposition 12.17, so that �C� D c�. In particular, this implies that � is absolutely
continuous with respect to�. Therefore, by the Radon–Nikodym theorem A.3, d� D
'd� for some function ' 2 L1.K.f/; �/, '.x/ � 0 �-a.e. on K.f/. Since �C� D c�,
for each Borel subset M of K.f/ we have

�.M/ D c�.M/ � �.M/ D
Z
M
.c � '.x//d� � 0:

Therefore, c�'.x/ � 0 �-a.e., so that ' 2 L1.K.f/; �/ and k'kL1.K.f/;�/ � c: ut
We close this section by restating Theorems 12.24 and 12.25 in the special case

of compact real algebraic sets.

Corollary 12.30 Suppose that I is an ideal of RdŒ x � such that the real algebraic
set V WD Z.I/ D fx 2 Rd W f .x/ D 0 for f 2 Ig is compact.

(i) If h 2 RdŒ x � satisfies h.x/ > 0 for all x 2 V, then h 2PRdŒ x �2 C I.
(ii) If p 2 RdŒ x �=I and p.x/ > 0 for all x 2 V, then p 2P.RdŒ x �=I/2.

(iii) If q 2 RŒV� � RdŒ x �= OI and q.x/ > 0 for all x 2 V, then q 2PRŒV�2.
(iv) Each positive linear functional on RdŒ x � which annihilates I is a V-moment

functional.
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Proof Put f1 D 1; f2 D h1; f3 D �h1; : : : ; f2m D hm; f2mC1 D �hm, where h1; : : : ; hm
is a set of generators of I. Then, by (12.9), the preordering T.f/ is

P
RdŒ x �2 C I

and the semi-algebraic set K.f/ is V D Z.I/. Therefore, Theorem 12.24 yields (i).
Since I 	 OI , (i) implies (ii) and (iii).

Clearly, a linear functional on RdŒ x � is T.f/-positive if it is positive and
annihilates I. Thus (iv) follows at once from Theorem 12.25. ut
Example 12.31 (Moment problem on unit spheres) Let Sd�1 be the unit sphere
of Rd. Then Sd�1 is the real algebraic set Z.I/ for the ideal I generated by
h1.x/ D x21 C � � � C x2d � 1:

Suppose that L is a linear functional on RdŒ x � such that

L. p2/ � 0 and L..x21 C � � � C x2d � 1/p/ D 0 for p 2 RdŒ x �:

Then it follows from Corollary 12.30(iv) that L is an Sd�1-moment functional.
Further, if q 2 RŒSd�1� is strictly positive on Sd�1; that is, q.x/ > 0 for x 2 Sd�1,

then q 2PRŒSd�1�2 by Corollary 12.30(iii). ı

12.4 The Representation Theorem for Archimedean Modules

The main aim of this section is to derive the representation theorem for Archimedean
quadratic modules (Theorem 12.35) and its application to the moment problem
(Theorem 12.36). Our proof is a combination of functional-analytic and algebraic
methods, but we avoid the use of Hilbert space operators! At the end of the next
section we give elegant and extremely short proofs of these results based on Hilbert
space methods. In view of an application given in Sect. 12.6 we also prove the
representation theorem for Archimedean semirings.

Let E be a real vector space and let C be a cone in E, that is, C is a subset of
E satisfying a C b 2 C and �a 2 C for a; b 2 C and � > 0. The cone yields an
ordering “ �00 on E defined by x � y if and only if y � x 2 C.

An element e 2 C is called an order unit if, given a 2 E, there exists � > 0 such
that �e�a 2 C. Since this also holds for �a, there is a Q� > 0 such that Q� e˙a 2 C.

Suppose that e 2 C is an order unit. For a 2 E we define

kake WD inf f� > 0 W ��e � a � �eg and q.a/ D inf f� > 0 W a � �eg:

Then k � ke is a seminorm and q is a sublinear functional on E. The latter means that
q.�a/ D �q.a/ and q.aC b/ � q.a/C q.b/ for a; b 2 E and � � 0. Note that q is
the Minkowski functional of the convex set e � C, that is,

q.a/ D inf f� > 0 W a 2 �.e � C/g:

By definition we have kake D max.q.a/; q.�a// for a 2 E.
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Now we introduce some terminology adapted from operator algebras. Let C0
denote the set of linear functionals ' on E which are C-positive, that is, '.c/ � 0
for all c 2 C. The elements of C0

e WD f' 2 C0 W '.e/ D 1g are called C-states and
an extreme point of the convex set C0

e is called a pure C-state of E.
First we prove the following sharpening of Proposition 12.11.

Proposition 12.32 Suppose that e 2 C is an order unit. If a0 2 E and a0 … C, then
there exists a pure C-state ' such that '.e � a0/ D q.e � a0/ and '.a0/ � 0.
Proof Since a0 … C, we have e�a0 … e�C and hence q.e�a0/ � 1 by the definition
of the Minkowski functional q of e�C. Hence '.e/ D 1 and '.e� a0/ D q.e� a0/
imply that '.a0/ � 0.

Let E0 denote the real vector space of all linear functionals on E and � the weak
topology �.E0;E/ on E0. In this proof we essentially use the sets

F WD f' 2 E0 W '.a/ � q.a/ for a 2 Eg; F0 WD f' 2 F W '.e � a0/ D q.e � a0/g:

First we verify the inclusions

F0 	 C0
e 	 F: (12.24)

Let ' 2 C0. If a 2 E and a � �e, then '.a/ � �'.e/ for � > 0 and therefore

'.a/ � q.a/'.e/ (12.25)

by the definition of q. Hence ' 2 F if ' 2 C0
e. This gives the second inclusion.

Now let ' 2 F0. Then, for c 2 C we have �c � 0 � �e for all � > 0, so
that q.�c/ D 0. Therefore, �'.c/ D '.�c/ � q.�c/ D 0, that is, '.c/ � 0.
Thus, ' 2 C0 and the inequality (12.25) applies. By ' 2 F0 and (12.25), we have
'.e/ � q.e/ � 1 and q.e � a0/ D '.e � a0/ � q.e � a0/'.e/: Since q.e � a0/ � 1
as noted above, we get '.e/ D 1, that is, ' 2 C0

e. This proves the first inclusion of
(12.24).

Next we study the set F0. Clearly, '0.˛.e � a0// WD ˛q.e � a0/, ˛ 2 R, defines
a linear functional '0 on the vector space E0 WD R � .e� a0/ such that '0.b/ � q.b/
for b 2 E0. By the Hahn–Banach theorem '0 extends to a linear functional ' on E
satisfying '.a/ � q.a/ for a 2 E. Since '.e � a0/ D '0.e � a0/ D q.e � a0/, '
belongs to F0. Thus F0 is not empty. Obviously, F0 is convex.

Now we show that F0 is �-compact. Let U D fa 2 E W kake � 1g. Recall that
the polar Uı of the set U is defined by Uı D f' 2 E0 W j'.a/j � 1 for a 2 Ug.
By the Alaoglu–Bourbaki theorem (see e.g. [Ru1, Ch. 3, Theorem 3.15]), the polar
Uı is �-compact. Clearly, Uı D f' 2 E0 W j'.x/j � kake; a 2 Eg. If ' 2 F0, then
'.a/ � q.a/ � kake and �'.a/ � q.�a/ � kake, so j'.a/j � kake for a 2 E, that
is, ' 2 Uı. Thus F0 	 Uı. Since F0 is obviously �-closed in Uı, F0 is �-compact.

Thus we proved that F0 is a nonempty �-compact convex subset of E0. By the
Krein–Milman theorem ([Ru1, Ch. 3, Theorem 3.22]), F0 has an extreme point, say
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'. We show that ' is an extreme point of the larger set F. For let ' D 1
2
.'1 C '2/,

where '1; '2 2 F. From q.e � a0/ D '.e � a0/ D 1
2
.'1.e � a0/ C '2.e � a0// �

q.e � a0/ we conclude that 'j.e � a0/ D q.e � a0/, so 'j 2 F0 for j D 1; 2. Hence
'1 D '2 D ', so ' is an extreme point of F. Therefore, since ' 2 F0 	 C0

e and
C0
e 	 F by (12.24), ' is also an extreme point of C0

e, that is, ' is a pure C-state. ut
Proposition 12.33 Let Q be an Archimedean quadratic module or an Archimedean
semiring of a unital commutative real algebra A. Then each pure Q-state ' is a
character, that is,

'.ab/ D '.a/'.b/ for a; b 2 A: (12.26)

In the proof of this proposition we use the following technical lemma.

Lemma 12.34 Let Q be an Archimedean quadratic module of A and let � > 	 > 0.
Suppose that a is an element of A such that aQ 	 Q and 	 � a 2 Q. If ' is a
Q-positive linear functional on A, then '..� � a/c/ � 0 for c 2 Q.

Proof Without loss of generality we can assume that � D 1 and '.1/ D 1. Consider
the Taylor polynomial pn.t/ of the function

p
1 � t , that is,

pn.t/ D
nX

kD0
.�1/k

 
1=2

k

!
tk;

and the polynomial qn.t/ WD pn.t/2 � .1 � t/ DPk �nkt
k. We compute

�nk D .�1/k
nX

jDk�n

 
1=2

j

! 
1=2

k � j

!

for n < k < 2n and �nk D 0 otherwise. Since the term for the index j in the sum has
sign .�1/j�1.�1/k�j�1 D .�1/k, we have �nk � 0 for all n and k.

Since 	 � a 2 Q and aQ 	 Q by assumption, it follows from the identity

	k � ak D
k�1X
jD0

	k�1�ja j.	 � a/

that 	k � ak 2 Q and hence ak � 	k for all k 2 N.
Let c 2 Q. We choose ˛ > 0 such that ˛ � c 2 Q. Since aQ 	 Q and qn.t/ has

only nonnegative coefficients �nk, we get qn.a/Q 	 Q. Therefore, qn.a/.˛ � c/ 2 Q
and so '.qn.a/.˛ � c// � 0. Hence we derive

'.qn.a/c/ � ˛'.qn.a// D ˛
nX

kD0
�nk'.a

k/ � ˛
nX

kD0
�nk	

k D ˛qn.	/: (12.27)
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Since Q is a quadratic module and ' is Q-positive, we have '. pn.a/2c/ � 0: Using
this fact, the identity qn.a/ D pn.a/2 � .1 � a/; and (12.27) we obtain

'..1 � a/c/ D '. pn.a/2c/� '.qn.a/c/ � �'.qn.a/c/ � �˛qn.	/: (12.28)

Since 0 < 	 < 1, we have pn.	/ ! p1 � 	 and hence qn.	/ ! 0. Therefore,
letting n!1 in (12.28) we get '..1 � a/c/ � 0. ut
Proof of Proposition 12.33 First we suppose that Q is an Archimedean quadratic
module. From the identity 4a D .aC1/2�.a�1/2, a 2 A, it follows that A D Q�Q.
Hence it suffices to prove (12.26) for squares a D c2 and b D d2, where c; d 2 A.
Clearly, '.c2/ � 0, since c2 2 Q.

Case 1: '.c2/ D 0. There is a � > 0 such that � � d2 2 Q. Since Q is a
quadratic module and ' is Q-positive, c2.� � d2/ 2 Q, so that 0 � c2d2 � �c2 and
hence 0 � '.c2d2/ � �'.c2/ D 0. Thus, '.c2d2/ D 0 and (12.26) holds for a D c2

and b D d2.
Case 2: '.c2/ > 0. Clearly, '1.�/ D '.c2/�1'.c2 �/ is a Q-positive state. Let us

choose � > 0 such that �
2
� c2 2 Q. Since ' is Q-positive, '.c2/ � �

2
< � and

hence '.� � c2/ > 0. Define '2.�/ WD '.� � c2/�1'..� � c2/ �/. Since �
2
� c2 2 Q,

it follows from Lemma 12.34 that the functional '..� � c2/ �/ is Q-positive. Hence
'2 is a Q-state. By construction the pure Q-state ' is the convex combination

' D ��1'.c2/ '1 C ��1'.� � c2/ '2

of the two Q-states '1 and '2. Hence '1 D '. This yields '.c2b/ D '.c2/'.b/ for
b 2 A which proves (12.26) when '.c2/ > 0.

Now we assume that Q is an Archimedean semiring. In this case, Lemma 12.34
is not needed; the proof is very similar and even simpler. For a 2 A, there exists a
� > 0 such that �Ca 2 Q, so that a D .�Ca/�� 2 Q�Q. Thus, A D Q�Q. Hence
it suffices to verify (12.26) for a; b 2 Q: Then '.a/ � 0, since ' is Q-positive.

Case 1: '.a/ D 0.
Let b 2 Q and choose � > 0 such that ��b 2 Q. Then .��b/a 2 Q and ab 2 Q

(because Q is a semiring!), so that '..� � b/a/ D �'.a/ � '.ab/ D �'.ab/ � 0
and '.ab/ � 0. Hence '.ab/ D 0, so that (12.26) holds.

Case 2: '.a/ > 0.
We choose � > 0 such that .��a/ 2 Q and '.��a/ > 0. Since Q is a semiring,

'1.�/ WD '.a/�1'.a�/ and '2.�/ WD '.� � a/�1'..� � a/�/ are Q-states satisfying
' D ��1'.a/ '1 C ��1'.� � a/ '2: The latter is a convex combination of two Q-
states. Since ' is a pure Q-state, '1 D '. Hence '.ab/ D '.a/'.b/ for b 2 A. ut

The following theorem is the representation theorem for Archimedean quadratic
modules and semirings. It has been discovered, in various versions, by a number of
authors including M.H. Stone, R.V. Kadison, J.-L. Krivine, T. Jacobi, and others.
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Theorem 12.35 Suppose that Q is an Archimedean quadratic module or an
Archimedean semiring of a unital commutative real algebra A. Let a0 2 A. If
'.a0/ > 0 for all ' 2 K.Q/, then a0 2 Q.

Proof Assume to the contrary that a0 … Q. Then, by Proposition 12.32, there is a
pure Q-state ' such that '.a0/ � 0. Since ' is a character by Proposition 12.33,
' 2 K.Q/. Then '.a0/ � 0 contradicts the assumption. ut

For our treatment of the moment problem we will need the following application
of Theorem 12.35. Assertion (i) is usually called the Archimedean Positivstellensatz.

Theorem 12.36 Let f D f f1; : : : ; fkg be a finite subset of RdŒ x �. Suppose that the
quadratic module Q.f/ defined by (12.4) is Archimedean.

(i) If h 2 RdŒ x � satisfies f .x/ > 0 for all x 2 K.f/, then h 2 Q.f/:
(ii) Any Q.f/-positive linear functional L on RdŒ x � is a K.f/-moment functional,

that is, there exists a measure � 2 MC.Rd/ supported on the compact set K.f/
such that L. f / D R f .x/ d�.x/ for f 2 RdŒ x �.

Proof

(i) Set A D RdŒ x � and Q D Q.f/. As noted in Sect. 12.1, characters � of A
correspond to points x� Š .�.x1/; : : : ; �.xd// of Rd and K.Q/ D K.f/. Hence
the assertion follows at once from Theorem 12.35.

(ii) Combine (i) and Haviland’s Theorem 1.12 (ii)!(iv). ut

12.5 The Operator-Theoretic Approach to the Moment
Problem

The spectral theory of self-adjoint operators in Hilbert space is well suited to the
moment problem and provides powerful techniques for the study of this problem.
The technical tool that relates the multidimensional moment problem to Hilbert
space operator theory is the Gelfand–Naimark–Segal construction, briefly the GNS-
construction. We develop this construction first for a general �-algebra (see also
[Sm4, Section 8.6]) and then we specialize to the polynomial algebra.

Suppose that A is a unital (real or complex) �-algebra. Let K D R or K D C.

Definition 12.37 Let .D; h�; �i/ be a unitary space. A �-representation of A on
.D; h�; �i/ is an algebra homomorphism � of A into the algebra L.D/ of linear
operators mapping D into itself such that �.1/' D ' for ' 2 D and

h�.a/';  i D h'; �.a�/ i for a 2 A; ';  2 D: (12.29)

The unitary space D is called the domain of � and denoted by D.�/. A vector
' 2 D is called algebraically cyclic, briefly a-cyclic, for � if D D �.A/'.
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Suppose that L is a positive linear functional on A, that is, L is a linear functional
such that L.a�a/ � 0 for a 2 A. Then, by Lemma 2.3, the Cauchy–Schwarz
inequality holds:

jL.a�b/j2 � L.a�a/L.b�b/ for a; b 2 A: (12.30)

Lemma 12.38 NL WD fa 2 A W L.a�a/ D 0g is a left ideal of the algebra A.

Proof Let a; b 2 NL and x 2 A. Using (12.30) we obtain

jL..xa/�xa/j2 D jL..x�xa/�a/j2 � L..x�xa/�x�xa/L.a�a/ D 0;

so that xa 2 NL. Applying again (12.30) we get L.a�b/ D L.b�a/ D 0. Hence

L..aC b/�.aC b// D L.a�a/C L.b�b/C L.a�b/C L.b�a/ D 0;

so that aC b 2 NL. Obviously, �a 2 NL for � 2 K. ut
Hence there exist a well-defined scalar product h�; �iL on the quotient vector space

DLDA=NL and a well-defined algebra homomorphism �L W A!L.DL/ given by

haCNL; bCNLiL D L.b�a/; �L.a/.bCNL/ D abCNL; a; b 2 A: (12.31)

Let HL denote the Hilbert space completion of the pre-Hilbert space DL. If no
confusion can arise we write h�; �i for h�; �iL and a for a C NL. Then we have
�L.a/b D ab, in particular �L.1/a D a, and

h�L.a/b; ci D L.c�ab/ D L..a�c/�b/ D hb; �L.a
�/ci; a; b; c 2 A: (12.32)

Clearly, DL D �L.A/1. Thus, we have shown that �L is a �-representation of A on
the domain D.�L/ D DL and 1 is an a-cyclic vector for �L. Further, we have

L.a/ D h�L.a/1; 1i for a 2 A: (12.33)

Definition 12.39 �L is called the GNS-representation of A associated with L.

We show that the GNS-representation is unique up to unitary equivalence. Let �
be another �-representation of A with a-cyclic vector ' 2 D.�/ on a dense domain
D.�/ of a Hilbert space G such that L.a/ D h�.a/'; 'i for all a 2 A. For a 2 A,

k�.a/'k2 D h�.a/'; �.a/'i D h�.a�a/'; 'i D L.a�a/

and similarly k�L.a/1k2 D L.a�a/. Hence there is an isometric linear map U given
by U.�.a/'/ D �L.a/1; a 2 A; of D.�/ D �.A/' onto D.�L/ D �L.A/1. Since
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the domains D.�/ and D.�L/ are dense in G and HL, respectively, U extends by
continuity to a unitary operator of G onto HL. For a; b 2 A we derive

U�.a/U�1.�L.b/1/ D U�.a/�.b/' D U�.ab/' D �L.ab/1 D �L.a/.�L.b/1/;

that is, U�.a/U�1' D �L.a/' for ' 2 D.�L/ and a 2 A. By definition, this means
that the �-representations � and �L are unitarily equivalent.

Now we specialize the preceding to the �-algebra CdŒ x � � CŒx1; : : : ; xd� with
involution determined by .xj/� WD xj for j D 1; : : : ; d.

Suppose that L is a positive linear functional on CdŒ x �. Since .xj/� D xj, it
follows from (12.32) that Xj WD �L.xj/ is a symmetric operator on the domain
DL. The operators Xj and Xk commute (because xj and xk commute in CdŒ x �)
and Xj leaves the domain DL invariant (because xjCdŒ x � 	 CdŒ x �). That is,
.X1; : : : ;Xd/ is a d-tuple of pairwise commuting symmetric operators acting on
the dense invariant domain DL D �L.CdŒ x �/1 of the Hilbert space HL. Note
that this d-tuple .X1; : : : ;Xd/ essentially depends on the given positive linear
functional L.

The next theorem is the crucial result of the operator approach to the multidi-
mensional moment problem and it is the counterpart of Theorem 6.1. It relates
solutions of the moment problem to spectral measures of strongly commuting
d-tuples .A1; : : : ;Ad/ of self-adjoint operators which extend our given d-tuple
.X1; : : : ;Xd/.

Theorem 12.40 A positive linear functional L on the �-algebraCdŒ x � is a moment
functional if and only if there exists a d-tuple .A1; : : : ;Ad/ of strongly commuting
self-adjoint operators A1; : : : ;Ad acting on a Hilbert space K such that HL is a
subspace of K and X1 	 A1; : : : ;Xd 	 Ad. If this is fulfilled and E.A1;:::;Ad/ denotes
the spectral measure of the d-tuple .A1; : : : ;Ad/, then �.�/ D hE.A1;:::;Ad/.�/1; 1iK
is a solution of the moment problem for L.

Each solution of the moment problem for L is of this form.

First we explain the notions occurring in this theorem (see [Sm9, Chapter 5] for
the corresponding results and more details).

A d-tuple .A1; : : : ;Ad/ of self-adjoint operators A1; : : : ;Ad acting on a Hilbert
space K is called strongly commuting if for all k; l D 1; : : : ; d; k ¤ l; the resolvents
.Ak � iI/�1 and .Al � iI/�1 commute, or equivalently, the spectral measures EAk and
EAl commute (that is, EAk.M/EAl.N/ D EAl.N/EAk.M/ for all Borel subsets M;N
of R). (If the self-adjoint operators are bounded, strong commutativity and “usual”
commutativity are equivalent.) The spectral theorem states that, for such a d-tuple,
there exists a unique spectral measure E.A1;:::;Ad/ on the Borel �-algebra of Rd such
that

Aj D
Z
Rd
�j dE.A1;:::;Ad/.�1; : : : ; �d/; j D 1; : : : ; d:
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The spectral measure E.A1;:::;Ad/ is the product of spectral measures EA1 ; � � �EAd .
Therefore, if M1; : : : ;Md are Borel subsets of R, then

E.A1;:::;Ad/.M1 � � � � �Md/ D EA1 .M1/ � � �EAd.Md/: (12.34)

Proof of Theorem 12.40 First assume that L is the moment functional and let � be a
representing measure of L. It is well-known and easily checked by the preceding
remarks that the multiplication operators Ak, k D 1; : : : ; d, by the coordinate
functions xk form a d-tuple of strongly commuting self-adjoint operators on the
Hilbert space K WD L2.Rd; �/ such that HL 	 K and Xk 	 Ak for k D 1; : : : ; d.
The spectral measure E WD E.A1;:::;Ad/ of this d-tuple acts by E.M/f D �M � f ,
f 2 L2.Rd; �/, where �M is the characteristic function of the Borel set M 	 Rd.
This implies that hE.M/1; 1iK D �.M/. Thus, �.�/ D hE.�/1; 1iK.

Conversely, suppose that .A1; : : : ;Ad/ is such a d-tuple. By the multidimensional
spectral theorem [Sm9, Theorem 5.23] this d-tuple has a joint spectral measure
E.A1;:::;Ad/. Put �.�/ WD hE.A1;:::;Ad/.�/1; 1iK. Let p 2 CdŒ x �. Since Xk 	 Ak,

p.X1; : : : ;Xd/ 	 p.A1; : : : ;Ad/:

Therefore, since the polynomial 1 belongs to the domain of p.X1; : : : ;Xd/, it is also
in the domain of p.A1; : : : ;Ad/. Then

Z
Rd
p.�/ d�.�/ D

Z
Rd

p.�/ dhE.A1;:::;Ad/.�/1; 1iK D hp.A1; : : : ;Ad/1; 1iK

D hp.X1; : : : ;Xd/1; 1i D h�L. p.x1; : : : ; xd//1; 1i D L. p.x1; : : : ; xd//;

where the second equality follows from the functional calculus and the last from
(12.33). This shows that � is a solution of the moment problem for L. ut
Proposition 12.41 Suppose Q is an Archimedean quadratic module of a commu-
tative real unital algebra A. Let L0 be a Q-positive R-linear functional on A and
let �L be the GNS representation of its extension L to a C-linear functional on the
complexification AC D AC iA. Then all operators �L.a/, a 2 AC, are bounded.

Proof Since
P
.AC/

2 D P
A2 by Lemma 2.17(ii) and

P
A2 	 Q, L is a positive

linear functional on AC, so the GNS representation �L is well-defined.
It sufffices to prove that �L.a/ is bounded for a 2 A. Since Q is Archimedean,

� � a2 2 Q for some � > 0. Let x 2 AC. By Lemma 2.17(ii), x�x.� � a2/ 2 Q and
hence L.x�xa2/ D L0.x�xa2/ � �L0.x�x/ D �L.x�x/, since L0 is Q-positive. Then

k�L.a/�L.x/1k2 D h�L.a/�L.x/1; �L.a/�L.x/1i D h�L..ax/
�ax/1; 1i

D L..ax/�ax/ D L.x�xa2/ � �L.x�x/ D �k�L.x/1k2;

where we used (12.29) and (12.33). That is, �L.a/ is bounded on D.�L/. ut
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We now illustrate the power of the operator approach to moment problems by
giving short proofs of Theorems 12.35 and 12.36.

Proof of Theorem 12.35 Assume to the contrary that a0 … Q. Since Q is
Archimedean, by Proposition 12.11 there is a Q-positive R-linear functional L0
on A such that L0.1/ D 1 and L0.a0/ � 0. Let �L be the GNS representation of its
extension to a C-linear (positive) functional L on the unital commutative complex
�-algebra AC.

Let c 2 Q. If x 2 AC, then x�xc 2 Q by Lemma 2.17(ii), so L0.x�xc/ � 0, and

h�L.c/�L.x/1; �L.x/1i D L.x�xc/ D L0.x
�xc/ � 0 (12.35)

by (12.33). This shows that the operator �L.c/ is nonnegative.
For a 2 AC, the operator �L.a/ is bounded by Proposition 12.41. Let �L.a/

denote its continuous extension to the Hilbert space HL. These operators form a
unital commutative �-algebra of bounded operators. Its completion B is a unital
commutative C�-algebra.

Let � be a character of B. Then Q�.�/ WD �. �L.�/ / is a character of A. If
c 2 Q, then �L.c/ � 0 by (12.35) and so �L.c/ � 0. Hence Q� is Q-positive,
that is, Q� 2 K.Q/. Therefore, Q�.a0/ D �.�L.a0/ / > 0 by the assumption of
Theorem 12.35. Therefore, if we realize B as a C�-algebra of continuous functions
on a compact Hausdorff space, the function corresponding to �L.a0/ is positive, so
it has a positive minimum ı. Then �L.a0/ � ı � I and hence

0 < ı D ıL.1/ D hı1; 1i � h�L.a0/1; 1i D L.a0/ D L0.a0/ � 0;

which is the desired contradiction. ut
Proof of Theorem 12.36(ii) We extend L to a C-linear functional, denoted again
by L, on CdŒ x � and consider the GNS representation �L. By Proposition 12.41,
the symmetric operators �L.x1/; : : : ; �L.xd/ are bounded. Hence their continuous
extensions to the whole Hilbert space HL are pairwise commuting bounded self-
adjoint operators A1; : : : ;Ad. Therefore, by Theorem 12.40, if E denotes the spectral
measure of this d-tuple .A1; : : : ;Ad/, then �.�/ D hE.�/1; 1iHL is a solution of the
moment problem for L.

Since the operatorsAj are bounded, the spectral measure E, hence�, has compact
support. (In fact, supp E 	 Œ�kA1k; kA1k� � � � � � Œ�kAdk; kAdk�.) Hence, since L
is Q.f/-positive by assumption, Proposition 12.18 implies that supp� 	 K.f/. This
shows that L is a K.f/-moment functional. ut

The preceding proof of Theorem 12.36(ii) based on the spectral theorem is
probably the most elegant approach to the moment problem for Archimedean
quadratic modules. Now we derive Theorem 12.36(i) from Theorem 12.36(ii).

Proof of Theorem 12.36(i) We argue in the same manner as in the second proof of
Theorem 12.24 in Sect. 12.3. Assume to the contrary that h … Q.f/. Since Q.f/
is Archimedean, Proposition 12.11 and Theorem 12.36(ii) apply to Q.f/. By these
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results, there is a Q.f/-positive linear functional L on RdŒ x � satisfying L.1/ D 1 and
L.h/ � 0, and this functional is a K.f/-moment functional. Then there is a measure
� 2 MC.Rd/ supported on K.f/ such that L. p/ D R

p d� for p 2 RdŒ x �. (Note
that K.f/ is compact by Corollary 12.9.) Again h.x/ > 0 on K.f/, L.1/ D 1, and
L.h/ � 0 lead to a contradiction. ut

12.6 The Moment Problem for Semi-Algebraic Sets
Contained in Compact Polyhedra

In this section, f1; : : : ; fk are polynomials of RdŒ x � such that the first m polynomials
f1; : : : ; fm, where 1 � m � k, are linear. By a linear polynomial we mean a
polynomial of degree at most one. We abbreviate

Of D f f1; : : : ; fmg; f D f f1; : : : ; fkg:

Then K.Of/ is a semi-algebraic set defined by linear polynomials f1; : : : ; fm; such a
set is called a polyhedron. The general semi-algebraic set K.f/ is contained in the
polyhedron K.Of/:
Definition 12.42 Let P.f/ denote the semiring generated by f1; : : : ; fk, that is, P.f/
consists of all finite sums of terms of the form

˛ f n11 � � � f nkk ; where ˛ � 0; n1; : : : ; nk 2 N0: (12.36)

Note that P.f/ is not a quadratic module in general.
The following lemma goes back to H. Minkowski. In the optimization literature

it is called Farkas’ lemma. We will use it in the proof of Theorem 12.44 below.

Lemma 12.43 Let h; f1; : : : ; fm be linear polynomials of RdŒ x � such that the set
K.Of/ is not empty. If h.x/ � 0 on K.Of/, there exist numbers �0 � 0; : : : ; �m � 0 such
that h D �0 C �1f1 C � � � C �mfm:
Proof Let E be the vector space spanned by the polynomials 1; x1; : : : ; xd and C the
cone in E generated by 1; f1; : : : ; fm. It is easily shown that C is closed in E.

We have to prove that h 2 C. Assume to the contrary that g … C. Then, by
the separation of convex sets (Theorem A.26(ii)), there exists a C-positive linear
functional L on E such that L.h/ < 0. In particular, L.1/ � 0, because 1 2 C.

Without loss of generality we can assume that L.1/ > 0. Indeed, if L.1/ D 0,
we take a point x0 of the nonempty (!) set K. Of / and replace L by L0 D L C "lx0 ,
where lx0 denotes the point evaluation at x0 on E. Then L0 is C-positive as well and
L0.h/ < 0 for small " > 0.

Define a point x WD L.1/�1.L.x1/; : : : ;L.xd// 2 Rd. Then L.1/�1L is the
evaluation lx at the point x for the polynomials x1; : : : ; xd and for 1, hence on the
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whole vector space E. Therefore, fj.x/ D lx. fj/ D L.1/�1L. fj/ � 0 for all j, so that
x 2 K. Of /, and g.x/Dlx.h/DL.1/�1L.h/ < 0. This contradicts the assumption. ut
Theorem 12.44 Let f1; : : : ; fk be polynomials of RdŒ x � such that the polynomials
f1; : : : ; fm; 1 � m � k, are linear. Suppose that the polyhedron K. Of / is compact
and nonempty. Let h 2 RdŒ x �. If h.x/ > 0 for all x 2 K.f/, then h 2 P.f/.

Proof First we show that the semiring P.f/ is Archimedean. Let i 2 f1; : : : ; dg.
Since the set K. Of / is compact, there exists a � > 0 such that � ˙ xi � 0 on
K. Of /. Hence, since K. Of / is nonempty, Lemma 12.43 implies that .�˙ xi/ 2 P.f/.
Therefore, P.f/ is Archimedean by Lemma 12.7(ii).

Now we apply Theorem 12.35 to the Archimedean semiring Q D P.f/ of the
algebra A D RdŒ x �. Clearly, each character � of A is given by a point x 2 Rd. If �
is P.f/-positive, then �. fj/ D fj.x/ � 0 for all j D 1; : : : ; k and therefore x 2 K.f/.
Thus, K.Q/ D K.f/ and Theorem 12.35 yields the assertion. ut
The following theorem is the main result of this section on the moment problem.

Theorem 12.45 Retain the assumptions and the notation of Theorem 12.44. Let L
be a linear functional on RdŒ x �. Then L is a K.f/-moment functional if and only if

L.f n11 � � � f nkk / � 0 for all n1; : : : ; nk 2 N0: (12.37)

Proof The only if part is obvious. Conversely, suppose that (12.37) is satisfied. By
the definition of the semiring P.f/, (12.37) means that L is P.f/-positive. Hence, by
Theorem 12.44 and Haviland’s Theorem 1.12, L is a K.f/-moment functional. ut

Let us consider the important special case m D k. Suppose that K.f/ is
a nonempty compact set. Since k D m, all polynomials f1; : : : ; fk are linear.
Hence K.f/ D K. Of / is a polyhedron. Then, by Theorem 12.45, (12.37) is a
solvability condition for the moment problem of the compact polyhedron K.f/ and
Theorem 12.44 gives a description of strictly positive polynomials on K.f/.

12.7 Examples and Applications

Throughout this section, f D f f1; : : : ; fkg is a finite subset of RdŒ x � and L denotes a
linear functional on RdŒ x �:

If L is a K.f/-moment functional, it is obviously T.f/-positive, Q.f/-positive, and
P.f/-positive. Theorems 12.25, 12.36, and 12.45 deal with the converse implication
and are the main solvability criteria for the moment problem proved in this chapter.

First we discuss Theorems 12.25 and 12.36(ii). Theorem 12.25 applies to each
compact semi-algebraic set K.f/ and implies that L is a K.f/-moment functional if
and only if it is T.f/-positive. For Theorem 12.36(ii) the compactness of the set K.f/
is not sufficient; it requires that the quadratic module Q.f/ is Archimedean. In this
case, L is a K.f/-moment functional if and only if it is Q.f/-positive.
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Example 12.46 Let us begin with a single polynomial f 2 RdŒ x � for which the set
K. f / D fx 2 Rd W f .x/ � 0g is compact. (A simple example is the d-ellipsoid
given by f .x/ D 1� a1x21 � � � � � adx2d, where a1 > 0; : : : ; ad > 0.) Clearly, T. f / D
Q. f /. Then, L is a K. f /-moment functional if and only if it is T. f /-positive, or
equivalently, if L and Lf are positive functionals on RdŒ x �.

Now we add further polynomials f2; : : : ; fk and set f D f f ; f2; : : : ; fkg. (For
instance, one may take coordinate functions as fj D xl.) Since T. f / is Archimedean
(by Proposition 12.22, because K. f / is compact), so is the quadratic module Q.f/.
Therefore, L is a K.f/-moment functional if and only if it is Q. f /-positive, or
equivalently, if L;Lf ;Lf2 ; : : : ;Lfk are positive functionals on RdŒ x �. ı
Example 12.47 (d-dimensional compact interval Œa1; b1��� � ��Œad; bd�) Let aj; bj 2
R, aj < bj; and set f2j�1 WD bj � xj, f2j WD xj � aj; for j D 1; : : : ; d. Then the semi-
algebraic set K.f/ for f WD f f1; : : : ; f2dg is the d-dimensional interval Œa1; b1�� � � ��
Œad; bd�.

Put �j D jajj C jbjj: Then �j � xj D f2j�1 C �j � bj and �j C xj D f2j C �j C aj
are Q.f/, so each xj is a bounded element with respect to the quadratic module Q.f/.
Hence Q.f/ is Archimedean by Lemma 12.7(ii).

Thus, L is a K.f/-moment functional if and only if it is Q. f /-positive, or
equivalently, if Lf1 ;Lf2 ; : : : ;Lfk are positive functionals, that is,

L..bj�xj/p2/ � 0 and L..xj�aj/p2/ � 0 for j D 1; : : : ; d; p 2 RdŒ x �:
(12.38)

Clearly, (12.38) implies that L itself is positive, since L D .b1�a1/�1.Lf1CLf2 /. ı
Example 12.48 (1-dimensional interval Œa; b�) Let a < b, a; b 2 R and let l; n 2 N

be odd. We set f .x/ WD .b� x/l.x�a/n. Then K.f / D Œa; b� and T.f / DPRŒx�2C
f
P

RŒx�2. Hence, by Theorem 12.25, a linear functional L on RŒx� is an Œa; b�-
moment functional if and only if L and Lf are positive functionals on RŒx�.

This result extends Hausdorff’s Theorem 3.13. It should be noted that this
solvability criterion holds for arbitrary (!) odd numbers l and n, while the equality
Pos.Œa; b�/ D T. f / is only true if l D n D 1, see Exercise 3.4 b. in Chap. 3. ı
Example 12.49 (Simplex in Rd; d � 2) Let f1 D x1; : : : ; fd D xd; fdC1 D
1 �Pd

iD1 xi; k D dC 1. Clearly, K.f/ is the simplex

Kd D fx 2 Rd W x1 � 0; : : : ; xd � 0; x1 C � � � C xd � 1 g:

Note that 1 � xj D fdC1 C P
i¤j fi and 1 C xj D 1 C fj. Therefore, 1 ˙ xj 2

Q.f/ and 1˙ xj 2 P.f/. Hence, by Lemma 12.7(ii), the quadratic module Q.f/ and
the semiring P.f/ are Archimedean. Therefore, Theorem 12.36 applies to Q.f/ and
Theorems 12.44 and 12.45 apply to P.f/. We restate only the results on the moment
problem.

By Theorems 12.36(ii) and 12.45, L is a Kd–moment functional if and only if

L.xip
2/ � 0; i D 1; � � � ; d; and L..1� .x1 C x2 C � � � C xd//p

2/ � 0 for p 2 RdŒ x �;
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or equivalently,

L.xn11 : : : x
nd
d .1 � .x1 C � � � C xd//

ndC1 / � 0 for n1; : : : ; ndC1 2 N0: ut ı

Example 12.50 (Standard simplex �d in Rd) Let f1 D x1; : : : ; fd D xd; fdC1 D
1 �Pd

iD1 xi; fdC2 D �fdC1; k D d C 2: Then the semi-algebraic set K.f/ is the
standard simplex

�d D fx 2 Rd W x1 � 0; : : : ; xd � 0; x1 C � � � C xd D 1g:

Let P0 denote the polynomials of RdŒ x � with nonnegative coefficients and I the
ideal generated by 1 � .x1 C � � � C xd/. Then P WD P0 C I is a semiring of RdŒ x �.
Since 1˙ xj 2 P , P is Archimedean. The characters of RdŒ x � are the evaluations at
points of Rd. Obviously, x 2 Rd gives a P-positive character if and only if x 2 �d.

Let f 2 RdŒ x � be such that f .x/ > 0 on �d. Then, f 2 P by Theorem 12.35, so

f .x/ D g.x/C h.x/.1� .x1 C � � � C xd//; where g 2 P0; h 2 RdŒ x �: (12.39)

From Theorem 12.45 it follows that L is a �d-moment functional if and only if

L.xn11 : : : x
nd
d / � 0; L.xn11 : : : xndd .1�.x1C : : :Cxd//r/ D 0; n1; : : : ; nd 2 N0; r 2 N: ı

From the preceding example it is only a small step to derive an elegant proof of
the following classical theorem of G. Polya.

Proposition 12.51 Suppose that f 2 RdŒ x � is a homogeneous polynomial such that
f .x/ > 0 for all x 2 Rdnf0g, x1 � 0; : : : ; xd � 0. Then there exists an n 2 N such
that all coefficients of the polynomial .x1 C � � � C xd/nf .x/ are nonnegative.

Proof We use Example 12.50. As noted therein, Theorem 12.35 implies that f
is of the form (12.39). We replace in (12.39) each variable xj; j D 1; : : : ; d; by
xj.
Pd

iD1 xi/�1. Since .1 �Pj xj.
P

i xi/
�1/ D 1 � 1 D 0; the second summand in

(12.39) vanishes after this substitution. Hence, because f is homogeneous, (12.39)
yields

� X
i
xi
��m

f .x/ D g
�
x1
� X

i
xi
��1
; : : : ; xd

� X
i
xi
��1�

; (12.40)

where m D deg. f /. Since g 2 P0, g.x/ has only nonnegative coefficients.
Therefore, after multiplying (12.40) by .

P
i xi/

nCm with n sufficiently large to clear
the denominators, we obtain the assertion. ut

Now we treat two examples which are applications of Theorem 12.45.

Example 12.52 Œ�1; 1�d
Let k D m D 2d and f1 D 1 � x1; f2 D 1C x1; : : : ; f2d�1 D 1 � xd; f2d D 1C xd:

Then K. Of / D K. f / D Œ�1; 1�d. Therefore, by Theorem 12.45, a linear functional
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L on RdŒxd� is a Œ�1; 1�d-moment functional if and only if

L..1 � x1/
n1 .1C x1/

n2 � � � .1 � xd/
n2d�1 .1C xd/

n2d/ � 0 for n1; : : : ; n2d 2 N0: ı

Example 12.53 (Multidimensional Hausdorff moment problem on Œ0; 1�d) Set f1 D
x1; f2 D 1 � x1; : : : ; f2d�1 D xd; f2d D 1 � xd; k D 2d. Then K. Of / D Œ0; 1�d. Let
s D .sn/n2Nd

0
be a multisequence. We define the shift Ej of the j-th index by

.Ejs/m D s.m1;:::;mj�1;mjC1;mjC1;:::;md/; m 2 Nd
0:

Proposition 12.54 The following five statements are equivalent:

(i) s is a Hausdorff moment sequence on Œ0; 1�d.
(ii) Ls is a Œ�1; 1�d-moment functional on RdŒ x �:

(iii) Ls.x
m1
1 .1 � x1/n1 � � � xmd

d .1 � xd/nd / � 0 for all n;m 2 Nd
0.

(iv) ..I � E1/n1 : : : .I � Ed/
nd s/m � 0 for all n;m 2 Nd

0.
(v) X

j2Nd
0 ;j�n

.�1/jjj
 
n1
j1

!
� � �
 
nd
jd

!
smCj � 0

for all n;m 2 Nd
0. Here jjj WD j1 C � � � C jd and j � n means that ji � ni for

i D 1; : : : ; d.
Proof (i)$(ii) holds by definition. Theorem 12.45 yields (ii)$(iii). Let n;m 2 Nd

0.
We repeat the computation from the proof of Theorem 3.15 and derive

Ls.x
m1
1 .1 � x1/

n1 � � � xmd
d .1 � xd/

nd / D ..I � E1/
n1 : : : .I � Ed/

nd s/m

D
X

j2Nd
0 ;j�n

.�1/jjj
 
n1
j1

!
� � �
 
nd
jd

!
smCj:

This identity implies the equivalence of conditions (iii)–(v). ut ı

12.8 Exercises

1. Suppose that Q is a quadratic module of a commutative real algebra A. Show that
Q \ .�Q/ is an ideal of A. This ideal is called the support ideal of Q.

2. Let K be a closed subset of Rd. Show that Pos.K/ is saturated.
3. Formulate solvability criteria in terms of localized functionals and in terms of

d-sequences for the following sets.
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a. Unit ball of Rd.
b. fx 2 Rd W x21 C � � � C x2d � r2; x1 � 0; : : : ; xd � 0g.
c. f.x1; x2; x3; x4/ 2 R4 W x21 C x22 � 1; x23 C x24 � 1g.
d. f.x1; x2; x3/ 2 R3 W x21 C x22 C x23 � 1; x1 C x2 C x3 � 1g:
e. fx 2 R2d W x21 C x22 D 1; : : : ; x22d�1 C x22d D 1g.

4. Decide whether or not the following quadratic modules Q.f/ are Archimedean.

a. f1 D x1; f2 D x2; f3 D 1 � x1x2; f4 D 4 � x1x2.
b. f1 D x1; f2 D x2; f3 D 1 � x1 � x2:
c. f1 D x1; f2 D x2; f3 D 1 � x1x2.

5. Let f1; : : : ; fk; g1; : : : ; gl 2 RdŒ x �. Set g D . f1; : : : ; fk; g1; : : : ; gl/, f D
. f1; : : : ; fk/. Suppose that Q.f/ is Archimedean. Show that each Q.g/-positive
linear functional L is a determinate K.g/-moment functional.

6. Formulate solvability criteria for the moment problem of the following semi-
algebraic sets K.f/.

a. f1 D x21 C � � � C x2d; f2 D x1; : : : ; fk D xk�1, where 2 � k � dC 1.
b. f1 D x1; f2 D 2 � x1; f3 D x2; f4 D 2 � x2; f5 D x21 � x2; where d D 2.
c. f1 D x21 C x22; f2 D ax1 C bx2; f3 D x2; where d D 2; a; b 2 R.

7. Let d D 2, f1 D 1�x1; f2 D 1Cx1; f3 D 1�x2; f4 D 1Cx2; f5 D 1�x21�x22 and f D
. f1; f2; f3; f4; f5/: Describe the set K. f / and use Theorem 12.45 to characterize
K. f /-moment functionals.

8. Find a d-dimensional version of Exercise 7, where d � 3:
9. (Reznick’s theorem [Re2])

Let f 2 RdŒ x � be a homogeneous polynomial such that f .x/ > 0 for all
x 2 Rd, x ¤ 0. Prove that there exists an n 2 N such that

.x21 C � � � C x2d/
nf .x/ 2

X
RdŒ x �

2:

Hint: Mimic the proof of Proposition 12.51: Let T denote the preorderingP
RdŒ x �2 C I, where I is the ideal generated by 1 � .x21 C � � � C x2d/. Show

that T-positive characters corresponds to points of the unit sphere, substitute
xj.
P

i x
2
i /

�1 for xj, apply Theorem 12.44 to T, and clear denominators.

12.9 Notes

The interplay between real algebraic geometry and the moment problem for
compact semi-algebraic sets and the corresponding Theorems 12.24 and 12.25 were
discovered by the author in [Sm6]. A small gap in the proof of [Sm6, Corollary 3]
(observed by A. Prestel) was immediately repaired by the reasoning of the above
proof of Proposition 12.22 (taken from [Sm8, Proposition 18]).
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The fact that the preordering is Archimedean in the compact case was first noted
by T. Wörmann [Wö]. An algorithmic proof of Theorem 12.24 was developed by M.
Schweighofer [Sw1, Sw2].

The operator-theoretic proof of Theorem 12.36(ii) given above is long known
among operator theorists; it was used in [Sm6]. The operator-theoretic approach to
the multidimensional moment theory was investigated by F. Vasilescu [Vs1, Vs2].

The representation theorem for Archimedean modules (Theorem 12.35) has a
long history. It was proved in various versions by M.H. Stone [Stn], R.V. Kadison
[Kd], J.-L. Krivine [Kv1], E. Becker and N. Schwartz [BS], M. Putinar [Pu2], and
T. Jacobi [Jc]. The version for quadratic modules is due to Jacobi [Jc], while the
version for semirings was proved much earlier by Krivine [Kv1]. A more general
version and a detailed discussion can be found in [Ms1, Section 5.4]. Lemma 12.34
appeared in [BSS]. Putinar [Pu2] has proved that a finitely generated quadratic
module Q in RdŒ x � is Archimedean if (and only if) there exists a polynomial f 2 Q
such that the set fx 2 Rd W f .x/ � 0g is compact.

Corollary 12.29 and its non-compact version in Exercise 14.11 below are from
[Ls3]. The moment problem with bounded densities is usually called the Markov
moment problem or L-moment problem. In dimension one it goes back to A.A.
Markov [Mv1, Mv2], see [AK, Kr2]. An interesting more recent work is [DF]. The
multidimensional case was studied in [Pu1, Pu3, Pu5, Ls3, Ls4].

For compact polyhedra with nonempty interiors Theorem 12.44 was proved by D.
Handelman [Hn]. A special case was treated earlier by J.-L. Krivine [Kv2]. A related
version can be found in [Cs, Theorem 4]. The general form presented above is taken
from [PD, Theorem 5.4.6]. Polya’s theorem was proved in [P]. Polya’s original proof
is elementary; the elegant proof given in the text is from [Wö]. Proposition 12.54 is
a classical result obtained in [HS]. It should be noted that Reznick’s theorem [Re2]
is an immediate consequence of the strict Positivstellensatz, see [Sr3, 2.1.8].

Reconstructing the shape of subsets of Rd from its moments with respect to the
Lebesgue measure is another interesting topic, see e.g. [GHPP] and [GLPR].



Chapter 13
The Moment Problem on Closed Semi-Algebraic
Sets: Existence

The main subject of this chapter and the next is the moment problem on closed semi-
algebraic sets. For a compact semi-algebraic set K.f/ a very satisfactory solution
of the existence problem in terms of the positivity on the preordering T.f/ was
given by Theorem 12.25. This result holds for any finite set f of generators which
defines the semi-algebraic set K.f/. The representing measure is always unique and
supported on K.f/. All these features of the compact case are no longer true for
noncompact sets. In this chapter we are only concerned with existence problems,
while determinacy questions are studied in the next chapter.

Let us consider a semi-algebraic set K.f/. Having Theorem 12.25 in mind it
is natural to ask when the positivity of a linear functional L on the preordering
T.f/ implies that L is a moment functional. In this case we will say that T.f/
has the moment property (MP). If at least one representing measure has support
contained in K.f/, then T.f/ obeys the strong moment property (SMP). To study
when these properties hold or fail for a preordering or a quadratic module is the
main theme in this chapter. The fundamental result in this respect is the fibre
theorem (Theorem 13.10). It is stated and discussed in Sect. 13.3, but the long
proof of its main implication is given only in Sect. 13.10. The fibre theorem reduces
moment properties of T.f/ to those for fibre preorderings built by means of bounded
polynomials on the set K.f/. Most of the known general affirmative results on the
moment problem for closed semi-algebraic sets can be derived from this theorem.
In Sects. 13.4–13.7 we develop a number of applications of the fibre theorem and
provide classes of preorderings satisfying (MP) or (SMP).

On the other hand, one of the new difficulties in dimensions d � 2 is that the
preordering

P
RdŒ x �2 does not satisfy (MP), that is, there exist positive functionals

which are not moment functionals. The reason for this is the existence of positive
polynomials in two variables which are not sums of squares of polynomials.
Section 13.1 deals with this matter. In Sect. 13.8 the concept of stability is used
to prove the closedness of quadratic modules and to derive classes of quadratic
modules for which (MP) fails. The moment problem on some cubics is studied in
Sect. 13.9.
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13.1 Positive Polynomials and Sums of Squares

In this section we begin with some simple facts on sums of squares. Then we develop
Motzkin’s example of a positive polynomial which is not a sum of squares and use
it to construct a positive linear functional which is not a moment functional.

We begin with some simple properties of sums of squares of polynomials.

Lemma 13.1 Let p; p1; : : : ; pr 2 RdŒ x � and p ¤ 0. If p DPr
jD1 p2j , then

deg. p/ D 2maxfdeg. pj/ W j D 1; : : : ; rg:

Proof Let n denote the maximum of deg. pj/, j D 1; : : : ; r: Clearly, deg. p/ � 2n.
We denote by pnj the homogeneous part of degree n of pj. (It may happen that pnj D
0 for some j.) Then p2n WDP

j p
2
nj is the homogeneous part of degree 2n of p. Since

n D max deg. pj/, there is one index, say j D 1, with pn1 ¤ 0. Then p2n.x/ � p2n1.x/
on Rd and pn1 ¤ 0. Thus p2n ¤ 0 and hence deg. p/ � 2n. ut

Recall that RdŒ x �m � RŒx1; : : : ; xd�m denotes the vector space of polynomials
p 2 RdŒ x � with deg. p/ � m and

P
RŒx�2n is the cone of sums of squares

P
j p
2
j of

polynomials pj 2 RdŒ x �n. Then, by Lemma 13.1,

RdŒ x �2n \
X

RdŒ x �
2 D

X
RdŒ x �

2
n for n 2 N: (13.1)

The vector space RdŒ x �m has dimension d.m/ WD �dCm
m

�
. A vector space basis of

RdŒ x �m is given by the monomials

x˛ D x˛11 � � � x˛dd ; where ˛ 2 Nm WD f˛ 2 Nd
0 W j˛j WD ˛1 C � � � C ˛d � mg:

We order the basis elements of RdŒ x �n in some fixed way and write them as a
column vector xn. For instance, a possible “natural” ordering is

xn D .1; x1; : : : ; xd; x21; x1x2; : : : ; x2d; x31; : : : ; xn1; : : : ; xnd/T : (13.2)

Proposition 13.2 A polynomial f 2 RdŒ x � is in
P

RdŒ x �2n if and only if there exists
a positive semidefinite matrix G D .a˛;ˇ/˛;ˇ2Nn with real entries such that

f .x/ D .xn/TGxn �
X
˛;ˇ2Nn

a˛;ˇx
˛Cˇ: (13.3)

Proof First suppose that f D Pr
jD1 f 2j , where fj 2 RdŒ x �n. We write fj as fj.x/ DP

˛2Nn
fj;˛x˛ and define

a˛;ˇ WD
rX

jD1
fj;˛fj;ˇ and G WD .a˛;ˇ/˛;ˇ2Nn : (13.4)
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Then

f .x/ D
rX

jD1
fj.x/

2 D
rX

jD1

X
˛;ˇ2Nn

fj;˛fj;ˇ x
˛Cˇ D

X
˛;ˇ2Nn

a˛;ˇx
˛Cˇ D .xn/TGxn

which proves (13.3). Obviously, the matrix G is real and symmetric. To prove that
it is positive semidefinite we take a column vector y 2 Rd.n/ and compute

yTGy D
X
˛;ˇ2Nn

a˛;ˇy˛yˇ D
X
˛;ˇ2Nn

rX
jD1

fj;˛fj;ˇy˛yˇ D
rX

jD1

�X
˛2Nn

fj;˛y˛

�2
� 0:

Conversely, assume that f .x/ D .xn/TGxn, where G is a real positive semidefinite
matrix. Let r D rankG. The assertion is trivial for G D 0, so we can assume that
r 2 N. Let D be the diagonal matrix with nonzero, hence positive, eigenvalues
�1; : : : ; �r of G and C the matrix with columns u1; : : : ; ur of corresponding
orthonormal eigenvectors. Put B WD C

p
D . Then B 2 Md.n/;r.R/ and

G D
rX

jD1
�juj.uj/

T D CDCT D BBT :

Here the first equality holds by the spectral theorem for hermitian matrices, see e.g.
(A.12). Setting fj.x/ DP˛2Nn

b˛;jx˛, we have fj 2 RdŒ x �n and

f .x/ D .xn/TBBTxn D
X

˛;ˇ2Nn

rX
jD1

x˛b˛;jbˇ;jx
ˇ D

rX
jD1

� X
˛2Nn

b˛;jx
˛

�2
D

rX
jD1

fj.x/
2: ut

Let f 2 PRdŒ x �2n: The matrix G defined by (13.4) is called the Gram matrix
associated with the sum of squares (abbreviated sos) representation f D Pr

jD1 f 2j
and formula (13.3) is the correspondingGram matrix representation. Gram matrices
are a useful tool for detecting possible sos representations of polynomials, see
Example 16.4. If f .x/ D P

� f�x
� 2 P

RŒx�2n, comparing the coefficients of x�

in (13.3) yields

X
˛;ˇ2Nn ;˛CˇD�

a˛;ˇ D f� ; where � 2 N2n: (13.5)

The smallest number r appearing in all possible sos representations f D Pr
jD1 f 2j

of f is called the length of f . The preceding proof shows that the length of f is the
smallest rank of all Gram matrices associated with f , so in particular, it is less than
or equal to d.n/. That is, we have

Corollary 13.3 Each polynomial f 2PRdŒ x �2n is a sum of at most d.n/ D �dCn
n

�
squares of polynomials of RdŒ x �n.
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The assertion of Corollary 13.3 also follows from Carathéodory’s theorem A.35.
Obviously,

P
RdŒ x �2 is a subset of the cone

Pos.Rd/ D fp 2 RdŒ x � W p.x/ � 0 for x 2 Rdg:

For d D 1 both sets coincides as shown by Proposition 3.1, but for d � 2 we haveP
RdŒ x �2 ¤ Pos.Rd/. This was already proved in 1888 by D. Hilbert [H1], but the

first explicit example was given only in 1966 by T. Motzkin [Mo]. Another famous
example, the Robinson polynomial, will appear in Section 19.2.

Proposition 13.4 Suppose that 0 < c � 3. Then the polynomial

pc.x1; x2/ WD x21x
2
2.x

2
1 C x22 � c/C 1 (13.6)

is in Pos.R2/nPRŒx1; x2�2, that is, pc is nonnegative on R2, but it is not a sum of
squares of polynomials.

Proof From the arithmetic-geometric mean inequality we obtain

x41x
2
2 C x21x

4
2 C 1 � 3 3

q
x41x

2
2 � x21x42 � 1 D 3x21x22 � cx21x

2
2;

which in turn implies that pc.x1; x2/ � 0 for all .x1; x2/ 2 R2.
Now we prove that pc … PRŒx1; x2�2. Assume to the contrary that pc D P

j q
2
j ;

where qj 2 RŒx1; x2�. Then we have deg.qj/ � 3 by Lemma 13.1. Since pc.0; x2/ D
pc.x1; 0/ D 1, it follows that the polynomials qj.0; x2/ and qj.x1; 0/ in one variable
are constant. Hence each qj is of the form �jC x1x2rj, where �j 2 R and rj 2 RdŒ x �
is linear. Comparing the coefficients of x21x

2
2 in pc DPj q

2
j yields

P
j rj.0/

2 D �c.
Since c > 0, this is a contradiction. ut

Motzkin’s original example is p3. Since p3.˙1;˙1/ D 0 and p3 � 0 on R2, the
mimimum of p3 on R2 is zero. From the identity

pc.
p
cx1;
p
cx2/ D c3

27
p3.
p
3x1;
p
3x2/C 1 � c3

27

it follows that the minimum of pc on R2 is 1 � c3

27
> 0 if 0 < c < 3.

Using the polynomial p1 we now construct (by some computations) an explicit
example of a positive linear functional on RŒx1; x2� which is not a moment
functional. The existence of such a functional is obtained later also by separation
arguments (see Example 13.52 below).

Let L2 denote the linear functional on RŒx1; x2� defined by

L2.x
k
1x

l
2/ D jm.k=2;l=2/ if k and l are even; L2.x

k
1x

l
2/ D 0 otherwise;
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where m is the bijection of N2
0 onto N and jn are the numbers defined by

m.0; 0/ D 1;m.1; 0/ D 5;m.0; 1/ D 6;m.2; 0/ D 7;
m.0; 2/ D 8;m.3; 0/ D 9;m.0; 3/ D 10;
m.k; l/ D lC 1C .kC l/.kC lC 1/=2 for .k; l/ 2 N2

0; kC l � 4;
j1 D j2 D j3 D 1; j4 D 4; jn D nŠ.nC1/Š for n � 5:

Proposition 13.5 L2 is a positive functional which is not a moment functional.

Proof First we prove that L2. f 2/ > 0 for all f 2 RŒx1; x2�; p ¤ 0. Let us define
˛m.k;l/;m.r;s/ WD L2.x

kCr
1 xlCs

2 /: If f DPk;l ck;lx
k
1x

l
2, then

L2. f
2/ D

X
k;l;r;s

˛m.k;l/;m.r;s/ck;lcr;s : (13.7)

Hence it is enough to show that the quadratic form in (13.7) is positive definite. For
this it suffices to prove that An WD det .˛k;l/nk;lD1 > 0 for all n 2 N.

We prove by induction that An � 1. We obtain A1 D A2 D A3 D 1 and A4 D 4.
Assume that n � 5 and An�1 � 1. A simple computation shows that

max.m.k; l/;m.r; s// > m..kC r/=2; .lC s/=2/ if .k; l/ ¤ .r; s/

and the right-hand side is defined. This implies j˛k;lj � jn�1 for k � n; l � n;
.k; l/ ¤ .n; n/ and k; l; n 2 N. Developing the determinant An after the n-th row by
using these facts and the induction hypothesis An�1 � 1 we derive

An � jnAn�1 � .n � 1/.n � 1/Šjnn�1 � jn � nŠjnn�1 C 1 � nŠ.nC1/Š � nŠ.n � 1/ŠnŠ C 1 � 1:

This completes the induction proof. Thus, in particular, L2. f 2/ � 0 for f 2
RŒx1; x2�.

A direct verification yields L2. p1/ D �1. Therefore, since p1 � 0 on R2, L2 is
not a moment functional. ut

Clearly, Ld. f / WD L2. f .x1; x2; 0; : : : ; 0//, f 2 RdŒ x �, defines a positive linear
functional on RdŒ x �, d � 2; which is not a moment functional. An elegant example
of this kind for d D 2 is sketched in Exercise 13.3.

The preceding examples can be easily used to construct similar examples for the
quarter plane and the Stieltjes moment problem in R2. Put

qc.x1; x2/ WD x1x2.x1 C x2 � c/C 1; c 2 .0; 3�: (13.8)
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Then pc.x1; x2/ D qc.x21; x
2
2/. Since pc � 0 on R2, it follows that qc � 0 on the

positive quarter plane R2C. But qc does not belong to the preordering

T.x1; x2/ D
X

RŒx1; x2�
2 C x1

X
RŒx1; x2�

2 C x2
X

RŒx1; x2�
2 C x1x2

X
RŒx1; x2�

2:

(If qc were in T.x1; x2/, then, replacing x1 by x21 and x2 by x22, it would follow that
pc 2PRŒx1; x2�2, which is a contradiction.)

Define L0
2. f / D L2. f .x21; x

2
2// for f 2 RŒx1; x2�. Then L0

2 is a T.x1; x2/-positive
linear functional on RŒx1; x2�. Since L0.q1/ D L2. p1/ < 0, L0

2 cannot be given by a
Radon measure supported on the set K.x1; x2/ D R2C.

13.2 Properties (MP) and (SMP)

In this section, we suppose that A is a finitely generated commutative real unital
algebra. Recall that in our terminology Radon measures are always nonnegative.

As discussed in Sect. 1.1.2, A is (isomorphic to) the quotient algebra RdŒ x �=J
for some ideal J of RdŒ x �, the set of characters of A is the real algebraic variety
OA D Z.J /, and OA is a locally compact Hausdorff space. For a quadratic module Q of
A we recall the definition K.Q/ WD fx 2 OA W f .x/ � 0 ; f 2 Qg from (12.10). Further,
let MC. OA/ denote the Radon measures � on OA such that each f 2 A is �-integrable.
We will use these notions and also the basics of real algebraic geometry developed
in Sect. 12.1 without mention in what follows.

Our main concepts are introduced in the following definition.

Definition 13.6 A quadratic module Q of A has the

� moment property (MP) if each Q-positive linear functional L on A is a moment
functional, that is, there exists a Radon measure � 2MC. OA/ such that

L. f / D
Z

OA
f .x/ d�.x/ for all f 2 A; (13.9)

� strong moment property (SMP) if each Q-positive linear functional L on A is a
K.Q/–moment functional, that is, there is a Radon measure � 2 MC. OA/ such
that supp� 	 K.Q/ and (13.9) holds.

For d � 2 the preordering
P

RdŒ x �2 does not satisfy (MP); an explicit example
was given by Proposition 13.5. Obviously, (SMP) implies (MP). That (MP) does not
imply (SMP) is shown by the following simple example in dimension d D 1.

Example 13.7 T.x3/ DPRŒx�2 C x3
P

RŒx�2 satisfies (MP), but not (SMP).
Indeed, since

P
RŒx�2 	 T.x3/, the preordering T.x3/ has (MP) by Hamburger’s

theorem 3.8. It remains to show that (SMP) fails.
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Let s be a Stieltjes moment sequence which is Hamburger indeterminate (see
e.g. the examples in Sect. 4.3). There exists an N-extremal measure� for s such that
supp� contains a negative number and .�"; "/\ supp� D ; for some " > 0. (The
existence of such a measure follows easily from Theorem 7.7: There is a unique N-
extremal measure which has 0 in its support. Any other N-extremal measure whose
support contains a negative number has the desired properties.)

We define a measure � 2 MC.R/ by d� D x�2d� and a positive linear
functional L on RŒx� by L. p/ D R

p d�. Since s is a Stieltjes moment sequence,
we have L.x3p2/ D R xp2 d� D Ls.xp2/ � 0 for p 2 RŒx�. Thus, L is T.x3/-positive.

On the other hand, since � is N-extremal, CŒx� is dense in L2.R; �/.
Because .1 C x2/d� D .1 C x�2/d� � .1 C "�2/d�, CŒx� is also dense in
L2.R; .1 C x2/d�/. Hence the measure � is determinate by Corollary 6.11, that is,
� is the only representing measure for L. Since �, hence �, has a negative number
in its support, L has no representing measure supported on RC D K.x3/. This
shows that T.x3/ does not obey (SMP). Another proof of this fact is given in
Example 13.18 below. Note that Stieltjes’ theorem 3.12 implies that the functional
L is not T.x/-positive. ı

The preordering of each compact semi-algebraic set satisfies (SMP) (by The-
orem 12.25) and likewise so does each Archimedean quadratic module (by The-
orem 12.36). However, deciding whether or not preorderings for noncompact
semi-algebraic sets obey (SMP) or (MP) is much more subtle and the fibre theorem
stated below deals with this question.

Suppose that Q is a quadratic module of A. Let Q denote the closure of Q in
the finest locally convex topology of the vector space A, see Appendix A.5 for the
definition and some properties of this topology. Each linear functional or linear
mapping is continuous in this topology. Applying the latter to the multiplication
A�A! A it follows that Q is also a quadratic module and Q is a preordering when
Q is a preordering.

The next lemma gives a simple “dual” characterization of Q .

Lemma 13.8 Q is the set of all f 2 A such that L. f / � 0 for all Q-positive linear
functionals L on A.

Proof Let QQ denote the set of such elements f 2 A. Suppose f 2 A and f … Q. Then,
since Q is closed in the finest locally convex topology, by the separation theorem for
convex sets there is a Q-positive, hence Q-positive, linear functional L on A such that
L. f / < 0. Thus, f … QQ. This proves that QQ 	 Q.

Conversely, let L be a Q-positive linear functional. Since L is continuous in the
finest locally convex topology, L is also Q-positive. Hence L. f / � 0 for f 2 Q, so
that Q 	 QQ. ut

Recall that Qsat D Pos.K.Q// is the saturation of Q. Clearly, Q 	 Pos.K.Q//
and Pos.K.Q// is closed in the finest locally convex topology, so we have

Q 	 Q 	 Qsat � Pos.K.Q//:
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Haviland’s theorem 1.14 leads to the following reformulations of the properties
(SMP) and (MP) in terms of the closure Q of Q in the finest locally convex topology.

Proposition 13.9

(i) (SMP) holds if and only if Q D Qsat � Pos.K.Q//.
(ii) (MP) holds if and only if Q D Pos. OA/:
Proof We carry out the proof of (i); (ii) is proved by the same reasoning.

Suppose that Q D Pos.K.Q//: Let L be a Q-positive linear functional. Then L
is Q-positive and hence Pos.K.Q//-positive. Thus, by Haviland’s Theorem 1.14, L
comes from a measure supported on K.Q/: This means that Q obeys (SMP).

Now assume that Q ¤ Pos.K.Q//. Let f0 2 Pos.K.Q//nQ. Then, by
Lemma 13.8 there is Q-positive linear functional L such that L. f0/ < 0. Since
f0 � 0 on K.Q/ and L. f0/ < 0, L cannot be given by a positive measure supported
on K.Q/. That is, (SMP) does not hold. ut

13.3 The Fibre Theorem

In this section, A is a finitely generated commutative real unital algebra.
Let T be a finitely generated preordering of A and let f D f f1; : : : ; fkg be a set of

generators of T. Further, we fix an m-tuple h D .h1; : : : ; hm/ of elements hk 2 A.
Let h.K.T// denote the closure of the subset h.K.T// of Rm defined by

h.K.T// D f.h1.x/; : : : ; hm.x// W x 2 K.T/g: (13.10)

For � D .�1; : : : ; �r/ 2 Rm we denote by K.T/� the subset of OA given by

K.T/� D fx 2 K.T/ W h1.x/ D �1; : : : ; hm.x/ D �mg

and by T� the preordering of A generated by the sequence

f.�/ WD f f1; : : : ; fk; h1 � �1; �1 � h1; : : : ; hm � �m; �m � hmg:

Clearly, K.T�/ D K.T/� and K.T/ is the disjoint union of fibre set K.T/�, where
� 2 h.K.T//.

Let I� denote the ideal of A generated by h1��1; : : : ; hm��m. Then, by formula
(12.9) in Example 12.4,

T� D T C I�

and the preordering T�=I� of the quotient algebra A=I� is generated by

��.f/ WD f��. f1/; : : : ; ��. fk/g;
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where �� W A! A=I� denotes the canonical map.
Further, let OI� WD I.Z.I�// denote the ideal of all f 2 A which vanish on the

zero set Z.I�/ of I�. Clearly, I� 	 OI� and Z.I�/ D Z. OI�/. Set

OT� WD T C OI�:

Then OT�= OI� is a preordering of the quotient algebra A= OI�.
In general I� ¤ OI� and equality holds if and only if the ideal I is real. The latter

means that
P

j a
2
j 2 I� for finitely many elements aj 2 A implies that all aj are in

I�. In real algebraic geometry the ideal OI is called the real radical of I.
The following fibre theorem is the main result of this chapter. It allows us to

derive (SMP) or (MP) for T from the corresponding properties of fibre preorderings.

Theorem 13.10 Let A be a finitely generated commutative real unital algebra and
let T be a finitely generated preordering of A. Suppose that h1; : : : ; hm are elements
of A that are bounded on the set K.T/. Then the following are equivalent:

(i) T satisfies property (SMP) (resp. (MP)) in A.
(ii) T� satisfies (SMP) (resp. (MP)) in A for all � 2 h.K.T//:

(ii)0 OT� satisfies (SMP) (resp. (MP)) in A for all � 2 h.K.T//:
(iii) T�=I� satisfies (SMP) (resp. (MP)) in A=I� for all � 2 h.K.T//:

(iii)0 OT�= OI� satisfies (SMP) (resp. (MP)) in A= OI� for all � 2 h.K.T//:

Remark 13.11 The power of Theorem 13.10 can be nicely illustrated by the fact
that it contains the main moment problem result (Theorem 12.25) for A D RdŒ x �,
T D T.f/; and compact semi-algebraic sets K.T.f// as an immediate consequence.
Indeed, since K.T.f// is compact, the coordinate functions xj are bounded on
K.T.f//, so they can be taken as functions hj; j D 1; : : : ; d. Then all fibre
algebras A=I�, � 2 h.K.T//; are R and T�=I� D RC obviously has (SMP) in
A=I� D R. Hence T D T.f/ obeys (SMP) in RdŒ x � by the implication (iii)!(i) of
Theorem 13.10. ı

To formulate a version of the fibre theorem for quadratic modules let Q be a
finitely generated quadratic module of A. We then define the quadratic module

Q� D QC I� and OQ� D QC OI�:

of A and the corresponding fibre set

K.Q/� WD K.Q�/ D fx 2 K.Q/ W h1.x/ D �1; : : : ; hm.x/ D �mg:

Theorem 13.12 Let A be a finitely generated commutative real unital algebra, Q a
finitely generated quadratic module of A , and h1; : : : ; hm 2 A. Suppose that there
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are ˛j; ˇj 2 R such that ˇj � hj and hj � ˛j are in Q for j D 1; : : : ;m: Set K WDQm
jD1Œ˛j; ˇj�. Then the following are equivalent:

(i) Q satisfies property (SMP) (resp. (MP)) in A.
(ii) Q� satisfies (SMP) (resp. (MP)) in A for all � 2 K.

(ii)0 OQ� satisfies (SMP) (resp. (MP)) in A for all � 2 K.
(iii) Q�=I� satifies (SMP) (resp. (MP)) in A=I� for all � 2 K.

(iii)0 OQ�= OI� satisfies (SMP) (resp. (MP)) in A= OI� for all � 2 K:

Remark 13.13

1. The fibre set K.Q/� may be empty for some � 2 Qm
jD1Œ˛j; ˇj�. For such � we

have Q� D A and (SMP) holds trivially. However, if � 2 h.K.T//, say � D h.x/
with x 2 K.T/, then x 2 K.T/�, so the fibre is not empty.

2. Suppose that ˇj � hj and hj � ˛j are in Q as in Theorem 13.12. Then, since
evaluations by points x 2 K.Q/ are Q-positive by definition and hence Q-
positive, we have ˇj � hj.x/ � 0 and hj.x/ � ˛j � 0. That is, hj is bounded
on K.Q/, so the corresponding assumption of Theorem 13.10 is satisfied.

3. In Theorem 13.10 it is only assumed that the polynomials hj are bounded, but not
that ˇj � hj; hj � ˛j are in Q. Therefore, Theorem 13.10 is much stronger than
Theorem 13.12. ı
The implications (i)!(ii), the equivalence (ii)$(ii)0 and the two equivalences

(ii)$(iii) and (ii)0 $(iii)0 of Theorems 13.10 and 13.12 follow immediately from
Proposition 13.14 (i),(ii), and (iii), respectively, proved below.

The proofs of the remaining main implication (ii)!(i) of Theorems 13.10
and 13.12 are lenghthy and technically involved. They are postponed until
Sect. 13.10. Further, a crucial step in the proof of Theorem 13.10 is Propo-
sition 12.23, which is based on the Krivine–Stengle Positivstellensatz (Theo-
rem 12.3).

Proposition 13.14 Let I be an ideal and Q a quadratic module of A. Let OI be the
ideal of all f 2 A which vanish on the zero set Z.I/ of I.

(i) If Q satisfies (SMP) (resp. (MP)) in A, so does QC I in A.
(ii) QC I satisfies (SMP) (resp. (MP)) in A if and only if QC OI does.

(iii) QCI satisfies (SMP) (resp. (MP)) in A if and only if .QCI/=I does in A=I.

Proof We only carry out the proofs for (SMP). The proofs for (MP) are even
simpler, since no support conditions have to be verified. Let � W RdŒ x � !
RdŒ x �=JDA denote the canonical map and QI the ideal QI WD ��1.I/ of RdŒ x �.

(i) Let L be a .QCI/-positive functional on A. Since L is Q-positive and Q obeys
(SMP), L is given by a measure� 2MC. OA/ supported on K.Q/. Then QL.�/ WD
L.�.�// is a linear functional on RdŒ x �. Since L is I-positive, QL is QI-positive
and hence supp� 	 Z. QI/ by Proposition 12.19. (Note that a functional is
positive on an ideal if and only if it annihilates the ideal.) But Z. QI/ 	 Z.I/,
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so that we have supp� 	 K.Q/\Z.I/ D K.QC I/. That is, QC I satisfies
(SMP) in A.

(ii) It suffices to show that both quadratic modules QCI and QC OI have the same
nonnegative characters and linear functionals.

For the sets of characters, using the equality Z.I/ D Z. OI/ we obtain

K.QC I/ D K.Q/ \ Z.I/ D K.Q/ \ Z. OI/ D K.QC OI/:

Since QCI 	 QC OI , a .QC OI/-positive functional is trivially .QCI/-positive.
Conversely, let L be a .QC I/-positive linear functional on A.
We verify that Z. QI/ 	 Z. OI/: Let x 2 Z. QI/.	 Rd/: Clearly, J 	 QI and

Z. QI/ 	 Z.J /DOA. Let g 2 I and choose Qg 2 QI such that g D �.Qg/. Since x
annhilates J and x 2 Z. QI/; we have g.x/ D Qg.x/ D 0: Thus, x 2 Z.I/ D
Z. OI/:

Now let f 2 OI. We choose Qf 2 RdŒ x � such that �. Qf / D f . Then f .x/ D
Qf .x/ for x 2 Z.J /. Hence, since f vanishes on Z. OI/ and Z. QI/ 	 Z. OI/;
the polynomial Qf vanishes on Z. QI/. Therefore, by the real Nullstellensatz
(Theorem 12.3(iii)), there are m 2 N and g 2 P

RdŒ x �2 such that p WD
. Qf /2m C g 2 QI. Upon multiplying p by some even power of Qf we can assume
that 2m D 2k for some k 2 N. Then

�. p/ D f 2
k C �.g/ 2 I; where �.g/ 2

X
A2:

Being .QC I/-positive, L annihilates I and is nonnegative on
P

A2. Hence

0 D L.�. p// D L
�
f 2

k�C L.�.g//; L.�.g// � 0; L
�
f 2

k� � 0:
This implies that L. f 2

k
/ D 0. Since L is nonnegative on

P
A2, the Cauchy–

Schwarz inequality holds. By a repeated application of this inequality we
derive

jL. f /j2k � L. f 2/2
k�1

L.1/2
k�1 � L. f 4/2

k�2
L.1/2

k�2C2k�1 � : : :
� L. f 2

k
/L.1/1C���C2k�1 D 0:

Thus L. f / D 0. That is, L annihilates OI. Hence L is .Q C OI/-positive which
completes the proof of (ii).

(iii) The assertions are only slight reformulations of Definition 13.6.
Let 	 denote the canonical map of A into A=I. Clearly, the character set of

A=I can be identified with Z.I/ D fx 2 OA W f .x/ D 0 for f 2 Ig.
Suppose that QCI obeys (SMP) in A. Let QL be a .QCI/=I-positive linear

functional on A=I. Then L WD QLı	 defines a .QCI/-positive linear functional
on A: Since Q C I has (SMP), the functional L, hence also QL, is given by a



326 13 The Moment Problem on Closed Semi-Algebraic Sets: Existence

measure of MC. OA/ supported on K.QCI/ D K.Q/\Z.I/ D K..QCI/=I/.
This shows that .QC I/=I satisfies (SMP) in A=I.

Conversely, assume that .Q C I/=I has (SMP) in A=I and let L be a
.QCI/-positive linear functional on A. Then L is in particular I-positive, so it
annihilates I, and there is a well-defined linear functional QL on A=I such that
L D QL ı 	. Clearly, QL is .QC I/=I-positive. Since .QC I/=I has (SMP), the
functional QL, and therefore also L, comes from a Radon measure with support
contained in K..QCI/=I/ D K.QCI/. That is, QCI obeys (SMP) in A. ut

Remark 13.15 The Positivstellensatz for RdŒ x � (Theorem 12.3) is the only
unproven result from real algebraic geometry we use in this book. In the preceding
proof we derived the real Nullstellensatz for A from Theorem 12.3(iii). That the real
Nullstellensatz holds for the algebra A follows from [PD, Section 4.2]. The above
proof of assertion (ii) becomes much shorter if we use the latter result. ı

We state the special case Q DP A2 of Proposition 13.14(iii) separately as

Corollary 13.16 If I is an ideal of A, then I CP A2 obeys (MP) (resp. (SMP)) on
A if and only if

P
.A=I/2 does in A=I.

The following simple fact is used later several times. Of course, it can also be
derived directly from Hamburger’s theorem 3.8.

Corollary 13.17 If the algebra A has a single generator, then
P

A2 obeys (MP).

Proof Being single generated, A is isomorphic to a quotient algebra RŒy�=I for
some ideal I of RŒy�. By Hamburger’s theorem 3.8,

P
RŒy�2 obeys (MP) in RŒy�

and so does ICPRŒy�2. Therefore, by Corollary 13.16,
P
.RŒy�=I/2 ŠP A2 has

(MP) in RŒy�=I Š A: ut

13.4 (SMP) for Basic Closed Semi-Algebraic Subsets
of the Real Line

In many applications of Theorem 13.10 the fibres are semi-algebraic subsets of the
real line. In this section, we investigate (SMP) for such sets in detail.

To illustrate the corresponding phenomena we begin with two examples.

Example 13.18 d D 1; f D fx3g;K.f/ D RC.
It is obvious that the polynomial x is in Pos.RC/ D Pos.K.f//:
We prove that x … T.f/. Assume to the contrary that x D P

j p
2
j C x3q, where

pj 2 RŒx� and q 2 P
RŒx�2. Setting x D 0 yields

P
j pj.0/

2 D 0. Therefore,
pj.0/ D 0 and hence pj.x/ D xfj.x/ with fj 2 RŒx� for each j. Inserting this and
dividing by x we get 1 D x

P
j f
2
j C x2q. Setting once more x D 0 we obtain a

contradiction. Thus, x … T.f/ and hence T.f/ ¤ Pos.K.f//.
It will be shown by Corollary 13.49 below that the preordering T.f/ is closed

in RŒx� in the finest locally convex topology. Hence T.f/ D T.f/ ¤ Pos.K.f//, so
that T.f/ does not obey (SMP) by Proposition 13.9(i). This was already proved in
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Example 13.7. There a T.f/-positive linear functional was constructed that cannot
be given by a Radon measure supported on RC.

However, if we replace f D fx3g by Qf D fxg, then K.f/ D K.Qf/ D RC and
T.Qf/ D Pos.K.Qf// D Pos.RC/ by formula (3.4) in Proposition 3.2. Thus T.Qf/ has
(SMP) by Proposition 13.9(i) (or likewise by Stieltjes’ theorem 3.12).

This shows that, in contrast to the compact case, (SMP) depends in a crucial
manner on the “right” polynomials defining the noncompact semi-algebraic set! ı
Example 13.19 d D 1; f D f.1 � x2/3g;K.f/ D Œ�1; 1�.

A similar reasoning as in Example 13.18 (using the zeros˙1 instead) shows that
the polynomial .1 � x2/ 2 Pos.Œ�1; 1�/ D Pos.K.f// is not in the preordering T.f/.
That is, similarly as in Example 13.18 we have T.f/ ¤ Pos.K.f// D Pos.Œ�1; 1�/
and also T.Qf/ D Pos.K.Qf// D Pos.Œ�1; 1�/ when we take Qf WD f1 � x2g.

But as K.f/ is compact, T.f/ satisfies (SMP) by Theorem 12.25. Hence we have
T.f/ D Pos.K.f// by Proposition 13.9(i). In particular, T.f/ is not closed in RŒx�. ı

In both examples we have T.f/ ¤ Pos.K.f//, but T.Qf/ D Pos.K.Qf//. To overcome
this difficulty we now define the “right set of generators”.

Let K be a nonempty basic closed semi-algebraic proper subset of R, that is, K
is the union of finitely many closed intervals. (These intervals can be unbounded or
points.)

Definition 13.20 A finite subset g of RŒx� is called a natural choice of generators
for K if g is the smallest set satisfying the following conditions:

� If K contains a least element a (that is, if .�1; a/\K D ;), then .x � a/ 2 g.
� If K contains a greatest element a (that is, if .a;1/\K D ;), then .a � x/ 2 g.
� If a; b 2 K, a < b, and .a; b/\K D ;, then .x � a/.x � b/ 2 g.

From this definition it is not difficult to see that a choice of natural generators
always exists and that it is uniquely determined by the set K. Moreover, we have
K D K.g/. For K D R we set g D f1g.

Let us give some examples for the natural choice of generators:

K D fag [ Œb;C1/, where a < b: g D fx � a; .x � a/.x � b/g;
K D Œa; b�[ fcg, where a < b < c: g D fx � a; .x � b/.x � c/; c � xg;
K D fag [ fbg, where a < b: g D fx � a; .x � a/.x � b/; b� xg;
K D fag: g D fx � a; a � xg:

The next proposition shows that for the natural choice of generators the preorder-
ing contains all nonnegative polynomials on K.

Proposition 13.21 Suppose that K is a nonempty basic closed semi-algebraic
subset of R. If g is the natural choice of generators for K, then Pos.K/ D T.g/:

Proof By construction, the natural generators are nonnegative onK, so the inclusion
T.g/ 	 Pos.K/ is obvious.

For the converse we prove by induction on the degree of p that p 2 Pos.K/
implies p 2 T.g/. If deg. p/ D 0, this is obvious. Assume that it is true if deg. p/ �
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n. Suppose that q 2 Pos.K/ and deg.q/ D nC1. If q � 0 on R, then q is in
P

RŒx�2

by Proposition 3.1 and so in T.g/. Thus we can assume that q.�/ < 0 for some
� 2 R. Since � … K; there are three possible cases.
Case 1: K contains a least element a and � < a.

Since q 2 Pos.K/, q has roots in the interval .�; a�. Let c be the least such
root. Then q D .x � c/p with p 2 Pos.K/ and deg. p/ D n. Since p 2 T.g/ by the
induction hypothesis and .x�a/ 2 g by Definition 13.20, x�c D .x�a/C.a�c/ 2
T.g/ and hence q D .x � c/p 2 T.g/:
Case 2: K contains a largest element a and � > a.

Let d be the largest root of q in the interval Œa; �/. Then q D .d � x/p with
p 2 Pos.K/ and deg. p/ D n, so p 2 T.g/ by the induction hypothesis. By
Definition 13.20, .a � x/ 2 g. Therefore, d � x D .a � x/ C .d � a/ 2 T.g/,
so that q D .d � x/p 2 T.g/.
Case 3: There exist a; b 2 K, a < b, such that .a; b/\K D ;:

In this case we take the greatest root d of p in the interval Œa; �/ and the least root
c in the interval .�; b�. Then we can write p D .x� c/.x� d/q with q 2 Pos.K/ and
deg.q/ D n�1; so q 2 T.g/ by the induction hypothesis. We have .x�a/.x�b/ 2 g
by Definition 13.20. From Lemma 13.22 below it follows that .x � c/.x � d/ in the
preordering generated by .x�a/.x�b/, so that .x�c/.x�d/ 2 T.g/. Consequently,
p D .x � c/.x � d/q 2 T.g/: ut
Lemma 13.22 Suppose that a � b and c; d 2 Œa; b�. There exists a � > 0 such that

.x � c/.x � d/� �.x � a/.x � b/ 2
X

RŒx�2:

Proof By a linear transformation we can assume that a D �1 and b D 1. Set
� WD sign.cC d/. Since c; d 2 Œ�1; 1� and hence .1 � �c/.1 � �d/ � 0, we obtain

2.x � c/.x � d/� .2 � jcC dj/.x2 � 1/
DjcC djx2 � 2.cC d/xC 2C 2cd � jcC dj
DjcC dj.x2 � 2�xC 1/C 2C 2cd � 2�.cC d/

DjcC dj.x � �/2 C 2.1� �c/.1 � �d/ � 0:

Since c; d 2 Œ�1; 1�, we have � WD 1� jcCdj
2
� 0 and .x� c/.x� d/� �.x2� 1/ � 0

on R by the preceding inequality. Therefore, .x� c/.x� d/� �.x2 � 1/ 2PRŒx�2

by Proposition 3.1. ut
The following elementary fact is used in the proof of Theorem 13.24 below. For

a quadratic f we define w. f / D j�1 � �2j if f has real roots �1; �2 and w. f / D 0 if
f has no real roots.

Lemma 13.23 If f1 and f2 are quadratics with positive leading coefficients, then

w. f1 C f2/ � max.w. f1/;w. f2//:
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Proof Without loss of generality we can assume that w. f2/ � w. f1/ and w. f1/ > 0:
Upon translation and scaling it suffices to show the assertion for f1.x/ D x.x � 1/
and f2.x/ D c.x � a/.a � .aC b//, where 0 � b � 1, c > 0. Then, for

f1 C f2 D .cC 1/x2 � ..2aC b/cC 1/xC .aC b/ac

we have

w. f1 C f2/ D
p
..2aC b/cC 1/2 � 4.cC 1/.aC b/ac

cC 1 :

Since w. f1/ D 1 and w. f2/ D b � 1, we have to prove that w. f1 C f2/ � 1. After
squaring and multiplying by .cC 1/2, the assertion w. f1 C f2/ � 1 is equivalent to

..2aC b/cC 1/2 � 4.cC 1/.aC b/ac � .cC 1/2:

A straightforward computation shows that this is equivalent to the inequality

.2aC b � 1/2 C .1 � b2/.cC 1/ � 0:

Since 0 � b � 1, the latter is satisfied, so the assertion w. f1 C f2/ � 1 holds. ut
The following theorem characterizes those noncompact semi-algebraic subsets

K.f/ of R for which the preordering T.f/ has (SMP).

Theorem 13.24 Suppose that f D f f1; : : : ; fkg is a finite subset ofRŒx� such that the
semi-algebraic subset K.f/ of R is not compact. The following are equivalent:

(i) T.f/ obeys (SMP).
(ii) T.f/ D Pos.K.f//, that is, the preordering T.f/ is saturated.

(iii) f contains positive multiples of all polynomials of the natural choice of
generators g of K.f/.

Proof By Proposition 13.9(i), (SMP) holds if and only if T.f/ D Pos.K/. Since K.f/
is not compact and semi-algebraic, it contains an unbounded interval. Therefore,
T.f/ is closed by Proposition 13.51 proved in Sect. 13.8. We take Proposition 13.51
for granted in this proof. Then (i)$(ii).

(iii)!(ii) (iii) implies that T.g/ 	 T.f/. Obviously, T.f/ 	 Pos.K.f//. Propo-
sition 13.21 yields Pos.K.f// D T.g/: Putting these facts together we obtain
T.f/ D Pos.K.f//:

(ii)!(iii) As already noted, K.f/ contains an unbounded interval. Upon replacing
x by �x we can assume that Œc;C1/ 	 K.f/ for some c 2 R. Also we can assume
that all elements of f are not constant. Each f 2 T.f/ is of the form

f D
X

e
f e11 � � � f ekk �e with �e 2

X
RdŒ x �

2: (13.11)
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The summation in (13.11) is over e D .e1 : : : ; ek/, where e1; : : : ; ek 2 f0; 1g:
All fj are nonnegative on Œc;C1/, so they have positive leading coefficients.

Hence the degree of f in (13.11) is equal to the maximum of the degrees of the
summands.

Case 1: K.f/ contains a least element a.
Then f WD x� a 2 Pos.K.f// D T.f/. Since f is linear, all nonzero summands in

the representation (13.11) of f are multiples of linear fj by positive constants. Since
a 2 K.f/, fj.a/ � 0 for each such fj. Since f .a/ D 0, at least one such fj vanishes at
a. Hence fj.x/ D �.x � a/ with � > 0, that is, f contains a positive multiple of the
natural generator x � a.

Case 2: There are a; b 2 K.f/, a < b, such that .a; b/\K.f/ D ;:
Then f WD .x � a/.x � b/ 2 Pos.K.f// D T.f/ and f .x/ < 0 on .a; b/. Hence

the degrees of all summands in the representation (13.11) of f do not exceed 2.
We omit all summands which are nonnegative on .a; b/: Each linear fj is increasing
(because fj � 0 on Œc;C1/) and satisfies fj.a/ � 0 (since a 2 K.f/). Hence linear
fj and their products are positive on .a; b/. Since f .x/ < 0 on .a; b/, there exist
quadratic polynomials f1; : : : fr in the set f and positive numbers ˛1; : : : ; ˛r such that
f .x/ � ˛1f1.x/C � � �˛rfr.x/ on .a; b/ and each such fj has at least one negative value
on .a; b/. Since fj � 0 on Œc;C1/ 	 K.f/ and at a; b 2 K.f/, the polynomial fj,
hence ˛jfj, has two real zeros in Œa; b�, that is, w.˛jfj/ � b � a. From Lemma 13.23
it follows that w. f / D b � a is at most the maximum of w.˛jfj/, j D 1; : : : ; r. Thus
w.˛jfj/ D b � a for at least one j. Hence ˛jfj D �.x � a/.x � b/ for some � > 0, so
a positive multiple of the natural generator .x � a/.x � b/ belongs to f. ut

13.5 Application of the Fibre Theorem: Cylinder Sets
with Compact Base

Perhaps the most natural application of the fibre theorem concerns subsets of
cylinders with compact base.

Proposition 13.25 Let C be a compact set in Rd�1, d � 2; and let f be a finite
subset of RdŒ x �. Suppose that the semi-algebraic subset K.f/ of Rd is contained in
the cylinder C �R. Then the preordering T.f/ has (MP). If C is a semi-algebraic set
in Rd�1 and K.f/ D C �R, then T.f/ satisfies (SMP).

Proof Define hj.x/ D xj for j D 1; : : : ; d�1. Since K.f/ 	 C�R and C is compact,
the polynomials hj are bounded on K, so the assumptions of Theorem 13.10 are
fulfilled. Then all fibres K.f/� are subsets of .�1; : : : ; �d�1/ � R, the preordering
T.f/� contains

P
RŒxd�2, and the quotient algebra RdŒ x �=I� is an algebra of

polynomials in the single variable xd. Hence, by Corollary 13.17,
P
.RdŒ x �=I�/2

obeys (MP) in RdŒ x �=I� and so does T=I�. Therefore, T.f/ has (MP) by the
implication (ii)!(i), and likewise by (iii)!(i), of Theorem 13.10.
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If K.f/ D C �R, the fibres for � 2 h.K.f// are equal to .�1; : : : ; �d�1/ �R and
T.f/� DPRŒxd�2. Hence the T.f/� satisfy (SMP) and so does T.f/. ut

We restate this result in the special case of a strip Œa; b� �R in R2.

Example 13.26 Let a; b 2 R, a < b, d D 2, and f D f.x1 � a/.b � x1/g. Then

K.f/ D Œa; b� �R ; T.f/ D
X

RŒx1; x2�
2 C .x1 � a/.b� x1/

X
RŒx1; x2�

2:

By Proposition 13.25, T.f/ obeys (SMP). That is, given a linear functional L on
RŒx1; x2�, there exists a Radon measure � on R2 supported on Œa; b� �R such that
p is �-integrable and

L. p/ D
Z b

a

Z
R

p.x1; x2/ d�.x1; x2/ for all p 2 RŒx1; x2�

if and only if

L.q21 C .x1 � a/.b � x2/q
2
2/ � 0 for all q1; q2 2 RŒx1; x2�: ı

Let us return to Proposition 13.25 and assume that the semi-algebraic subset
K.f/ of Rd is only a proper subset of C � R. Then T.f/ does not satisfy (SMP) in
general. Recall that, by Theorem 13.10, T.f/ obeys (SMP) if (and only if) all fibre
preorderings T.f/�, or equivalently, all preorderings T�=I� of the quotient algebras
RdŒ x �=I� do. If a fibre set K.f/� is compact, we know that T.f/� D T.f.�// has
(SMP) by Theorem 12.25. Now let us look at the case when a fibre set K.f/� is
not compact. If we take the polynomials hj D xj, j D 1; : : : ; d � 1, as in the
proof of Proposition 13.25, the quotient algebra RdŒ x �=I� is (isomorphic to) the
polynomial algebra RŒxd�. Therefore, by Theorem 13.24, the preordering T�=I� in
RŒxd� has (SMP) if and only if the set ��.f/ contains positive constant multiples of
all natural choice generators for the corresponding semi-algebraic subset K.T�=I�/
of R. That is, in order to conclude (SMP) for T.f/ all noncompact fibres require a
careful inspection of the sequence ��.f/.

We illustrate the preceding discussion with four examples. All sets are contained
in the strip Œ0; 1� �R, so that (MP) is always satisfied by Proposition 13.25.

Example 13.27 f1.x/ D x1; f2.x/ D 1 � x1; f3.x/ D x32 � x22 � x1; f4.x/ D 4 � x1x2.
Then h1.x/ D x1 is bounded and h1.K.f// D Œ0; 1�. The fibres for � 2 .0; 1� are

compact, so the preordering T� has (SMP). The fibre set at � D 0 is f0g [ Œ1;C1/
and the sequence �0.f/ is f0; 1; x32� x22; 4g. Since �0.f/ does not contain multiples of
all natural choice generators for f0g [ Œ1;C1/, T.f/ does not have (SMP). ı
Example 13.28 f1.x/ D x1; f2.x/ D 1 � x1; f3.x/ D 1 � x1x2; f4.x/ D x32.

Taking again h1.x/ D x1, we have h1.K.f// D Œ0; 1�. All fibres at � 2 .0; 1�
are compact, so they obey (SMP). The fibre set at � D 0 is Œ0;C1/ and the
corresponding sequence �0.f/ D f0; 1; 0; x32g does not contain a multiple of
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the natural choice generator x2 for Œ0;C1/. Hence T.f/ does not satisfy (SMP).
However, if we replace f4 by Qf4.x/ D x2, then T.f/ has (SMP). ı
Example 13.29 f1.x/ D x1; f2.x/ D 1 � x1; f3.x/ D x1x2 � 1; f4.x/ D 2 � x1x2.

The set K.f/ is not compact and it is the part of the strip between the two
hyperbolas x1x2 D 1 and x1x2 D 2. Then h1.x/ D x1 and h2.x/ D x1x2 are bounded
on K.f/ and h.K.f// D .0; 1� � Œ0; 1� is not closed. All fibre sets are points. Since
they are compact, all fibre preorderings obey (SMP). Therefore, T.f/ has (SMP). ı
Example 13.30 f1.x/ D x1; f2.x/ D 1 � x1; f3.x/ D 1 � x1x2:

Then K.f/ is the part of the strip below the hyperbola x1x2 D 1. Set h1.x/ D x1.
Then h1.K.f// D Œ0; 1�. The fibre set at � D 0 is the whole x2-axis, so T0 has
(SMP). For � 2 .0; 1�, the fibre set is .�1; ��1� and a multiple of its natural choice
generator ��1 � x2 belongs to ��.f/ D f0; 1; 1� �x2g, so T� also has (SMP). Hence
T.f/ satisfies (SMP). ı

The next proposition is also about cylinder sets with compact base.

Proposition 13.31 Suppose that A is a finitely generated real unital algebra with
compact character space OA. Let B be the tensor product of A and the polynomial
algebra RŒx� in a single variable x. Then the preorderings

P
A2 and

P
B2 obey

(SMP) in A and B, respectively.

Proof Let h1; : : : ; hm be a set of generators of A and consider a nonempty fibre for A
and B, respectively. Then the corresponding fibre sets are points resp. a real line. The
fibre algebra A=I� is R and the fibre algebra B=I� is RŒx�. In both cases

P
.A=I�/2

and
P
.B=I�/2 have (SMP) and so have

P
A2 and

P
B2 in A and B, respectively, by

Theorem 13.10 (iii)!(i). ut

13.6 Application of the Fibre Theorem: The Rational
Moment Problem on Rd

Let us begin with some notation and preliminaries. For a subset D 	 RdŒ x � we put

ZD WD [q2D Z.q/; where Z.q/ D fx 2 Rd W q.x/ D 0g:

Let D.RdŒ x �/ denote the family of all multiplicative subsets D of RdŒ x � (that is,
f1; f2 2 D implies f1f2 2 D) such that 1 2 D and 0 … D. Fix D 2 D.RdŒ x �/. Then

AD WD D�1RdŒ x �

is a real unital algebra of rational functions which contains RdŒ x � as a subalgebra.
Obviously, if D is finitely generated, so is the algebra AD. The elements of AD are
well-defined real-valued functions on RdnZD . The following lemma shows that the
characters of AD are just the point evaluations on this set.
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Lemma 13.32 Define �t. f / D f .t/ for t 2 RdnZD and f 2 AD . The character set
of the algebra AD is cAD D f�t W t 2 RdnZDg.
Proof Clearly, �t is a well-defined character on AD for t 2 RdnZD , so �t 2 cAD.

Conversely, suppose that � 2 cAD. Put tj D �.xj/ for j D 1; : : : ; d. Then we have
t D .t1; : : : ; td/ 2 Rd and �. p.x// D p.�.x1/; : : : �.xd// D p.t/ for p 2 RdŒ x �:
For q 2 D we obtain 1 D �.1/ D �.qq�1/ D �.q/�.q�1/ D q.t/�.q�1/: Hence
q.t/ ¤ 0 for all q 2 D, that is, t 2 RdnZD . Further, �.q�1/ D q.t/�1. Therefore we
derive �. pq / D �. p/�.q�1/ D p.t/q.t/�1 D �t. pq /. Thus � D �t. ut

Now let T be a preordering of AD and h D fh1; : : : ; hmg an m-tuple of elements
hj 2 AD . For � 2 Rd let I� be the ideal of AD generated by hj � �j, j D 1; : : : ;m:
Recall that the subset h.K.T// of Rm was defined by (13.10).

We consider the following assumptions:

(i) The functions h1; : : : ; hm 2 A are bounded on the set K.T/.
(ii) For each � 2 h.K.T// there are a finitely generated set E� 2 D.RŒy�/ and a

surjective algebra homomorphism

	� W E�1
� RŒy�! D�1RdŒ x �=I� � AD=I�:

Our main result of this section is the following existence theorem for the
multidimensional rational moment problem.

Theorem 13.33 Suppose thatD 2 D.RdŒ x �/ is finitely generated and T is a finitely
generated preordering of the algebra AD D D�1RdŒ x �: Assume (i) and (ii).

Then T satisfies (MP), that is, for each T-positive linear functional L on AD there
is a Radon measure � on cAD Š RdnZD such that f is �-integrable and

L. f / D
Z
bAD

f .x/ d�.x/ for f 2 A:

The proof of this theorem is based on the following result which deals with the
one-dimensional case. Let RŒy� denote the real polynomials in a single variable y.

Proposition 13.34 Suppose that E 2 D.RŒy�/ is finitely generated. Let B be the
real unital algebra B D E�1RŒy�: Then the preordering

P
B2 satisfies (MP), that

is, for each positive linear functional L on B there exists a Radon measure � on the
locally compact Hausdorff space Y WD RnZE such that B 	 L1.Y; �/ and

L. f / D
Z
Y
f .y/ d�.y/ for f 2 B: (13.12)

Proof Since E is finitely generated, ZE is a finite set, say ZE D fy1; : : : ; ykg. Hence
Y WD RnZE is a locally compact Hausdorff space in the induced topology from R.
Since q.y/ ¤ 0 for q 2 E and y 2 Y , B is a linear subspace of C.YIR/:
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We show that B is an adapted space. This means that we have to check the three
conditions (i)–(iii) of Definition 1.5. Since the unital algebra B is the span of its
squares, we have B D BC � BC, so condition (i) is satisfied. (ii) holds with f WD 1.
We verify (iii). We choose qj 2 E such that qj.yj/ D 0. Then h WD q21 : : : q

2
k 2 E and

h.y/ D 0 for y 2 ZE . If ZE is empty, we set h.y/ D 1C y2. Now let f D p
q 2 BC,

where p 2 RŒy� and q 2 E . Further, let " > 0 be given. Then g WD fh 2 BC: Since h
vanishes on ZE and limjyj!C1 h.y/ D C1, there exists a compact subset K" of Y
such that f .y/ � "g.y/ on YnK". This proves (iii). Thus, B is an adapted space.

Next we prove that BC 	PB2. Let f 2 BC, that is, f .y/ � 0 for y 2 Y . We write
f as f D p

q 2 B, where q 2 E and p 2 RŒy�. Then q2f D pq � 0 on Y D RnZE
and hence on R, since ZE is empty or finite. The nonnegative polynomial pq in one
(!) variable is a sum of squares in RŒy� by Proposition 3.1, so that pq DPj p

2
j with

pj 2 RŒy�. Therefore, since q 2 E , we get f DPj .
pj
q /
2 2PB2:

Let f 2 BC. Then f 2 P B2 and hence L. f / � 0, because the functional L is
positive by assumption. Thus L is a BC-positive linear functional on the adapted
subspace B of C.YIR/. Hence Theorem 1.8 applies and yields the assertion. ut
Proof of Theorem 13.33 Let us fix � 2 h.K.T// and abbreviate B� WD E�1

� RŒy�:
By Proposition 13.34,

P
.B�/

2 has (MP) in the algebra B�. We denote by J � the
kernel of the homomorphism 	� W B� ! AD=I�. Since

P
.B�/

2 has (MP) in B�, it is
obvious that J � CP.B�/2 has (MP) in B�. Therefore

P
.B�=J �/2 satisfies (MP)

in B�=J � by Corollary 13.16. Since the algebra homomorphism 	� is surjective, the
algebra B�=J � is isomorphic to AD=I�. Hence

P
.AD=I�/2 has (MP) in AD=I� as

well. Consequently, since
P
.AD=I�/2 	 T=I�, the preordering T=I� obeys (MP)

in AD=I�. Therefore, T has (MP) in AD by Theorem 13.10 (iii)!(i). ut
The general fibre theorem fits nicely to the multidimensional rational moment

problem, because in general algebras of rational functions contain more bounded
functions on K.T/ than polynomial algebras.

The use of Theorem 13.33 is illustrated by some examples. The ideas developed
therein can be combined to treat more involved examples. Throughout we suppose
that the corresponding sets D are finitely generated.

Example 13.35 First let d D 2. Suppose that D 2 D.RŒx1; x2�/ contains x1 � ˛
and that the semi-algebraic set K.T/ is a subset of f.x1; x2/ W jx1 � ˛j � cg for
some ˛ 2 R and c > 0. Then h1 WD .x1 � ˛/�1 2 AD is bounded on K.T/, so
assumption (i) holds. Let � 2 h1.K.T//. Then we have x1 D ��1C ˛ in the algebra
.AD/�, so .AD1/� consists of rational functions in x2 with denominators from some
finitely generated set E� 2 D.RŒx2�/. Hence assumption (ii) is also satisfied. Thus
Theorem 13.33 applies to AD.

The above setup extends at once to d 2 N; d � 2; if we assume that xj�˛j 2 D
and jxj�˛jj � c on K.T/ for some ˛j 2 R, c > 0, and j D 1; : : : ; d � 1: ı
Example 13.36 Suppose D 2 D.RdŒ x �/ is generated by the polynomials qj D 1C
x2j ; j D 1; : : : ; d. Let T D P

.AD/2. Then, by Lemma 13.32, we have K.T/ D
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cAD D Rd. Setting hj D qj.x/�1, hdCj D xjqj.x/�1 for j D 1; : : : ; d, all hl 2 AD are
bounded on K.T/.

Let � 2 h.K.T//: Then �j D qj.�/�1 ¤ 0 and �dCj D �jqj.�/�1; hence we have
xj D �dCj�

�1
j , j D 1; : : : ; d, in the fibre algebra .AD/�: Thus, .AD/� D R: Taking

E� D f1g, we have E�1
� RdŒ x � D RdŒ x �, so (i) and (ii) are obviously satisfied.

Therefore,
P
.AD/2 obeys (MP) by Theorem 13.33. That is, each positive linear

functional on the algebra AD is given by some positive measure on cAD D Rd.
The same conclusion and almost the same reasoning remain valid if we assume

instead that D is generated by the single polynomial q D 1C x21 C � � � C x2d: In this
case we set hj D xjq.x/�1 for j D 1; : : : ; d and hdC1 D q.x/�1: ı
Example 13.37 Suppose D 2 D.RdŒ x �/ contains the polynomials qj D 1C x2j for
j D 1; : : : ; d � 1. Let T D P

.AD/2. Then hj WD qj.x/�1 and hdCj�1 WD xjqj.x/�1
for j D 1; : : : ; d � 1 are in AD and bounded on K.T/ D cAD. Arguing as in
Example 13.36 we conclude that we have xj D �dCj�1��1

j for j D 1; : : : ; d�1 in the
algebra .AD/�: Therefore the fibre algebra .AD/� is an algebra E�1

� RŒxd� of rational
functions in the single variable xd for some finitely generated set E� 2 D.RŒxd�/.

Then, again by Theorem 13.33,
P
.AD/2 satisfies (MP). The same is true if we

assume instead that the polynomial q D 1C x21 C � � � C x2d�1 is in D 2 D.RdŒ x �/. ı

13.7 Application of the Fibre Theorem: A Characterization
of Moment Functionals

In this section, we derive a theorem which characterizes moment functionals on Rd

in terms of extensions. It will be used in the proof of Theorem 15.14 below, but it is
also of interest in itself. Throughout we assume that d � 2.

Let A denote the real algebra of functions on .Rd/� WD Rdnf0g generated by the
polynomial algebra RdŒ x � and the functions

fkl.x/ WD xkxl.x
2
1 C � � � C x2d/

�1; k; l D 1; : : : ; d: (13.13)

Clearly, these functions satisfy the relations

f11 C f22 C � � � C fdd D 1; (13.14)

fijfkl D fikfjl for i; j; k; l D 1; : : : ; d: (13.15)

Thus, the algebra A has d C �dC1
2

�
generators x1; : : : ; xd; f11; f12; : : : ; fdd and the

elements of A are precisely all functions of the form

g. p.x/; f11.x/; : : : ; fdd.x//; (13.16)
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where p 2 RdŒ x � and g is a real polynomial in 1C �dC1
2

�
variables. Of course, given

an element of A the polynomial g is not uniquely determined.
We denote by Sd�1 the unit sphere of Rd and by Sd�1C the set of all t D .t1; : : : ; td/

of Sd�1 for which the first nonzero coordinate tj is positive.
The next lemma describes the character set OA of A.

Lemma 13.38

(i) For x 2 .Rd/� the point evaluation of functions at x is a character �x of
A such that x D .�x.x1/; : : : ; �x.xd// ¤ 0. Each character of A satisfying
.�.x1/; : : : ; �.xd// ¤ 0 is of this form.

(ii) For t 2 Sd�1 there exists a unique character �t of A such that

�t.xj/ D 0 and �t. fkl/ D fkl.t/ for j; k; l D 1; : : : ; d: (13.17)

Each character � of A for which �.xj/ D 0 for all j D 1; : : : ; d is of the form
�t with uniquely determined t 2 Sd�1C .

(iii) The set OA is the disjoint union of the set f�x W x 2 .Rd/�g and f�t W t 2 Sd�1C g.
Proof

(i) The first assertion is obvious.
We prove the second assertion. For this let � be a character of A such that

x WD .�.x1/; : : : ; �.xd// ¤ 0. The identity .x21C� � �Cx2d/fkl D xkxl implies that

.�.x1/
2 C � � � C �.xd/2/�. fkl/ D �.xk/�.xl/

and therefore

�. fkl/ D .�.x1/2 C � � � C �.xd/2/�1�.xk/�.xl/ D fkl.x/:

Thus � acts on the generators xj and fkl, hence on the whole algebra A, by point
evaluation at x, that is, we have � D �x.

(ii) Fix t 2 Sd�1: Since lim"!C0 fkl."t/ D fkl.t/ and lim"!C0 p."t/ D p.0/ for
p 2 RdŒ x �, it follows that the limit

�t.g/ WD lim
"!C0 g."t/ D lim

"!C0 �"t.g/

exists for all g 2 A. Since �"t is a character on A, so is �t. By construction we
have �t. fkl/ D fkl.t/ and �t.xj/ D 0 for all j; k; l D 1; : : : ; d.

Conversely, let � be a character of A such that �.xj/ D 0 for j D 1; : : : ; d.
Set �kl WD �. fkl/. Since � is a character, (13.14) and (13.15) imply that

�11 C �22 C � � � C �dd D 1; (13.18)

�ij�kl D �ik�jl for i; j; k; l D 1; : : : ; d: (13.19)
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First we note that �ii � 0 for all i. Assume to the contrary that �ii < 0 for
some i. From (13.18) there exists a j such that �jj > 0. Then �2ij D �ii�jj < 0

by (13.19), which is a contradiction.
Set ti D

p
�ii, i D 1; : : : ; d. Then t D .t1; : : : ; td/ 2 Sd�1 by (13.18). From

(13.19) we then obtain that �2ij D t2i t
2
j for all i; j. Therefore, if ti D 0 for some

i, then �ij D 0 and �t. fij/ D �ij D 0 D titj for all j, and this remains valid
if tj is changed. By leaving out all indices with ti D 0 we can assume without
loss of generality that all ti are nonzero. Further, since �2ij D t2i t

2
j ; there exists

an "ij 2 f�1; 1g such that �ij D "ijtitj for i ¤ j; i; j D 1; : : : ; d. If "1;j D �1 for
some j D 2; : : : ; d, we replace tj by �tj. Then �1j D t1tj for all j D 2; : : : ; d.
Further, using (13.19) we obtain

�ij�1j D "ijtitjt1tj D �1i�jj D t1tit
2
j :

Since all tk are nonzero, "ij D 1. Thus �. fij/ D �ij D titj, that is, �. fij/ D
�t. fij/ for all i; j. Since � and �t coincide on generators of A, we have � D �t

on A. By construction, t1 > 0, so that t 2 Sd�1C .
We verify the uniqueness assertion. For let �t D �Qt with t; Qt 2 Sd�1C . Since

t2i D �t. fii/ D �Qt. fii/ D Qt2i ; the first nonvanishing indices for t and Qt are the
same, say j. Then tj D Qtj > 0, since t; Qt 2 Sd�1C . Further, tktj D �t. fkj/ D
�Qt. fkj/ D QtkQtj D Qtktj: Therefore, since tj ¤ 0, we get Qtk D tk, so that t D Qt.

(iii) follows at once by combining (i) and (ii). ut
Theorem 13.39 The preordering

P
A2 of the algebra A has (MP), that is, for each

positive linear functional L on A there exist Radon measures �0 2 MC.Sd�1/ and
�1 2MC.Rd/ such that �1.f0g/ D 0 and for all g 2 A of the form (13.16) we have

L.g. p.x/; f11.x/; : : : ; fdd.x/// D (13.20)Z
Sd�1

g. p.0/; f11.t/; : : : ; fdd.t// d�0.t/C
Z
Rdnf0g

g. p.x/; f11.x/; : : : ; fdd.x// d�1.x/:

Proof It suffices to prove that
P

A2 obeys (MP). The other assertions follow from
the definition of (MP) and the form of the character set given in Lemma 13.38.

From the description of OA it is obvious that the functions fkl, k; l D 1; : : : ; d; are
bounded on OA, so we can take them as functions hj in Theorem 13.10. Let us fix a
nonempty fibre for � D .�kl/, where �kl 2 R for all k; l. In the quotient algebra
A=I� of A by the fibre ideal I� we have �. fkl/ D �kl for all � 2 OA.

First let � D �x, where x 2 .Rd/�. Then �x. fkl/ D fkl.x/ D �kl. By (13.14)
we have 1 D P

k fkk.x/ D
P

k �kk, so there exists a k such that �kk ¤ 0. From the
equality �kk D fkk.x/ D x2k.x

2
1C� � �Cx2d/�1 we obtain xk ¤ 0. Thus �kl

�kk
D fkl.x/

fkk.x/
D xl

xk
,

so that

xl D �kl��1
kk xk for l D 1; : : : ; d: (13.21)
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If � D �t for t 2 Sd�1, then �.xl/ D �.xk/ D 0, so (13.21) holds trivially. That is, in
the algebra A=I� we have the relations (13.21) and fkl D �kl. This implies that the
quotient algebra A=I� is generated by the single polynomial xk. Hence

P
.A=I�/2

satisfies (MP) in A=I� by Corollary 13.17. Therefore, by Theorem 13.10 (iii)!(i),
the preordering T DP A2 obeys (MP) in A. ut

Now we are ready to prove the main result of this section.

Theorem 13.40 A linear functional L on RdŒ x � is a moment functional if and only
if it has an extension to a positive linear functional L on the larger algebra A.

Proof Assume first that L has an extension to a positive linear functional L on A.
By Theorem 13.39, L has the form described by Eq. (13.20). We define a Radon
measure � on Rd by

�.f0g/ D �0.Sd�1/; �.Mnf0g/ D �1.Mnf0g/:

Then � 2MC.Rd/, since �1 2MC.Rd/. Let p 2 RdŒ x �. Setting g.1; 0; : : : ; 0/ D
1, we have g. p; f11; : : : ; fdd/ D p and it follows from (13.20) that

L. p/ D QL. p/ D �0.f0g/p.0/C
Z
Rdnf0g

p.x/ d�1.x/ D
Z
Rd

p.x/ d�.x/:

That is, L is a moment functional on RdŒ x � with representing measure �.
Conversely, suppose that L is a moment functional on RdŒ x � and let � be a

representing measure. Fix a point t 2 Sd�1. By Lemma 13.38(ii), �t is a character
of A and �t. f / D f .0/ for f 2 RdŒ x �. Therefore, for f 2 RdŒ x �, we obtain

L. f / D �.f0g/�t. f /C
Z
Rdnf0g

f .x/ d�.x/: (13.22)

For f 2 A we define L. f / by the right-hand side of (13.22). Since the functions fkl
are bounded on Rdnf0g, the integral in (13.22) exists for all f 2 A and it is a positive
functional on A. The character �t is obviously a positive functional on A. Hence L
is a positive linear functional on A which extends L by (13.22). ut

13.8 Closedness and Stability of Quadratic Modules

While the preceding sections dealt with affirmative results for (SMP) or (MP), the
aim of this section is to develop examples where (MP) fails and to provide some
tools for proving this. By Proposition 13.9, a quadratic moduleQ of RdŒ x � has (MP)
if and only if Q D Pos.Rd/. Thus, proving that (MP) fails requires a polynomial in
Pos.Rd/ that does not belong to the closure (!) of Q. This leads to the problem of
when a quadratic module is closed in the finest locally convex topology. Let us look
at the simplest example

P
RdŒ x �2. The closedness of

P
RdŒ x �2 can be derived
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from the closedness of
P

RdŒ x �2n in the finite-dimensional space RdŒ x �2n combined
with the simple, but crucial observation RdŒ x �2n \ PRdŒ x �2 D P

RdŒ x �2n.
An elaboration of the latter relation leads to the notion of stability for quadratic
modules.

In this section, A is a finitely generated commutative real unital algebra.
We equip the countable-dimensional vector space A with the finest locally convex
topology (see Appendix A.5). Closedness of sets in A always refers to this topology.
On each finite-dimensional subspace it inherits the unique norm topology.

Let W be a subspace of A. We denote by
P

W2 the set of sums of squares of
elements of W. For g1; : : : ; gk 2 A, we put

X
.WI g1; : : : ; gk/ WD

X
W2 C g1

X
W2 C � � � C gk

X
W2: (13.23)

If n D dimW <1, then
P

W2 and
P
.WI g1; : : : ; gk/ are contained in subspaces

of dimensions at most .nC1/n
2

and .nC1/n.kC1/
2

, respectively. (Indeed, if a1 : : : ; an is a
basis of W, each square a2 of a 2 W is in the span of elements akal, k � l.)

Definition 13.41 A quadratic module Q of A generated by g1; : : : ; gk 2 A is called
stable if for each finite-dimensional subspace V of A there exists a finite-dimensional
subspace WV of A such that

V \ Q 	
X

.WV I g1; : : : ; gk/: (13.24)

Lemma 13.42 Definition 13.41 is independent of the choice of generators of Q.

Proof By induction it suffices to show that the condition in Definition 13.41 is
preserved if one element g 2 Q is added to the generators g1; : : : ; gk of Q. If the
condition holds for g1; : : : ; gk, it trivially holds for g1; : : : ; gk; g.

Conversely, suppose that it holds for g1; : : : ; gk; g. Let V be a given finite-
dimensional subspace of A. Then there is a finite-dimensional subspace W0 such that
V \ Q 	 P

.W0I g1; : : : ; gk; g/: Since g 2 Q and Q is generated by g1; : : : ; gk, we
have g D �0 C g1�1 C : : : gk�k with �j 2 P A2. We choose a finite-dimensional
subspace W1 such that 1 2 W1 and all �j are in

P
W2
1 . If WV is the finite-

dimensional subspace spanned by w0w1, where w0 2 W0 and w1 2 W1, then
W0 	 WV and

gw20 D �0w20 C g1�1w
2
0 C : : : gk�kw20 2

X
.WV I g1; : : : ; gk/

for w0 2 W0. Hence V \Q 	P.WV I g1; : : : ; gk/. ut
For the next results we assume that .An/n2N is a sequence of linear subspaces of

A such that

A D
1[
nD1

An; where An 	 AnC1; dimAn <1 for n 2 N: (13.25)
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Our standard example is An D RdŒ x �n � fp 2 RdŒ x � W deg. p/ � ng for A D RdŒ x �.
The main motivation for the concept of stability stems from the following fact.

Proposition 13.43 Let Q be a finitely generated quadratic module of A with
generators g1; : : : ; gk. Let .An/n2N be a sequence of subspaces of A satisfying
(13.25). If Q is stable and the set

P
.AnI g1; : : : ; gk/ is closed (in the norm topology

of some finite-dimensional subspace of A which contains
P
.AnI g1; : : : ; gk/) for

each n 2 N, then Q itself is closed in the finest locally convex topology of A.

Proof Since Q is stable, for each An there is a finite-dimensional subspace WAn such
that An \ Q 	 P

.WAn I g1; : : : ; gk/. By (13.25) there is an mn 2 N such that Amn

contains a vector space basis of WAn . Hence WAn 	 Amn . Then

An \Q 	 .WAn I g1; : : : ; gk/ 	
X

.Amn I g1; : : : ; gk/ 	 Q

and therefore An \ Q D An \ P.Amn I g1; : : : ; gk/. Since
P
.Amn I g1; : : : ; gk/ is

closed by assumption, so is An \P.Amn I g1; : : : ; gk/ D An \ Q in An. Hence, by
Proposition A.28, Q is closed in the finest locally convex topology of A. ut

Often it is convenient to rephrase the stability of quadratic modules in terms
of the decomposition (13.25) of A. A quadratic module Q of A with generators
g1; : : : ; gk is stable if and only if the following condition holds:

(�) There exists a map l W N0 ! N0 such that, for each n 2 N0 and p 2 Q\ An,
p admits a representation p D �0 CPk

jD1 gj�j with �0; �j 2
P

A2, �0 2 Al.n/ and
gj�j 2 Al.n/ for j D 1; : : : ; k.

Indeed, suppose that Q is stable. Applying Definition 13.41 to V D An, then WV

is contained in Al.n/ for some l.n/ 2 N. Then, by (13.23), (�) holds. Conversely,
assume that (�) is satisfied. Then, given V we choose n such that V 	 An. Then (�)
implies that V \Q 	P .Al.n/I g1; : : : ; gk/, so Q is stable.

Example 13.44 The simplest example of a stable quadratic module is the preorder-
ing

P
RdŒ x �2 of the polynomial algebra A D RdŒ x �.

In this case, g1 D 1; k D 1 and RdŒ x �2n \PRdŒ x �2 D P
RdŒ x �2n by (13.1).

Thus condition (�) is satisfied for An D RdŒ x �n and l.n/ D n, so
P

RdŒ x �2 is
stable. ı
Example 13.45 Let k 2 f1; : : : ; dg and m1; : : : ;mk 2 N. The quadratic module

Q D
X

RdŒ x �
2 C xm11

X
RdŒ x �

2 C � � � C xmk
k

X
RdŒ x �

2

of A D RdŒ x � is stable. Indeed, setting An D RdŒ x �n one easily checks that
condition (�) is fulfilled with l.n/ D nCmaxj mj. ı

The following proposition contains the crucial technical part of the proof of
Theorem 13.47 below, but it is also of interest in itself.



13.8 Closedness and Stability of Quadratic Modules 341

Proposition 13.46 Let Q be the quadratic module of A generated by g1; : : : ; gk.
Suppose that Q\ .�Q/ D f0g and (13.25) holds. Let n D .n0; : : : nk/ 2 NkC1

0 . Then

Qn WD
X

.An0 /
2 C g1

X
.An1 /

2 C � � � C gk
X

.Ank/
2 (13.26)

is a closed subset of Am for some m 2 N:

Proof Put g0 D 1. Since Al is finite-dimensional, each gi
P
.Ai/

2 is contained in
some finite-dimensional subspace of A, say of dimension r.i/. HenceQn is contained
in a finite-dimensional subspace of A, so by (13.25) there is an m 2 N such that
Qn 	 Am. By Carathéodory’s theorem A.35, each element of the cone gi

P
.Ai/

2 is
a sum of r.i/ summands gjb2, where b 2 Ai. Thus Qn is the image of the map

˚ W Rn WD .An0 /
r.n0/ � � � � � .Ank/

r.nk/ ! Am;

˚.. f0j/
r.n0/
jD1 � � � � � . fkj/r.nk/jD1 / WD

kX
lD0

r.nk/X
jD1

glf
2
lj :

We equip the finite-dimensional real vector spaces Rn and Am with some norm.
Let S be the unit sphere of Rn. Since all linear and all bilinear mappings of finite-
dimensional normed spaces are continuous,˚ W Rn ! Am is continuous. Hence the
image U WD ˚.S/ of the compact subset S of Rn is compact in Am.

Next we show that ˚ is injective. Assume that ˚.v/ D 0 for v 2 Rn. We write

˚.v/ D
kX

lD0

r.nk/X
jD1

gl f
2
lj

with f 2lj 2 Anj . Since ˚.v/ D 0, we have

g0f
2
01 D �

r.n0/X
jD2

g0f
2
0j �

kX
lD1

r.nk/X
jD1

gl f
2
lj 2 Q\ .�Q/:

Since Q \ .�Q/ D f0g by assumption, g0f 201 D 0. Continuing this procedure by
induction it follows that glf 2lj D 0 for all l; j. Thus v D 0 and ˚ is injective.

Now we prove that Qn is closed in Am. Let . fn/n2N be a sequence of Qn which
converges to some element f 2 Am. We will show that f 2 Qn: By definition we
have fn D ˚.vn/ for some vn 2 Rn. Writing vn D �nwn with wn 2 S and �n � 0,
we get fn D �nun with un 2 ˚.S/ D U. Since U is compact in Am, the sequence
.un/n2N has a subsequence which converges to some element u 2 U. For notational
simplicity we assume that the sequence .un/ itself converges to u. Because ˚ is
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injective, 0 … U and therefore u ¤ 0. Then limn �n D limn
k fnk
kunk D

k fk
kuk and hence

f D lim
n

fn D lim
n
�nun D .lim

n
�n/.lim

n
un/ D k fkkuk u 2

k fk
kuk � U 	 Qn: ut

The next theorem is our main result about the closedness of quadratic modules.

Theorem 13.47 Let A be a finitely generated commutative real unital algebra and
Q a finitely generated quadratic module of A. Suppose that Q\ .�Q/ D f0g and Q
is stable. Then Q is closed in the finest locally convex topology of A.

Proof Since A is finitely generated, we can write A in the form (13.25). In the case
n WD n0 D � � � D nk the set Qn in (13.26) is just the cone

P
.AnI g1; : : : ; gk/

for W D An defined by (13.23). Since Qn D P
.AnI g1; : : : ; gk/ is closed by

Proposition 13.46, the assertion follows from Proposition 13.43. ut
The assumption Q \ .�Q/ D f0g is fulfilled in the following important case.

Lemma 13.48 If Q is a quadratic module of RdŒ x � such that K.Q/ contains an
interior point, then Q \ .�Q/ D f0g.
Proof Let p 2 Q \ .�Q/. Then p � 0 and �p � 0 on K.Q/. Therefore, the
polynomial p vanishes on K.Q/ and so on an open set. Hence p D 0. ut
Corollary 13.49 Let k 2 f1; : : : ; dg and m1; : : : ;mk 2 N. The quadratic modules

X
RdŒ x �

2 C xm11
X

RdŒ x �
2 C � � � C xmk

k

X
RdŒ x �

2

and
P

RdŒ x �2 are stable and closed in RdŒ x �.

Proof Let Q be one of these quadratic modules. By Examples 13.44 and 13.45, Q
is stable. Obviously, the positive d-octant .RC/d is a subset of K.Q/, so K.Q/ has
an interior point. Therefore Q is closed by Theorem 13.47 and Lemma 13.48. ut

The following Propositions 13.50 and 13.51 and Example 13.52 contain results
about the failure of (MP) for certain quadratic modules.

Proposition 13.50 Let Q be a finitely generated quadratic module of RdŒ x � such
that K.Q/ contains an interior point. Suppose that d � 2 and Q is stable. Then Q
does not have (MP).

Proof Let g1; : : : ; gk be generators of Q. We can assume that none of the gj is the
zero polynomial. Set g WD g1 � � �gk. Since K.Q/ has a non-empty interior U, g
cannot vanish on the whole set U, so there is a point x0 2 U 	 K.Q/ such that
g.x0/ ¤ 0: Upon translation we can assume that x0 D 0: Since x0 D 0 2 K.Q/ and
gj.0/ ¤ 0, it follows that gj.0/ > 0 for j D 1; : : : ; k: Further, we set g0 D 1 and
choose a polynomial p 2 Pos.Rd/ such that p … PRdŒ x �2; for instance, we may
take the Motzkin polynomial given by (13.6).

For n 2 N define pn.x/ WD p.2nx/ . We prove that not all polynomials pn are in
Q. Assume to the contrary that pn 2 Q for all n 2 N. Since deg. pn/ D deg. p/ and
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Q is stable, there exist m 2 N and representations

pn.x/ D p.2nx/ D
kX

jD0
gj.x/�nj.x/;

where �nj 2PRdŒ x �2m. Rescaling the preceding we get

p.x/ D
kX

jD0
gj.2

�nx/�nj.2
�nx/; n 2 N: (13.27)

Since gj.0/ > 0, there are " > 0 and a ball B 	 K.Q/ around 0 such that gj.x/ � ",
hence gj.2�nx/ � ", on B for all j and n. Then, since all polynomials in (13.27)
are nonnegative on B and the left-hand side does not depend on n, the values of
�nj.2

�nx/ are uniformly bounded on B, that is, supx2B supn;j �nj.2
�nx/ <1. Clearly,

�nj.x/ WD �nj.2�nx/ 2PRdŒ x �2m 	 RdŒ x �2m. The supremum over B defines a norm
on the finite-dimensional space RdŒ x �2m and the sequences .�nj/n2N of polynomials
�nj 2 RdŒ x �2m are bounded with respect to this norm. Hence they have converging
subsequences .�nlj/l2N for j D 0; : : : ; k. Their limits �j are also in

P
RdŒ x �2m by

Proposition 13.46 (or Corollary 13.49). Passing to the limit nl ! 1 in (13.27)
yields

p.x/ D
kX

jD0
gj.0/�j.x/:

Since �j 2 PRdŒ x �2 and gj.0/ > 0, p 2 PRdŒ x �2, which contradicts the choice
of p.

By the preceding we proved that pn … Q for some n. Since Q is stable, Q is closed
by Theorem 13.47 and Lemma 13.48. Therefore, pn … Q. But pn 2 Pos.Rd/. Thus
Q ¤ Pos.Rd/. Hence Q does not have (MP) by Proposition 13.9(ii). ut

Let us mention a consequence of the preceding result. Let f be a finite subset of
RdŒ x � such that the semi-algebraic set K.f/ is compact. Then, by Theorem 12.25,
T.f/ has (SMP) and hence (MP). Therefore, if d � 2 and K.f/ contains an interior
point, Proposition 13.50 implies that the preordering T.f/ is not stable!

There is an even stronger result than Proposition 13.50, proved by C. Scheiderer
[Sr1, Theorem 5.4]. We state it here without proof (for the dimension of a semi-
algebraic set we refer to [BCRo, Corollary 2.8.9]):

Let Q be a finitely generated quadratic module of RdŒ x �. If the semi-algebraic
set K.Q/ has dimension at least 2 and Q is stable, then (MP) fails.

That is, (MP) and stability exclude each other if the dimension is at least 2.

Proposition 13.51 Let Q be a finitely generated quadratic module of RdŒ x � such
that the semi-algebraic set K.Q/ contains an open cone C. Then Q is stable and
closed. If d � 2, then Q does not obey (MP) in RdŒ x �.
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Proof Upon translation we can assume without loss of generality that the vertex of
C is the origin. Let p; q 2 Pos.C/. We show that

max.deg. p/; deg.q// D deg. pC q/: (13.28)

This is obvious if deg. p/ ¤ deg.q/ and if p D 0 or q D 0. Hence we can assume
that n WD deg. p/ D deg.q/ and pq ¤ 0. Since C has nonempty interior and pq ¤ 0,
there exists an x0 2 C such that pq.x0/ ¤ 0. Hence p.x0/ > 0 and q.x0/ > 0. For
all � > 0 we have �x0 2 C and hence p.�x0/ � 0 and q.�x0/ � 0. For large �
this implies that pn.x0/ > 0 and qn.x0/ > 0, where pn and qn are the corresponding
homogeneous terms of degee n. Thus . pn C qn/.x0/ > 0 and hence pn C qn ¤ 0.
That is, deg. pC q/ D n, which proves (13.28).

Let g1; : : : ; gk be a set of generators of Q. Suppose that f D P
j gj�j 2 Q with

�j 2 PRdŒ x �2. Setting p D gj�j and q D P
i¤j gi�i, then p and q are nonnegative

on C and hence deg.gj�j/ D deg. p/ � deg. pCq/ D deg. f / by (13.28). Therefore,
condition (�) is satisfied with An D RdŒ x �n and l.n/ D n, so that Q is stable.

Since C is contained in the interior of K.Q/, Q is closed by Theorem 13.47 and
Lemma 13.48. If d � 2, then Q does not obey (MP) by Proposition 13.50. ut

We illustrate the preceding with a simple, but typical example.

Example 13.52 Suppose that d � 2. The quadratic modules Q0 WDPRdŒ x �2 and

Qk D
X

RdŒ x �
2 C x1

X
RdŒ x �

2 C � � � C xk
X

RdŒ x �
2; k D 1; : : : ; d;

do not satisfy (MP). Indeed, these quadratic modules are stable and closed by
Corollary 13.49. Further, since K.Qk/ contains an open cone, Qk does not obey
(MP) by Proposition 13.51 (or likewise by Proposition 13.50).

Because Qk is closed in RdŒ x �, by the separation theorem for convex sets, each
polynomial p0 2 Pos.Rd/nQk gives rise to a Qk-positive linear functional L on
RdŒ x � such that L. p0/ < 0. Each such functional L is not a moment functional.
Recall that the Motzkin polynomial pc; 0 < c � 3, defined by (13.6) is in
Pos.R2/nQ0: ı

13.9 The Moment Problem on Some Cubics

In this section, we illustrate (SMP) and (MP) for some cubics. We use only
elementary computations and do not require results from the theory of algebraic
curves.

Throughout this section, we suppose that f 2 RŒx1; x2� is a polynomial of degree
3 and f3 is its homogeneous part of degree 3. We denote by

Cf � Z. f / D f.x1; x2/ 2 R2 W f .x1; x2/ D 0g
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the plane real curve associated with f , by I the ideal generated by f and by OI the
ideal of all p 2 RŒx1; x2� which vanish on Cf . Then RŒCf � D RŒx1; x2�= OI is the
algebra of regular functions on the curve Cf , see Eq. (12.7). Set

RŒCf �C WD fp 2 RŒCf � W p.x/ � 0 for x 2 Cf g:

Proposition 13.53 If f3 has a nonreal zero, then
P

RŒCf �
2 obeys (SMP).

Proof The assumption implies that f3 has a real zero z0 and two nonreal complex
conjugate zeros. Upon translation we can asume that z0 D .0; 1/, so f3 has the form

f3.x1; x2/ D x1.ax
2
1 C bx1x2 C cx22/; where a; b; c 2 R; 4ac > b2:

In particular, we have a > 0. Hence f has degree at most 2 in x2, so we can write
f DP2

jD0 pj.x1/x
j
2, where pj 2 RŒx1� and deg. pj/ � 3 � j.

Let x1 2 R and assume that there exists an x2 2 R satisfying .x1; x2/ 2 Cf . This
means that the quadratic equation f .x1; x2/ D 0 in x2 has a real solution, so that

g.x1/ WD p1.x1/
2 � 4p0.x1/p2.x1/ � 0:

The polynomial g.x1/ has degree at most 4 and its coefficient of x41 is b2� 4ac < 0:
Hence there exists a � > 0 such that g.x1/ < 0 for jx1j > �. Therefore, if jx1j > �,
there is no x2 2 R such that .x1; x2/ 2 Cf . That is, the curve Cf is contained in the
strip Œ��; �� �R of R2.

Let f D f f ;�f g: Then Cf D Z. f / is the semi-algebraic set K.f/ and the
preorderingT.f/ is

P
RŒx1; x2�2CI, see e.g. Example 12.4. Since Cf 	 Œ��; ���R,

the preordering T.f/ has (MP) by Proposition 13.25. By I 	 OI, each positive
linear functional L on RŒCf � D RŒx1; x2�= OI lifts to a positive linear functional QL
on RŒx1; x2� that vanishes on I. Since T.f/ D P

RŒx1; x2�2 C I, QL is T.f/-positive.
Because T.f/ has (MP), the functional QL, hence L, is given by a Radon measure �.
Since QL vanishes on I, � is supported on Cf by Proposition 12.19. That is,

P
RŒCf �

2

has (SMP). ut
Example 13.54 Suppose that f3 D x31 C x32. Then f3 has a nonreal zero, henceP

RŒCf �
2 satisfies (SMP) by Proposition 13.53. Examples of this kind are the

Fermat curve f D x31 C x32 � 1 and the folium of Descartes f D x31 C x32 � 3x1x2
(Fig. 13.1). ı

Proposition 13.55 Suppose that the polynomial f is of the form

f D x31 C a20x
2
1 C 2a11x1x2 C a02x

2
2 C a10x1 C a01x2 C a00; where a02 ¤ 0:

Then
P

RŒCf �
2 is closed in the finest locally convex topology of the vector space

RŒCf � and does not obey (MP).
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Fig. 13.1 Left: Fermat curve, middle: folium of Descartes. Both have (SMP), see Example 13.54.
Right: Neil’s parabola. It does not have (MP), see Example 13.56

Proof Replacing x1 by x1� 1
3
a20, the coefficient of x21 becomes zero. Since a02 ¤ 0,

the coefficient of x2 vanishes after some translation. Then f has the form

f .x1; x2/ D �bx22 C x31 C ax1x2 C cx1 C d; a; b; c; d 2 R; b ¤ 0: (13.29)

From (13.29) it follows that each element of the quotient algebra RŒCf � is of the
form

g D p.x1/C x2q.x1/; where p; q 2 RŒx1�: (13.30)

(It suffices to note that x22 can be eliminated by using (13.29), since b ¤ 0:)
First we prove that the quadratic module

P
RŒCf �

2 is stable. For n 2 1
2
N, let Vn

denote the vector space of elements g 2 RŒCf �, where deg. p/ � n and deg.q/ �
n � 1 in (13.30). Let gi D pi.x1/ C x2qi.x1/, i 2 J, be finitely many elements of
RŒCf �. In the algebra RŒCf � we compute

X
i
g2i D

X
i
. p2i C 2x2piqi C x22q

2
i /

D
X

i

�
p2i C 2x2piqi C b�1.x31 C ax1x2 C cx1 C d/q2i

�

D
X

i

�
p2i C b�1.x31 C cx1 C d/q2i /C x2

X
i

�
2piqi C ab�1x1q2i

�

DW p.x1/C x2q.x1/: (13.31)

Suppose that
P

g2i 2 Vn, that is, deg. p/ � n and deg.q/ � n � 1. We shall show
that gi 2 Vn=2 for all i 2 J. Set j WD maxi deg. pi/ and k WD maxi deg.qi/.

Case 1: j > kC 1.
Then 2j > 2k C 3 and hence 2j D deg. p/ � n by (13.31). Thus, deg. pi/ � j �

n=2 and deg.qi/ � k < j� 1 � n=2� 1, so that gi 2 Vn=2 for i 2 J:
Case 2: j � kC 1.
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Then 2j < 2k C 3 and hence 2k C 3 D deg. p/ � n by (13.31). Therefore, we
have deg.qi/ � k < n=2� 1 and deg. pi/ � j � kC 1 < n=2; so that gi 2 Vn=2 for
i 2 J.

The preceding proves that Q WD P
RŒCf �

2 is stable. Further, Q \ .�Q/ D f0g
by (12.8). It follows therefore from Theorem 13.47 that Q DPRŒCf �

2 is closed in
RŒCf � with respect to the finest locally convex topology.

Put � WD sign b. We show that there is a real number ˛ such that

�x1 � ˛ 2 RŒCf �C and �x1 � ˛ …
X

RŒCf �
2: (13.32)

Let .x1; x2/ 2 Cf . Then �bx22 C ax1x2 C x31 C cx1 C d D 0. This is a quadratic
equation in x2 which has a solution. Therefore,

a2x21 C 4b.x31 C cx1 C d/ � 0:

Suppose first that b > 0. Then limx1!�1 Œa2x21 C 4b.x31 C cx1 C d/� D �1, so
there is a real number ˛ such that a2x21 C 4b.x31 C cx1 C d/ < 0 for x1 < ˛. Hence
x1 � ˛ for all .x1; x2/ 2 Cf , that is, �x1 � ˛ 2 RŒCf �C for b > 0. In the case b < 0

we replace x1 by �x1 and use the same reasoning.
To prove that �x1�˛ …PRŒCf �

2 we assume to the contrary that �x1�˛ DP g2i ;
where gi 2 RŒCf �

2. Since �x1 � ˛ 2 V1, it was shown above that all gi are in V1=2,
so they are constants. From (13.29) it is obvious that x1 is not constant on Cf , so we
have a contradiction. This completes the proof of (13.32).

By (13.32) we have RŒCf �C ¤P
RŒCf �

2. Since
P

RŒCf �
2 is closed, as shown

above, it follows from Proposition 13.9(ii) (or directly from the separation theorem
for convex sets) that Q DPRŒCf �

2 does not obey (MP). ut
Example 13.56 Neil’s parabola (Fig. 13.1) f .x1; x2/ D x31 � x22.

Then x1 2 RŒCf �C and x1 … PRŒCf �
2. Indeed, it is obvious that x1 � 0 on

Z. f /, that is, x1 2 RŒCf �C. Arguing as in the preceding proof of Proposition 13.55
it follows that x1 …PRŒCf �

2:

By Proposition 13.55,
P

RŒCf �
2 does not satisfy (MP). In fact, any positive linear

functional L on RŒCf � such that L.x1g/ < 0 for some g 2PRŒCf �
2 is not a moment

functional. Likewise a linear functional QL on RŒx1; x2� which vanishes on I and
satisfies QL.x1g/ < 0 for some g 2 PRŒx1; x2�2 cannot be a moment functional. In
Exercise 13.3 we use this observation to “construct” a positive linear functional on
RŒx1; x2� which is not a moment functional. ı

Let us return to a general cubic. Since f3 is a homogeneous polynomial in two
variables of degree 3, it is a product of 3 linear factors. If one of the zeros of f3 is
nonreal, or equivalently, f has a nonreal zero at infinity, then RŒCf � has (SMP) by
Proposition 13.53. If all zeros of f3 are real, it can happen that RŒCf � obeys (SMP)
(see Example 13.57 with p.x1/ D x31) and that RŒCf � does not have (MP) as shown
by Proposition 13.55.

The aim of this section was to give a small glimpse into the moment problem on
curves; this problem is extensively studied in [PoS, Sr2], and [Pl].
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We close this section with a very simple example of curves which have (SMP).

Example 13.57 Let p 2 RŒx1; x2� and set g.x1; x2/ D x2 � p.x1/: We consider the
plane curve Cg D Z.g/ and show that the preordering

P
RŒCg�

2 has (SMP).
Let q 2 RŒCg�C. Then q.x1; p.x1// 2 RŒx1� is nonnegative on R. Therefore,

by Proposition 3.1(i), q.x1; p.x1// D q1.x1/2 C q2.x1/2 for some q1; q2 2 RŒx1�, so
that q 2PRŒCg�

2. By Haviland’s theorem 1.14, applied to the algebra A D RŒCg�,
each positive linear functional on RŒCg� is a moment functional with representing
measure on OA D Cg. This means that

P
RŒCg�

2 has (SMP). ı

13.10 Proofs of the Main Implications of Theorems 13.10
and 13.12

In this section, we also use the polynomial algebra RmŒy� WD RŒy1; : : : ; ym�.
Let us begin with two technical lemmas.

Lemma 13.58 Let �1 and �2 be Radon measures on a compact subset K of Rm

and let A be a Borel subset of K. Then there exists a subset N of K such that
�1.N/ D �2.N/ D 0 and a sequence .qn/n2N of polynomials qn 2 RmŒy� such
that lim

n!1 qn.�/ D �A.�/ for � 2 KnN and sup
�2K
jqn.�/j � 2 for n 2 N.

Proof Clearly, it suffices to prove the assertion for the case when K is an m-
dimensional compact interval. Since the measures are regular, there exist compact
subsets C0

n;C
00
n and open subsets U0

n;U
00
n of K such that

C0
n 	 A 	 U0

n; C
00
n 	 A 	 U00

n ; �1.U
0
nnC0

n/ � 2�n; �2.U
00
n nC00

n / � 2�n for n 2 N:

Then Cn 	 A 	 Un, �1.UnnCn/ � 2�n and �2.UnnCn/ � 2�n for the compact set
Cn D C0

n [ C00
n and the open set Un D U0

n \ U00
n . Further, without loss of generality

we can assume Cn 	 CnC1 and UnC1 	 Un, so that UnC1nCnC1 	 UnnCn. Applying
Urysohn’s lemma to the compact set Cn and the closed set RmnUn of Rm there are
exists a continuous function 'n on K with values in Œ0; 1� such that 'n D 1 on
Cn and 'n D 0 on RmnUn. From Weierstrass’ theorem, applied to the compact m-
dimensional interval K, it follows that there exists a polynomial qn 2 RmŒy� such
that jqn.�/ � 'n.�/j � 2�n for � 2 K. Clearly, we have sup�2K jqn.�/j � 2: Set
N D \nUnnCn. Then �j.N/ D 0 for j D 1; 2, since �j.\nUnnCn/ � �j.UknCk/ �
2�k for all k 2 N.

Let � 2 KnN. Then � … UknCk for some k. For n � k we have UnnCn 	 UknCk,
so that � … UnnCn and hence 'n.�/ D �A.�/. Thus limn 'n.�/ D �A.�/. Since
limn.qn.�/ � 'n.�// D 0, we conclude that limn qn.�/ D �A.�/. ut
Lemma 13.59 Suppose that � is a Radon measure on a compact subset K of
Rm and ' is a real-valued function of L1.KI�/. If RK q.�/'.�/d�.�/ � 0 (resp.R
K q.�/'.�/d�.�/ D 0) for all q 2 RmŒy�, then ' � 0 (resp. ' D 0) �-a.e. on K.
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Proof Given " > 0, we put A" WD f� 2 K W '.�/ � �"g. For the Borel set A" we
choose a sequence .qn/n2N of polynomials as in Lemma 13.58. Since jq2n'j � 4j'j
on K and ' 2 L1.KI�/, Lebesgue’s dominated convergence theorem A.2 applies
and yields limn

R
q2n'd� D

R
�A"'d�. Hence

R
�A"'d� � 0, since

R
q2n'd� � 0

by assumption. On the other hand,
R
�A"'d� � �"�.A"/ by the definition of A".

Therefore, �.A"/ D 0. Since " > 0 was arbitrary, '.�/ � 0 �-a.e. on K.
The second assertion follows by applying the preceding to ' and �'. ut
As noted in Sect. 13.3 the proofs of Theorem 13.10 and 13.12 are complete once

the main implications (ii)!(i) are proved.

Proof of the Implication (ii)!(i) of Theorem 13.12 Let ˛j and ˇj be as in
Theorem 13.12. Throughout this proof we abbreviate

K D
mY
jD1
Œ˛j; ˇj�:

Let us fix a Q-positive linear functional L on A. For any p 2 A we define a linear
functional Lp on the polynomial algebra RmŒy� by

Lp.q/ D L.q.h/p2/; q 2 RmŒy�: (13.33)

Note that q.h/ WD q.h1; : : : ; hm/ is a well-defined element of A, since h1; : : : ; hm 2 A
by assumption.

Lemma 13.60 For p 2 A there exists a Radon measure � on K such that

Lp.q/ D L.q.h/p2/ D
Z
K
q d�p; q 2 RmŒy�: (13.34)

Proof The moment problem for the m-dimensional interval K was treated in
Example 12.47. As shown therein (see (12.38)), for the existence of a measure �p
such that (13.34) holds it suffices to verify that for all q 2 RmŒy� and j D 1; : : : ;m,

Lp..ˇj � yj/q
2/ � 0 and Lp..yj � ˛j/q2/ � 0: (13.35)

By assumption, ˇj � hj belongs to Q. Because Q is also a quadratic module (as Q
is), .ˇj � hj/q.h/2p2 2 Q. Therefore, since L is Q-positive by assumption and hence
Q-positive, using (13.33) we obtain

Lp..ˇj � �j/q2/ D L..ˇj � hj/q.h/
2p2/ � 0

which implies the first equality of (13.35). The second one is derived in a similar
manner from the assumption .hj � ˛j/ 2 Q. ut
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Since K is compact, the measure �p is uniquely determined by p, but we will
not need this here. Let � denote the measure �p obtained for the element p D 1. A
crucial step of this proof is contained in the following

Lemma 13.61 For all p 2 A the measure �p is absolutely continuous with respect
to �, that is, each �-null set is also a �p-null set.

Proof Asssume that A is a �-null set. For the set A, the compact set K and the
measures �1 D �p, �2 D � we choose a sequence .qn/n2N of polynomials qn 2
RmŒy� as in Lemma 13.58. Then we have limn qn.�/ D �A.�/ �p-a.e. on K and
limn qn.�/2 D �2A.�/ D �A.�/ �-a.e. on K. Therefore, by Lebesgue’s dominated
convergence theorem A.2, we have

lim
n

Z
K
qnd�p D

Z
K
�Ad�p D �p.A/ and lim

n

Z
K
q2nd� D

Z
K
�Ad� D �.A/ D 0:

(13.36)

Further, since
P

A2 	 Q and L.Q/ � 0, L is a positive functional on A, so the
Cauchy–Schwarz inequality (2.4) holds. From this inequality and (13.34) we obtain

�Z
K
qn d�p

�2
D L

�
qn.h/p

2
�2 � L

�
qn.h/

2
�
L
�
p4
� D L. p4/

Z
K
q2n d�: (13.37)

Combining (13.36) and (13.37) we conclude that �p.A/ D 0. ut
By Lemma 13.61, the assumptions of the Radon–Nikodym theorem A.3 are

fulfilled, so there exists a nonnegative function �p 2 L1.K; �/ such that d�p D �pd�.
Then, by (13.34) we have

Lp.q/ D L.q.h/p2/ D
Z
K
q�p d�; q 2 RmŒy�: (13.38)

Now we take a basis of the form fp2j gj2N, where N 	 N; of the real vector space
A. (Such a basis exists: Since the algebra A is finitely generated, its vector space
dimension is at most countable. If f flg is a vector space basis of A, we may take
elements fl ˙ 1 as pj. These elements span A, since . fl C 1/2 � . fl � 1/2 D 4fl.)

For � 2 K we define a linear functional L� on A by

L�

�X
j
cjp

2
j

�
D
X

j
cj�pj.�/: (13.39)

Then we have the following integral decomposition of the functional L:

L.q.h/p/ D
Z
K
q.�/L�. p/ d�.�/ for p 2 A; q 2 RmŒy�: (13.40)
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Indeed, using (13.38) and (13.39), for p DPj cjp
2
j we prove (13.40) by computing

L.q.h/p/ D
X
j

cjL.q.h/p
2
j / D

X
j

cj

Z
K
q.�/�pj.�/ d�.�/

D
Z
K
q.�/

�X
j

cj�pj.�/

�
d�.�/ D

Z
K
q.�/L�. p/ d�.�/:

The next technical steps are collected in the following lemma.

Lemma 13.62

(i) L�. p/ � 0 �-a.e. on K for any p 2 Q.
(ii) L�..hj � �j/p/ D 0 �-a.e. on K for p 2 A and j D 1; : : : ;m.

(iii) There exists a �-null set N such that L� � 0 on Qg.�/ for � 2 KnN.
Proof

(i) Let p 2 Q. Then q.h/2p belongs to the quadratic module Q for any q 2 RmŒy�
and hence

L.q.h/2p/ D
Z
K
q.�/2L�. p/ d�.�/ � 0

by (13.40). Therefore, since the function � 7! L�. p/ is L1.K; �/ (because the
functions �pj are), Lemma 13.59 applies and yields L�. p/ � 0 �-a.e. on K.

(ii) Let q 2 RmŒy�. Applying formula (13.40) twice we derive

Z
K
q.�/L�..hj��j/p/ d�.�/ D L.q.h/.hj��j/p/ D

Z
K
q.�/.�j��j/L�. p d�.�/ D 0:

Using again Lemma 13.59 it follows that L�..hj��j/p/ D 0 �-a.e. on K.
(iii) Let g1; : : : ; gk be generators of the finitely generated quadratic moduleQ. From

(i) and (ii) it follows that for the countable (!) subsets

Q0 D
X

QŒ x �2 C g1
X

QŒ x �2 C � � � C gl
X

QŒ x �2;

I 0
� D .h1 � �1/QŒ x �C � � � C .hm � �m/QŒ x �; � 2 K;

of Q and I�, respectively, there exists a common �-null set N such that for
all � 2 KnN we have L�. p/ � 0 for p 2 Q0 and L�.r/ D 0 for r 2 I 0

�.
Approximating real coefficients by rationals it follows that this holds for all
elements p 2 Q and r 2 I� as well. Therefore, for � 2 KnN, we have L� � 0
on Q and L� D 0 on I�. Thus L� � 0 on Q� D Q C I� and hence on the
closure Q�. ut

Now we can complete the proof of the implication (ii)!(i) of Theorem 13.12.
Suppose that Q� has (SMP) for all � 2 K. Recall that L is an arbitrary Q-positive
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linear functional on A. Let p 2 Pos.K.Q//: Then, obviously, p 2 Pos.K.Q�// for
� 2 K. Since Q� has (SMP), Q� D Pos.K.Q�// by Proposition 13.9(i). Therefore,
p 2 Q�. Therefore L�. p/ � 0 �-a.e. on K by Lemma 13.62(iii) and hence L. p/ � 0
by (13.40). That is, L � 0 on Pos.K.Q//: Hence Haviland’s Theorem 1.14 (i)!(iv),
applies and shows that L comes from a measure � 2 MC. OA/ supported on K.Q/.
This proves that Q has (SMP).

The arguments in the case of (MP) are almost the same. By Proposition 13.9(iii),
it suffices to replace in the preceding paragraph Pos.K.Q// and Pos.K.Q�// by
Pos. OA/. Now the proof of Theorem 13.12 is complete. �

Remark 13.63 In fact, we have shown under the assumptions of Theorem 13.12 that

Q D \�2Qm
jD1 Œ˛j;ˇj�

Q�:

Indeed, since Q 	 Q� by definition, the inclusion Q 	 \�Q� is obvious.
Conversely, let p 2 \�Q�. Then, as shown at the end of the preceding proof,
L. p/ � 0 for each Q-positive linear functional L. Hence p 2 Q by Lemma 13.8. ı
Proof of the Implication (ii)!(i) of Theorem 13.10 In order to apply Proposi-
tion 12.23(ii) we first note that we can assume without loss of generality that
A D RdŒ x �. Recall that A is (isomorphic to) the quotient algebra RdŒ x �=J for
some ideal J of RdŒ x � and � W RdŒ x � ! A denotes the canonical map. We
choose polynomials Qhj 2 RdŒ x � such that �.Qhj/ D hj. Clearly, QT WD ��1.T/ is a
preordering of RdŒ x �. Since J 	 QT , each QT-positive character of RdŒ x � annihilates
J , so it belongs to OA D Z.J /. This implies that K. QT/ D K.T/ and Qhj.x/ D hj.x/
for x 2 K.T/: Thus Qh.K. QT// D h.K.T//: Since hj is bounded on K.T/ by (ii),
so is Qhj on K. QT/. For � 2 h.K.T//; QI� WD ��1.I�/ is an ideal of RdŒ x �. It is
easily verified that . QT/� D QT C QI�: Since QT D QT C J and . QT C J /=J Š T, by
Proposition 13.14(iii), QT has (SMP) resp. (MP) in RdŒ x � if and only if T has in A.
The same holds for T�. This shows that we can assume that A D RdŒ x �.

By the assumption of Theorem 13.10, each element hj, j D 1; : : : ;m, of RdŒ x � is
bounded on K.T/, that is, there are numbers ˛j; ˇj 2 R such that ˛j � hj.x/ � ˇj
on K.T/. Since ˇj�hj and hj�˛j are bounded and nonnegative on K.T/, we have
L.ˇj� hj/ � 0 and L.hj�˛j/ � 0 for each T-positive linear functional L on RdŒ x �
by Proposition 12.23(ii). Therefore, by Lemma 13.8, ˇj�hj and hj�˛j belong to the
closure T of the preordering T. Thus the preordering T satisfies the assumptions of
Theorem 13.12. Hence, by Theorem 13.12, T has (SMP) resp. (MP) provided that
T� has (SMP) resp. (MP) for all � 2 K D Qm

jD1 Œ˛j; ˇj�: To complete the proof of
Theorem 13.10 it remains to show that it suffices to assume this for � in the smaller
set h.K.T//:

Fix a T-positive linear functional L on RdŒ x �. We show that the measure � D �1
for the polynomial p D 1 in Lemma 13.60 is supported on the set H WD h.K.T// .
Suppose that q 2 RmŒy� is nonnegative on H. Then q.h/ 2 RdŒ x � is nonnegative on
K.T/. Further, q.h/ is bounded on K.T/, because the polynomials hj are. Therefore,
since L is T-positive, we have L1.q/ D L.q.h// � 0 again by Proposition 12.23(ii).
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This shows that the assumptions of Haviland’s Theorem 1.12 for the closed set H
are satisfied. Hence, by this theorem, supp � 	 H. Consequently, the integration in
formula (13.40) is over H rather than K. Continuing along the lines of the above
proof of Theorem 13.12 we see that it suffices to have (SMP) for � 2 H D h.K.T//:

Finally, let � 2 Hnh.K.T//. From its definition it follows that the fibre set K.T/�
is empty, so that �1 2 T� by Theorem 12.3(iv) and hence RdŒ x � D T� D T� .
Therefore, the requirement p 2 T� for p 2 Pos.K.T// (see the paragraph before
last in the above proof of Theorem 13.12) is always fulfilled. That is, it suffices to
assume (SMP) for � 2 h.K.T//.

The reasoning for (MP) is similar. The proof of Theorem 13.10 is complete. �

Remark 13.64 Under the assumption of Theorem 13.10 we proved that

T D \�2h.K.T// T�: ı

13.11 Exercises

1. Show that the Choi–Lam polynomial

p.x1; x2; x3/ WD x21x
2
2 C x21x

2
3 C x22x

2
3 C 1 � 4x1x2x3 (13.41)

is nonnegative on R3, but it is not a sum of squares in RŒx1; x2; x3�.
2. Use the Gram matrix representation (13.3) to prove that

P
RdŒ x �2n is a closed

subset of RdŒ x �2n.
3. (A positive functional on RŒx1; x2� that is not a moment functional [Sm7])

Let L be a T.x3/-positive linear functional on RŒx� that is not T.x/-
positive. (Such a functional L was constructed in Example 13.7). Define linear
functionals L1 on RŒx� and L2 on RŒx1; x2� by L1.x2n/ D L.xn/;L1.x2nC1/ D 0

for n 2 N0 and L2. p/ D L1. p.x2; x3// for p 2 RŒx1; x2�, that is, L2.xk1x
2l
2 / D

L.xkC3l/ and L2.xk1x
2lC1
2 / D 0 for k; l 2 N0:

a. Show that L2 is a positive linear functional on RŒx1; x2�.
Hint: Use the T.x3/-positivity of L.

b. Show that L2 is not a moment functional.
Hint: Show that any representing measure would be supported on the curve
x31 D x22. This is impossible, since L is not T.x/-positive. See Example 13.56.

4. Construct positive linear functionals on the preorderings of Examples 13.27
and 13.28 which are not K.f/-moment functionals.

5. Modify the set of polynomials in Example 13.27 such that the set K.f/ remains
the same, but the preordering T.f/ satisfies (SMP).

6. Let E 2 D.RŒx2�/ be finitely generated, p a nonconstant polynomial from RŒx1�
and ˛ > 0. Suppose that D 2 D.RŒx1; x2�/ is generated by E and p2C˛. Show
that the preordering

P
.AD/2 obeys (MP) in the algebra AD .
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7. Decide whether or not the following preorderings satisfy (SMP).

a. f1.x/ D x1; f2.x/ D 1 � x1; f3.x/ D x1x2; f4.x/ D 1 � x1x2:
b. f1.x/ D x1; f2.x/ D 1 � x1; f3.x/ D x2; f4.x/ D 1 � x1x2:
c. f1.x/ D x1; f2.x/ D 1 � x1; f3.x/ D x32; f4.x/ D 1 � x1x2:

8. Set f D fx1; x2; 1 � x1x2; x1x2 � 1g and let I be the ideal generated by x1x2 in
RŒx1; x2�.

a. Does the quadratic module I of RŒx1; x2� satisfy (SMP) or (MP)?
b. Does the preordering T.f/ of RŒx1; x2� satisfy (SMP) or (MP)?

9. Show that the preordering T.x1; x2/ of RŒx1; x2� is closed and it does not have
(MP).

10. Decide whether or not the preordering
P

RŒCf � of the algebra RŒCf � obeys
(SMP) resp. (MP):

a. f .x1; x2/ D x31 C x21x2 C x1x22 C x32 C x1x2 C 1.
b. f .x1; x2/ D x31.
c. f .x1; x2/ D x31 � 2x22.
d. f .x;x2/ D x31 C x1x22 � x22 (cissoid of Diocles).

11. (Moment problem on a one point set of R )
Let A be the quotient algebra of RŒx� by the ideal generated by x2.

a. Show that OA D f�0g, where �0 is the point evaluation at zero.
b. Show that

P
A2 is not closed and that its closure is AC.

c. Show that
P

A2 has (SMP).
d. What happens with assertions a.-c. if A is replaced by the quotient algebra

of RŒx� by the ideal generated by x?

12. ( Moment problem on two intersecting lines in R2)
Consider two lines in R2 intersecting in one point and given by equations

a1x1 C b1x2 C c1 D 0 and a2x1 C b2x2 C c2 D 0: Let A be the quotient algebra
of RŒx1; x2� by the ideal generated by .a1x1C b1x2C c1/.a2x1C b2x2C c2/:

a. Show that for each f 2 AC there exist g1; g2 2 A such that f D g21 C g22.
b. Conclude that

P
A2 has (SMP).

13. What happens if the two lines in Exercise 12 are parallel?
14. Let p2 2 RŒx1�; p3 2 RŒx1; x2�; : : : ; pd 2 RŒx1; : : : ; xd�1�, where d � 2:

Consider the curve V in Rd given by the equations

xd D pd.x1; : : : ; xd�1/; : : : ; x3 D p3.x1; x2/; x2 D p2.x1/:

Show that
P

RŒV�2 has (SMP).
15. a. Show that the convex hull of a compact subset of Rn is also compact.

b. Suppose that M is a convex compact subset of Rn such that 0 … M. Show
that the cone generated by M is closed in Rn.
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c. Show by an example that the assertion of b. does not hold in general if the
assumption 0 … M is omitted.

16. Let A be a finitely generated (real or complex) unital �-algebra and let q be
a seminorm on A such that q.1/ D 1, q. fg/ � q. f /q.g/ and q. f �/ D q. f /
for f ; g 2 A. Let L be a positive linear functional on A and let �L denote the
GNS representation associated with L (see Definition 12.39). Suppose that there
exists a constant c > 0 such that jL. f /j � cq. f / for all f 2 A:

a. Use the Cauchy–Schwarz inequality to show that jL. f /j � L.1/q. f / for
f 2 A.

b. Show that �L. f / is bounded and k�L. f /k � q. f / for f 2 A.
c. Show that there exists a compact subset K of OA and a Radon measure � on

K such that L. f / D RK f .x/d�.x/ for f 2 A.

13.12 Notes

The existence of positive functionals on RdŒ x �, d � 2, which are not moment
functionals was first shown rigorously in [Sm2] and [BCJ]. The explicit functional
in Proposition 13.5 is due to J. Friedrich [Fr1]. Hilbert’s method of constructing
positive polynomials that are not sos is elaborated in [Re4].

The fibre theorem was discovered by the author in [Sm7] for A D RdŒ x �; the
properties (SMP) and (MP) were also invented therein. The extended and more
general form stated as Theorem 13.10 was obtained only recently in [Sm11]. The
original proof in [Sm7] was based on the decomposition theory of states [Sm4].
An “elementary” proof was given by T. Netzer [Nt], see also [Ms1, Section 4.4].
Our approach is based on arguments from [Nt] and [Ms1]. The weaker version for
quadratic modules is taken from [Ms1]. Proposition 13.14 was noted in [Sr1].

The results of Sect. 13.4 are due to S. Kuhlmann and M. Marshall [KM], see also
[KMS]. Proposition 13.25 was proved in [Mt, Theorem 1.3] and later independently
in [KM]; the elegant approach given in the text is from [Sm7]. The applications of
the fibre theorem to the rational moment problem in Sect. 13.6 and to the extension
theorem in Sect. 13.7 are taken from [Sm11]. Further results on rational moment
problems can be found in [Ch, BGHN] (dimension one) and [PVs1, CMN, Sm11]
(multidimensional case).

That the cone
P

RdŒ x �2 is closed in the finest locally convex topology was first
shown in [Sm1] and independently in [BCJ] ; a general result of this kind was
given in [Sm4, Theorem 11.6.3]. The stability concept of quadratic modules and
its applications to the failure of (MP) in Sect. 13.8 are due to C. Scheiderer, see
[PoS, Sr1]. The proof of Proposition 13.46 is taken from [Sw3]. Proposition 13.50
appeared in [Sr1], while Proposition 13.51 is from [Ms1].

The moment problem on curves was first studied in [Mt] and [St1]. In Sect. 13.9
we followed J. Matzke’s thesis [Mt], where the case of cubics was completely
settled. The moment problem on curves is now well-understood, see [Sr2, Pl].



Chapter 14
The Multidimensional Moment Problem:
Determinacy

In this chapter, we study the determinacy problem in the multivariate case. In
Sect. 14.1, we introduce several natural determinacy notions (strict determinacy,
strong determinacy, ultradeterminacy) that are all equivalent to the “usual” deter-
minacy in dimension one. In the remaining sections we develop various techniques
and methods to derive sufficient criteria for determinacy. In Sect. 14.2, polynomial
approximation is used to show that the determinacy of all marginal sequences
implies the determinacy of a moment sequence (Theorem 14.6). Section 14.3 is
based on operator-theoretic methods in Hilbert space. The main results (Theo-
rems 14.12 and 14.16) show that the determinacy of appropriate 1-subsequences
of a positive semidefinite d-sequence s implies that s is a (determinate) moment
sequence. Section 14.4 is concerned with Carleman’s condition in the multivariate
case. Probably the most useful result in this chapter is Theorem 14.20; it says
that if all marginal sequences of a positive semidefinite d-sequence s satisfy
Carleman’s condition, then s is a determinate moment sequence. Section 14.6 uses
the disintegration of measures as a powerful method for the study of determinacy. A
fibre theorem for determinacy (Theorem 14.30) states a measure is determinate if the
base measure is strictly determinate and almost all fibre measures are determinate.
In Sect. 14.5, we calculate the moments of the surface measure on Sd�1 and of the
Gaussian measure on Rd.

14.1 Various Notions of Determinacy

First let us recall some results from the one-dimensional case. If � 2MC.R/ is a
measure with moment sequence s, we know from Theorem 6.10 and Corollary 6.11
that the following statements are equivalent:

(i) The measure �, or equivalently, its moment sequence s, is determinate.
(ii) The multiplication operator X by the variable x with domainCŒx� is essentially

self-adjoint on the Hilbert space L2.R; �/.

© Springer International Publishing AG 2017
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(iii) CŒx� is dense in L2.R; .1C x2/d�/.
Further, if � is determinate, then the polynomials CŒx� are dense in L2.R; �/.

In dimensions d � 2 determinacy is much more subtle and the preceding
conditions lead to different determinacy notions.

Recall that MC.Rd/ is the set of Radon measures on Rd for which all moments
are finite. For � 2MC.Rd/ we denote by M� the set of measures � 2MC.Rd/

which have the same moments as �, or equivalently, which satisfy

Z
Rd

p.x/ d�.x/ D
Z
Rd

p.x/ d�.x/ for all p 2 RdŒ x �:

We write � Š � if � 2M�. Obviously, “Š” is an equivalence relation in MC.Rd/.

Definition 14.1 For a measure � 2MC.Rd/ we shall say that

� � is determinate if M� is a singleton, that is, if � 2M� implies � D �,
� � is strictly determinate if � is determinate and CdŒ x � is dense in L2.Rd; �/,
� � is strongly determinate if CdŒ x � is dense in L2.Rd; .1Cx2j /d�/ for

jD1; : : : ; d,
� � is ultradeterminate if CdŒ x � is dense in L2.Rd; .1C kxk2/d�/.
In this section we adopt the following notational convention: If � is a measure

on Rd and no confusion can arise, we often write Lp.�/ instead of Lp.Rd; �/.
Suppose that � 2 MC.Rd/: Let s be the moment sequence of � and L the

moment functional of �, that is, L. f / D R
f .x/d�; f 2 CdŒ x �. As in the one-

dimensional case the above notions will be used synonymously for �, s; and L.
That is, we say that s, and likewise L, is determinate, strongly determinate, strictly
determinate, ultradeterminate, if � has this property. Let us set Ms DML DM�.

We recall the Hilbert space approach and the GNS construction from Sect. 12.5.
Let L be a positive linear functional on CdŒ x �. Then there is a scalar product h�; �iL
on the vector space DL D CdŒ x �=NL such that h p C NL; q C NLiL D L. pq/,
p; q 2 CdŒ x �; where NL D f f 2 CdŒ x � W L. f f / D 0g. Further, there are pairwise
commuting symmetric operators Xj, j D 1; : : : ; d, defined by Xj. pCNL/ D xjpC
NL, p 2 CdŒ x �. The Hilbert space completion of the unitary space DL is denoted by
HL. For notational simplicity we write p for pCNL. Then

h p; qiL D L. pq/ and Xjp D xjp; p; q 2 CdŒ x �;

that is, Xj is the multiplication operator by the variable xj: Recall that Xj denotes the
closure of operator Xj.

All four determinacy notions have been defined in terms of the measure �.
By Theorem 14.2 below, � is strongly determinate if and only if the closures of
all symmetric operators X1; : : : ;Xd are self-adjoint. Thus, strong determinacy is a
natural and fundamental concept from the operator-theoretic point of view.
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Our main reason for introducing strict determinacy is that it enters into the
fibre Theorem 14.30 below. Another reason stems from the theory of orthogonal
polynomials: Since the polynomials are dense in L2.Rd; �/, we have HL Š
L2.Rd; �/. Hence for a strictly determinate measure � each sequence of orthonor-
mal polynomials in HL is an orthonormal basis of L2.Rd; �/.

By definition strict determinacy implies determinacy. Theorem 14.2 below shows
that if � is strongly determinate it is strictly determinate and hence determinate.
Since the norm of L2.Rd; .1 C jjxjj2/d�/ is obviously stronger than that of
L2.Rd; .1C x2j /d�/, ultradeterminacy implies strong determinacy. Thus we have

ultradeterminate) strongly determinate) strictly determinate) determinate:

From Weierstrass’ approximation theorem it follows that each measure with
compact support is ultradeterminate and hence all four determinacy notions are
fulfilled.

As noted at the beginning of this section, in the case d D 1 the four
concepts (determinacy, strict determinacy, strong determinacy, ultradeterminacy)
are equivalent. However, in dimension d � 2 all of them are different! An example
of a strongly determinate measure that is not ultradeterminate is sketched in Exercise
14.6. A strictly determinate measure which is not strongly determinate is developed
in Example 14.4. In [BT] it is shown that there exist rotation invariant determinate
measures � 2MC.Rd/, d � 2, such that CdŒ x � is not dense in L2.Rd; �/. Such
measures are not strictly determinate.

The following theorem gives an operator-theoretic characterization of strong
determinacy.

Theorem 14.2 Let L be a moment functional on CdŒ x � and let � be a representing
measure for L. Then � is strongly determinate if and only if all symmetric operators
X1; : : : ;Xd are essentially self-adjoint on CdŒ x � in HL, that is, we have Xk D .Xk/

�
for k D 1; : : : ; d. If this holds, then� is strictly determinate, that is,� is determinate
and CdŒ x � is dense in L2.Rd; �/.

The following technical lemma is needed in the proof of Theorem 14.2.

Lemma 14.3 Suppose A is a closed symmetric operator on a Hilbert space K. Let
H be a closed subspace of K and let P denote the orthogonal projection onto H.
Suppose that D is a dense linear subspace of H such that D 	 D.A/, AD 2 H and
X WD AdD is an essentially self-adjoint operator on H. Then PA 	 AP. Moreover,
if Y denotes the restriction of A to .I � P/D.A/, then A D X˚ Y on K D H˚H?.

Proof Suppose that ' 2 D.A/. Let  2 D. Using the facts that  and X are in H
and the relation X 	 A it follows that

hX ;P'i D h pX ; 'i D hX ; 'i D hA ; 'i D h ;A'i D h p ;A'i D h ;PA'i:

Since  2 D was arbitrary, P' 2 D.X�/ and X�P' D AP'. Since X is essentially
self-adjoint, X� D X and hence AP' D XP' D PA'. That is, PA 	 AP.
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If ' 2 D.A/, we have P' 2 D.X/ and .I � P/' 2 D.A/ as just shown. Hence
' D P' C .I � P/' 2 D.X/˚D.Y/ and A' D X' C Y.I � P/' which proves that
A 	 X ˚ Y. By definition the converse inclusion is clear. ut
Proof of Theorem 14.2 The proof is based on the Hilbert space approach given by
Theorem 12.40.

Suppose first that the symmetric operators X1; : : : ;Xd are essentially self-adjoint
on HL. Let .A1; : : : ;Ad/ be a d-tuple of strongly commuting self-adjoint operators
on a larger Hilbert space K such that Xj 	 Aj, jD1; : : : ; d. By Lemma 14.3 there
is a decomposition Aj D Xj ˚ Yj on K D HL ˚ H?

L . Since Aj is self-adjoint,
so is Yj and for the spectral measures we obtain EAj D EXj

˚ EYj : Hence the

spectral measures of Xk and Xl commute and (15.6) implies that E.X1;:::;Xd/
	

E.A1;:::;Ad/ for the corresponding joint spectral measures. Therefore, the measure
�.�/ WD hE.X1;:::;Xd/

.�/1; 1iHL is equal to hE.A1;:::;Ad/.�/1; 1iK. Since each solution
of the moment problem is of the form hE.A1;:::;Ad/.�/1; 1iK by Theorem 12.40 and
so coincides with � by the preceding considerations, � is the unique representing
measure of L. Thus � is determinate.

Let M be a Borel set of Rd. By definition CdŒ x � is dense in HL. Hence there is a
sequence . pn/n2N of polynomials pn 2 CdŒ x � such that pn.x/! E.X1;:::;Xd/

.M/1 in
HL 	 L2.�/. Then, by the functional calculus,

jj. pn.x/� E.X1;:::;Xd/
.M//1jj2HL

D
Z
Rd
jpn.�/ � �M.�/j2dhE.X1;:::;Xd/

.�/1; 1iHL ! 0;

so the closure of CdŒ x � in L2.Rd; �/ contains all characteristic functions�M . Hence
CdŒ x � is dense in L2.Rd; �/: Thus HL Š L2.Rd; �/, so � is strictly determinate.

It is easily checked that .Xk˙i/CdŒ x � is dense in L2.Rd; �/ if and only if CdŒ x � is
dense in L2.Rd; .1Cx2k/d�/. Therefore, by Proposition A.42, since Xk is essentially
self-adjoint, .Xk ˙ i/CdŒ x � is dense in HL Š L2.Rd; �/. Hence CdŒ x � is dense in
L2.Rd; .1C x2k/d�/. This proves that � is strongly determinate.

Conversely, suppose that � is strongly determinate. Then, by definition, for each
k D 1; : : : ; d, CdŒ x � is dense in L2.Rd; .1C x2k/d�/. Hence .Xk ˙ i/CdŒ x � is dense
in L2.Rd; �/ and so also in its subspace HL. Therefore, Xk is essentially self-adjoint
on HL again by Proposition A.42. ut
Example 14.4 (A strictly determinate measure that is not strongly determinate) Let
�0 2MC.R/ be an N-extremal solution of an indeterminate moment problem. We
define a measure � 2 MC.R/ by d� WD .1 C x2/�1d�0. Since CŒx� is dense in
L2.R; �0/ D L2.R; .1 C x2/d�/, � is determinate by Corollary 6.11. Let � be the
image of � under the mapping x 7! .x; x2/ of R into R2. Clearly, � 2MC.R2/.

We prove that � is not strongly determinate. Assume the contrary. Then CŒx1; x2�
is dense in L2.R2; .1Cx22/d�/. Then, by the construction of�, CŒx� would be dense
in L2.R; .1Cx4/d�/ D L2.R; .1Cx4/.1Cx2/�1d�0/. It follows from the inequality
.1C x4/.1C x2/�1 � 1

2
.1C x2/ that CŒx� is dense in L2.R; .1C x2/d�0/. Therefore

�0 is determinate by Corollary 6.11, which contradicts the choice of �0.
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Now we show that� is determinate. Let Q� 2M�. By construction� is supported
on the graph of the parabola x2 D x21. Since

R
.x2 � x21/

2d� D R
.x2 � x21/

2d Q� D 0,
Q� is also supported on the graph of this parabola (by Proposition 1.23). Let �1. Q�/
denote the projection of Q� onto the x1-axis. Since Q� 2 M�, �1. Q�/ has the same
moments as �1.�/ D �. Because � is determinate, we obtain �1. Q�/ D � D �1.�/.
This implies that Q� D �, which proves that � is determinate.

Since �0 is N-extremal, CŒx� is dense in L2.R; �0/ D L2.R; .1 C x2/d�/.
Therefore, CŒx1; x2� is dense in L2.R2; .1 C x21/d�/ and so in L2.R2; �/. Thus �
is strictly determinate.

It is instructive to look at this example from the operator-theoretic perspective.
Corollary 6.11 implies that X is essentially self-adjoint and that X2 is not essentially
self-adjoint on L2.R; �/. Using the definition of � we verify that the multiplication
operators X1 and X2 by the variables x1 and x2, respectively, on L2.R2; �/ are
unitarily equivalent to the operators X and X2 on L2.R; �/, respectively. Hence X2
is not essentially self-adjoint, so � is not strongly determinate by Theorem 14.2. ı

We close this section by proving a sufficient criterion for ultradeterminacy.

Proposition 14.5 If � 2 MC.Rd/ and CdŒ x � is dense in Lp.Rd; �/ for some
p > 2, then � is ultradeterminate and CdŒ x � is dense in L2.Rd; .1C kxkq/d�/ for
any q � 0.
Proof Let q � 0, ' 2 Cc.R

d/ and f 2 CdŒ x �. Note that . p
p�2 /

�1 C . p
2
/�1 D 1. We

apply the Hölder inequality and obtain

Z
j'�f j2.1C kxkq/ d� �

�Z
j'�f jpd�

�2=p�Z
.1Ckxkq/ p

p�2 d�

� p�2
p

:

(14.1)

Since CdŒ x � is dense in Lp.Rd; �/, there is an f 2 CdŒ x � such that
R j' � f jpd�

is arbitrarily small. The last integral in (14.1) is finite by the assumption
� 2 MC.Rd/. Therefore, since Cc.R

d/ is dense in L2.Rd; .1 C kxkq/d�/, so
is CdŒ x � by (14.1). Setting q D 2 the latter means that � is ultradeterminate by
Definition 14.1. ut

14.2 Polynomial Approximation

In this section, we develop a number of criteria for determinacy that are based on
density conditions of polynomials.

For a Borel mapping ' W Rd ! Rm and a Borel measure � on Rd, we denote by
'.�/ the image of � under the mapping ', that is, '.�/.M/ WD �.'�1.M// for any
Borel set M of Rm. Then the transformation formula

Z
Rm

f .y/ d'.�/.y/ D
Z
Rd

f .'.x// d�.x/ (14.2)
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holds for any function f 2 L1.Rm; '.�//.
Let �j.x1; : : : ; xd/ D xj be the j-th coordinate mapping of Rd into R. Then the

measure �j.�/ on R is called the j-th marginal measure of �.
The following basic result is Petersen’s theorem.

Theorem 14.6 Let � 2MC.Rd/. If all marginal measures �1.�/; : : : ; �d.�/ are
determinate, then � itself is determinate.

Proof Suppose that � 2 M�. Let �1; : : : ; �d be characteristic functions of Borel
subsets of R and let p1; : : : ; pd be polynomials in one variable. Using the Hölder
inequality we derive

jj�1.x1/ : : :�d.xd/� p1.x1/ : : : pd.xd/jjL1.Rd ;�/

� jj.�1.x1/ � p1.x1//�2.x2/ : : : �d.xd/jjL1.Rd ;�/

C jjp1.x1/.�2.x2/� p2.x2//�3.x3/ : : : �d.xd/jjL1.Rd ;�/ C : : :
C jjp1.x1/ : : : pd�1.xd�1/.�d.xd/ � pd.xd//jjL1.Rd ;�/

� jj�1.x1/ � p1.x1/jjL2.Rd ;�/ jj�2.x2/ : : : �d.xd/jjL2.Rd ;�/

C jj�2.x2/ � p2.x2/jjL2.Rd ;�/ jjp1.x1/�3.x3/ : : : �d.xd/jjL2.Rd ;�/ C : : :
C jj�d.xd/ � pd.xd/jjL2.Rd ;�/ jjp1.x1/ : : : pd�1.xd�1/jjL2.Rd ;�/:

Let j 2 f1; : : : ; dg. Clearly, � Š � implies that �j.�/ Š �j.�/. Therefore, �j.�/ D
�j.�/, because �j.�/ is determinate by assumption. Hence

jj�j.xj/�pj.xj/jjL2.Rd ;�/ D jj�j.xj/�pj.xj/jjL2.R;�j.�// (14.3)

D jj�j.xj/�pj.xj/jjL2.R;�j.�//: (14.4)

Since �j.�/ is determinate, the polynomials CŒxj� are dense in L2.R; �j.�// by
Theorem 6.10. Therefore, it follows from (14.3) and (14.4) that we can choose
p1 such that jj�1.x1/�p1.x1/jjL2.Rd ;�/ becomes arbitrarily small, then p2 such that
jj�2.x2/�p2.x2/jjL2.Rd ;�/ is small and finally pd such that jj�d.xd/�pd.xd/jjL2.Rd ;�/

is small. Then, by the above inequality,

jj�1.x1/ : : : �d.xd/ � p1.x1/ : : : pd.xd/jjL1.Rd;�/

becomes as small as we want. Since the span of such functions �1.x1/ : : : �d.xd/ is
dense in L1.Rd; �/, this shows that the polynomials are dense in L1.Rd; �/. Hence
� is an extreme point of M� by Proposition 1.21. Thus each element of M� is an
extreme point. Therefore, since �; � 2 M�, we have 1

2
.� C �/ 2 M� and hence

� D �. This shows that � is determinate. ut
In Exercise 14.7 it is shown that the converse of Theorem 14.6 is not true, that is,

there exists a (strongly) determinate measure with indeterminate marginal measures.
Now we derive some corollaries of Theorem 14.6 which provide determinacy

criteria in terms of polynomial approximations.
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Let K be a closed subset of Rd. We restate Definition 2.15 in the present case.

Definition 14.7 A measure � 2MC.Rd/ supported on K is called K-determinate,
or determinate on K, if � 2M� and supp � 	 K imply that � D �.

Let ' D .'1; : : : ; 'm/ W Rd ! Rm, where '1; : : : ; 'm 2 RdŒ x �, be a polynomial
mapping. If � 2MC.Rd/, then '.�/ 2MC.Rm/ and 'k.�/ 2MC.R/ by (14.2).

Corollary 14.8 Let K be a closed subset of Rd and let � 2 MC.Rd/ be such
that supp� 	 K. Suppose that the map ' W K ! Rm is injective and 'k.�/ is
determinate for all k D 1; : : : ;m. Then � is K-determinate.

Proof Let � 2 MC.Rd/ be such that � Š � and supp � 	 K. Since ' is a
polynomial mapping and � Š �, it follows from (14.2) that '.�/ Š '.�/. By
assumption, all marginal measures �k.'.�// D 'k.�/ are determinate. Therefore,
'.�/ is determinate by Theorem 14.6, so that '.�/ D '.�/.

Let N be a Borel subset of K. Set QN D '.N/. Since ' W K ! Rm is injective,
'�1. QN/ D N and hence �.N/ D '.�/. QN/ D '.�/. QN/ D �.N/: Thus, � D �: ut
Corollary 14.9 Let K be a closed subset of Rd. Assume that there are polynomials
'1 : : : ; 'm 2 RdŒ x � which are bounded on K and separate the points of K (that is, if
x; x0 2 K and 'k.x/ D 'k.x0/ for all k D 1; : : : ;m, then x D x0.) Then each measure
� 2MC.Rd/ satisfying supp� 	 K is K-determinate.

Proof Define a mapping ' D .'1; : : : ; 'm/ W K ! Rm. Then ' is injective, because
the 'k separate the points of K: Clearly, supp 'k.�/ 	 'k.K/ . Since 'k is bounded
on K, the set 'k.K/ is compact. Hence 'k.�/ is determinate by Proposition 12.17
for k D 1; : : : ; d. Thus Corollary 14.8 applies and gives the assertion. ut

For the next corollary we consider polynomial mappings ' j W Rd ! Rmj

and define ' D .'1; : : : ; 'r/ W Rd ! Rm, where j D 1; : : : ; r, mj 2 N,
m D m1C � � �Cmr.

Corollary 14.10 Let � and K be as in Corollary 14.8. If ' W K ! Rm is
injective and all measures '1.�/; : : : ; 'r.�/ are strictly determinate, then � is K-
determinate.

Proof We replace in the proof of Corollary 14.8 the map �j on a single coordinate
by a map � j on a finite set of coordinates. To be more precise, we write y 2 Rm

as y D .y11; : : : ; y1m1 ; y21; : : : ; yrmr/ and define � j W Rd ! Rmj by � j.y/ D
.yj1; : : : ; yjmj/. Then we have the following result: If � 2MC.Rm/ and all measures
�1.�/; : : : ; �r.�/ are strictly determinate, then � is determinate.

The proof of this statement follows a similar pattern as the proof of Theo-
rem 14.6. The polynomials CŒ yj1; : : : ; yjmj � are dense in L2.Rmj ; � j.�//, because
� j.�/ is strictly determinate. We do not carry out the details. Using this generaliza-
tion instead of Theorem 14.6 we can argue as in the proof of Corollary 14.8. ut

The presence of “sufficiently” many bounded polynomials on the set supp �
can be used to prove stronger results than the plain determinacy. As a sample we
consider subsets of cylinders with compact base sets.
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Proposition 14.11 Let K be a closed subset ofRd; d � 2, such that K is a subset of
C �R, where C is a compact set of Rd�1. Suppose that � 2MC.Rd/ is supported
on K. If the marginal measure �d.�/ is determinate, then � is ultradeterminate.

Proof We shall write x 2 Rd as x D .y; xd/with y 2 Rd�1 and xd 2 R. Suppose that
f .y/ and g.xd/ are continuous functions with compact supports. Let us abbreviate

M1 D sup fjg.xd/j W xd 2 Rg; M2 D sup fjp.y/j W y 2 Cg; M3 D sup f1C jjyjj W y 2 Cg:

We denote by jj � jj1 the norm of L2.Rd; .1 C jjxjj2/d�/, by jj � jj2 the norm of
L2.Rd; �/ and by jj � jj3 the norm of L2.R; .1 C x2d/d�d.�//. Let p 2 Cd�1Œy� and
q 2 CŒxd�. Using the assumption supp � 	 K 	 C � R and formula (14.2) we
obtain

jj f .y/g.xd/� p.y/q.xd/jj1 � jj. f .y/� p.y//g.xd/jj1 C jjp.y/.g.xd/ � q.xd//jj1
� M1jj f .y/� p.y/jj1 C M2M3jj.g.xd/ � q.xd//.1C x2d/jj2
� M1�.R

d/ sup fj f .y/� p.y/j W y 2 Cg C M2M3jjg.xd/� q.xd/jj3:

By Weierstrass’ approximation theorem, p 2 Cd�1Œ y � can be chosen such that
the supremum of j f .y/�p.y/j over the compact set C is arbitrary small. Since the
marginal measure �d.�/ is determinate, CŒxd� is dense in L2.R; .1Cx2d/d�d.�// by
Theorem 6.10. Hence we find q 2 CŒxd� such that jjg � qjj3 is sufficiently small.
By the preceding inequality we have shown that the function f .y/g.xd/ is in the
closure of CdŒ x � in L2.Rd; .1 C jjxjj2/d�/. Since the span of such functions is
obviously dense, CdŒ x � is dense in L2.Rd; .1 C jjxjj2/d�/. This means that � is
ultradeterminate. ut

14.3 Partial Determinacy and Moment Functionals

The results of this section show how partial determinacy can be used to conclude
that positive functionals are moment functionals. First we treat the case d D 2.

Theorem 14.12 Let Q 	 CŒx1; x2� be a set of polynomials such that CŒx1; x2� is
the linear span of polynomials p.x1/q.x1; x2/, where p 2 CŒx1� and q 2 Q. Let
L be a positive linear functional on CŒx1; x2�. Suppose that for each q 2 Q the
positive linear functional Lq on CŒx1� defined by Lq. p/ WD L. p.x1/.x22 C 1/qq/ is
determinate. Then L is a moment functional on CŒx1; x2�:

We state the important special case Q D fxk2 W k 2 N0g of Theorem 14.12
separately as the first assertion of the following corollary.
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Corollary 14.13 Suppose that s D .s.n;k//k;n2N0 is a positive semidefinite 2-
sequence such that for each k 2 N0 the 1-sequence

.s.n;2kC2// C s.n;2k//n2N0 (14.5)

is determinate. Then s is a moment sequence.
If in addition the sequence .s.0;n//n2N0 is determinate, then s is determinate.

Proof Put Q D fxk2 W k 2 N0g. Since s.n;m/ D Ls.xn1x
m
2 /, the functional Lxk2

has the
moment sequence (14.5). Therefore, by Theorem 14.12, Ls is a moment functional,
so s is a moment sequence.

The determinacy of the sequence .s.n;2/Cs.n;0// implies the determinacy of .s.n;0//
(see Exercise 6.3). Hence, if .s.0;n// is also determinate, both marginal sequences of
s are determinate, so s is determinate by Theorem 14.6. ut

The proof of Theorem 14.12 is based on two operator-theoretic lemmas. In
the proof of Lemma 14.14 we use the self-adjoint extension theory of symmetric
operators (see [Sm9, Section 13.2] or [RS2, Section X.1]). If A is a self-adjoint
operator, the unitary operatorUA WD .A� iI/.AC iI/�1 is called the Cayley transform
of A.

Lemma 14.14 Suppose that Aj; j 2 J; is a family of pairwise strongly commuting
self-adjoint operators and B is a densely defined symmetric operator on a Hilbert
spaceH such that UAjB.UAj/

� D B for j 2 J. Then there exists a family QAj; j 2 J; of
strongly commuting self-adjoint operators and a self-adjoint operator QB on a Hilbert
space K such that H is a subspace of K, B 	 QB, Aj 	 QAj, and QAj and QB strongly
commute for all j 2 J.

Proof The proof uses the “doubling trick” from operator theory (see e.g. [Sm9,
Example 13.5]). Define QAj D Aj ˚ Aj for j 2 J and B0 D B˚ .�B/ on the Hilbert
space K D H˚H. Obviously, the self-adjoint operators QAj; j 2 J; strongly commute
as the operators Aj; j 2 J; do by assumption. Without loss of generality we assume
that the operator B is closed. Then B0 is also closed. Let N˙.T/ D ker.T� ˙ iI/
denote the deficiency spaces of a symmetric operator T. From the definition of B0 we
obtain N˙.B0/ D N˙.B/˚N�.B/: Hence V.';  / WD . ; '/, where ' 2 NC.B/,
 2 N�.B/, defines an isometric linear map V of NC.B0/ onto N�.B0/. Then, by
[Sm9, Theorem 13.10]), the restriction QB of the adjoint operator .B0/� to the domain
D. QB/ WD D.B0/C .I�V/NC.B0/ is a self-adjoint extension of B0.

From the assumption UAjB.UAj/
� D B it follows that UAjB

�.UAj/
� D B�. This

in turn implies that UAjN˙.B/ D N˙.B/: From N˙.B0/ D N˙.B/ ˚ N�.B/ and
the definition of V we conclude that the Cayley transform U QAj

D UAj ˚ UAj of
QAj maps .I�V/NC.B0/ onto itself. Since .UAj/

�D.B/ D D.B/ by assumption and
hence UAjD.B/ D D.B/, we get U QAj

D. QB/ D D. QB/: Combined with the relation

U QAj
.B0/

�.U QAj
/� D UAjB

�.UAj/
� ˚ .�UAjB

�.UAj/
�/ D B� ˚ .�B�/ D .B0/�
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the latter implies that U QAj
QB.U QAj

/� D QB. This yields U QAj
UQB.U QAj

/� D UQB and hence

U QAj
UQB D UQBU QAj

. Since the Cayley transforms of QAj and QB commute, so do their

resolvents. Hence the self-adjoint operators QAj and QB strongly commute. ut
Lemma 14.15 Let A and B be closed symmetric linear operators on a Hilbert space
H and let D 	 D.A/ \ D.B/ be a linear subspace such that AD 	 D, BD 	 D,
and AB' D BA' for ' 2 D. Further, let Q be a subset of D such that the span
of vectors p.A/q, where p 2 CŒx� and q 2 Q, is dense in H and a core for B:
For q 2 Q we denote by Aq the restriction of A to the invariant linear subspace
Dq WD f p.A/.BC iI/q W p 2 CŒx�g and by Hq the closure of Dq in H. Suppose that
for each q 2 Q the symmetric operator Aq is essentially self-adjoint on the Hilbert
spaceHq. Then the operator A onH is self-adjoint and we have UAB.UA/

� D B.

Proof Let q 2 Q and z 2 CnR. Since Aq is essentially self-adjoint on Hq, the range
of Aq C zI is dense in Hq by Proposition A.42. Hence for any p 2 CŒx� there exists
a sequence . pn/n2N of polynomials pn 2 CŒx� such that

.Aq C zI/pn.A/.BC iI/q D .AC zI/pn.A/.BC iI/q! p.A/.BC iI/q in Hq:

Since B is a symmetric operator, k.BC iI/'k2 D kB'k2 C k'k2 for any ' 2 D.B/.
We use this fact for the second equality and derive

jj.AC zI/Bpn.A/q� Bp.A/qjj2C jj.AC zI/pn.A/q� p.A/qjj2

D jjB..AC zI/pn.A/q � p.A/q/jj2 C jj.AC zI/pn.A/q � p.A/qjj2

D jj.BC iI/..AC zI/pn.A/q� p.A/q/jj2

D jj.AC zI/pn.A/.BC iI/q � p.A/.BC iI/qjj2 ! 0:

Hence .AC zI/Bpn.A/q! Bp.A/q and .AC zI/pn.A/q! p.A/q as n!1. Since
the span of vectors p.A/q is dense in H, the preceding shows that the range of ACzI
is dense in H, so the operator A on H is self-adjoint by Proposition A.42.

Because .AC zI/�1 is bounded, it follows that pn.A/q ! .AC zI/�1p.A/q and
Bpn.A/q! .ACzI/�1Bp.A/q. Since the operator B is closed, the latter implies that
B.AC zI/�1p.A/q D .AC zI/�1Bp.A/q. By assumption, the span of vectors p.A/q
is a core for B. Therefore, we obtain B.AC zI/�1 D .AC zI/�1B for all vectors
 of the domain D.B/. Setting z D i and z D �i, it follows that both operators
UA D I � 2i.AC iI/�1 and U�1

A D IC 2i.A� iI/�1 map D.B/ into itself. Therefore,
UAD.B/ D D.B/. Let ' 2 D.B/. Then  WD U�1

A ' 2 D.B/ and

UAB.UA/
�' D UAB D .I � 2i.AC iI/�1/B D B.I � 2i.A � iI/�1/ D BUA D B':

This proves that B 	 UAB.UA/
�: If ' 2 D.UAB.UA/

�/, then  WD .UA/
�' 2

D.B/ and therefore ' D UA 2 D.B/: This shows that D.UAB.UA/
�/ 	 D.B/.

Combined with the relation B 	 UAB.UA/
� the latter yields B D UAB.UA/

�. ut
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Proof of Theorem 14.12 Our aim is to apply Lemma 14.15. Let A and B be the
closures of the operators X1 and X2, respectively, on .HL; h�; �iL/. Let q 2 Q. Recall
that .HLq ; h�; �iLq/ denotes the Hilbert space of the moment functional Lq on CŒx1�.
From the definitions of the functional Lq and the corresponding scalar products we
obtain

h p1.x1/; p2.x1/iLq D L. p1.x1/p2.x1/.x
2
2 C 1/qq/ D h p1.A/.BC i/q; p2.A/.BC i/qiL

for p1; p2 2 CŒx1�. From this equality it follows that the operator X1 with domain
CŒx1� on the Hilbert space HLq and the operator Aq with domain Dq on the Hilbert
space Hq (in the notation of Lemma 14.15) are unitarily equivalent. Since Lq is
determinate by assumption, X1 is essentially self-adjoint by Theorem 6.10 and
so is Aq for each q 2 Q. Therefore, by Lemma 14.15, A is self-adjoint and
UAB.UA/

� D B.
From Lemma 14.14, applied in the case of a single operator A, it follows that A

and B have strongly commuting self-adjoint extensions on a larger Hilbert space.
Hence, by Theorem 12.40, L is a moment functional. ut

Now we turn to the case when the dimension d is larger than 2. The following
theorem is the counterpart of Corollary 14.13.

Theorem 14.16 Let s D .sn/n2Nd
0
be a positive semidefinite d-sequence, where

d � 3. Suppose that for j D 1; : : : ; d�1, k1; : : : , kj�1; kjC1; : : : ; kd 2 N0 the 1-
sequence

.s.k1;:::;kj�1;n;kjC1;:::;kd�1;2kdC2/ C s.k1;:::;kj�1;n;kjC1;:::;kd�1;2kd//n2N0 (14.6)

is determinate. Further, suppose that for all numbers j; l 2 f1; : : : ; d�1g, j < l, all
sequences of one of the following two sets of 1-sequences

.s.:::;kj�1;n;kjC1;:::;kl�1;2klC2;klC1;::: / C s.:::;kj�1;n;kjC1;:::;kl�1;2kl;klC1;::: //n2N0 ; (14.7)

.s.:::;kj�1;2kjC2;kjC1;:::;kl�1;n;klC1;::: / C s.:::;kj�1;2kj;kjC1;:::;kl�1;n;klC1;::: //n2N0 ; (14.8)

where k1; : : : ; kd 2 N0, are determinate. Then s is a moment sequence.
If in addition the sequence .s.0;:::;0;n//n2N0 is determinate, then s is determinate.

Proof The proof is given by some modifications in the proof of Theorem 14.12.
Let Aj, j D 1; : : : ; d, denote the closure of the operator Xj on HLs . First we fix
j 2 f1; : : : ; d�1g and apply Lemma 14.15 in the case when A D Aj, B D Ad and

Q D fxk11 � � � xkj�1j�1 x
kjC1

jC1 � � � xkdd W k1; : : : ; kj�1kjC1; : : : ; kd 2 N0g: (14.9)

Since all sequences (14.6) are determinate, the assumptions of Lemma 14.15 are
fulfilled. Hence the operator Aj is self-adjoint and we have UAjAd.UAj/

� D Ad.
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In order to show that the self-adjoint operators A1; : : : ;Ad�1 strongly commute
we apply Lemma 14.15 once more. Let j; l 2 f1; : : : ; d�1g, j < l. First we assume
that the sequences (14.7) are determinate. We set A D Aj, B D Al, and define
Q again by (14.9). Since all sequences (14.7) are determinate, it follows from
Theorem 6.10 that the corresponding operators Aq in Lemma 14.15 are self-adjoint,
so Lemma 14.15 applies and yields UAjAl.UAj/

� D Al. Since Al is self-adjoint, we
get UAjUAl.UAj/

� D UAl and so UAjUAl D UAlUAj . Hence the resolvents of Aj and
Al commute, so that Aj and Al strongly commute. In the case when the sequences
(14.8) are determinate we interchange the role of j and l and proceed in a similar
manner.

Thus, A1; : : : ;Ad�1 is a family of strongly commuting self-adjoint operators
such that UAjAd.UAj/

� D Ad for j D 1; : : : ; d�1. That is, the assumptions of
Lemma 14.14 are satisfied with B D Ad. From Lemma 14.14 and Theorem 12.40
we conclude that s is a moment sequence. As in the proof of Corollary 14.5, the
determinacy assertion follows from Theorem 14.6. ut
Remark 14.17 In the preceding proof of Theorem 14.16 we have shown the
following fact, which will be used in the proof of Theorem 14.20 below: If for some
j 2 f1; : : : ; dg all 1-sequences (14.6) are determinate, it follows from Lemma 14.15
that the operator Aj D Xj is self-adjoint on the Hilbert space HL. Likewise, it was
shown in the proof of Theorem 14.12 that the operator A D X1 is self-adjoint
on HL. ı

14.4 The Multivariate Carleman Condition

Recall from Sect. 4.2 that Carleman’s condition (4.2) for a positive semidefinite
1-sequence .tn/n2N0 is that

1X
nD1

t
� 1
2n

2n D C1: (14.10)

For a d-sequence s D .sn/n2Nd
0

the 1-sequences

sŒ1� WD .s.n;0;:::;0///n2N0 ; s
Œ2� WD .s.0;n;:::;0//n2N0 ; : : : ; s

Œd� WD .s.0;:::;0;n//n2N0

are called marginal sequences of s. If s is the moment sequence of � 2MC.Rd/,
then

sŒ j�n D
Z
Rd

xnj d�.x1; : : : ; xd/ D
Z
R

yn d�j.�/.y/; n 2 N0; j D 1; : : : ; d;

that is, sŒ j� is the moment sequence of the j-th marginal measure �j.�/ of �. Hence
Petersen’s Theorem 14.6 can be rephrased by saying that if all marginal sequences
sŒ1�; : : : ; sŒd� of a d-moment sequence s are determinate, then is s itself.
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Definition 14.18 Let s be a positive semidefinite d-sequence. We shall say that s,
and equivalently the functional Ls, satisfy the multivariate Carleman condition if all
marginal sequences sŒ1�; : : : ; sŒd� satisfy Carleman’s condition (14.10), that is, if

1X
nD1
.sŒ j�2n/

� 1
2n �

1X
nD1

Ls.x
2n
j /

� 1
2n D1 for j D 1; : : : ; d: (14.11)

The following theorem of Nussbaum is the main result in this chapter. It shows
the exceptional usefulness of the multivariate Carleman condition, which implies
both the existence and uniqueness of a solution of the moment problem on Rd!

Theorem 14.19 Each positive semidefinite d-sequence s D .sn/n2Nd
0
safisfying the

multivariate Carleman condition is a strongly determinate moment sequence.

Theorem 14.19 follows at once from the following more general result.

Theorem 14.20 Suppose that s D .sn/n2Nd
0
is a positive semidefinite d-sequence

such that the first d�1 marginal sequences sŒ1�; : : : ; sŒd�1� fulfill Carleman’s condi-
tion (14.10). Then s is a moment sequence.

If in addition the last marginal sequence sŒd� satisfies Carleman’s condition
(14.10) as well, then the moment sequence s is strongly determinate.

A crucial technical step for the proofs of Theorems 14.20 and 14.25 is the next
lemma.

Lemma 14.21 Let L be a positive linear functional on CdŒ x � and let q; f 2 RdŒ x �.
Suppose that QL.�/ WD L. f �/ is also a positive functional on CdŒ x �. Set tn WD L.qn/
and rn WD QL.qn/ D L. fqn/ for n 2 N0. Then, if the sequence t D .tn/n2N0 satisfies
Carleman’s condition (14.10), so does the sequence r D .rn/n2N0 .

Proof Since L and QL are positive functionals, t and r are positive semidefinite
sequences and the Cauchy–Schwarz inequality (2.7) holds for L. Hence, for n 2 N0,

t22nC2 D L.qnqnC2/2 � L.q2n/L.q2nC4/ D t2nt2nC4; (14.12)

r22n D L.q2nf /2 D L.q4n/L. f 2/ D t4nL. f
2/: (14.13)

If t2k D 0 for some k 2 N0, then (14.12) implies that t2n D 0 for n � k, so r2n D 0

for n � k by (14.13) and the assertion holds trivially. The assertion is also trivial if
L. f 2/ D 0. Thus we can assume that t2n > 0 for all n 2 N0 and L. f 2/ > 0.

From (14.12) it follows that
t2jC2

t2j
� t2jC4

t2jC2
for j 2 N0. Thus, for k 2 N, we get

t2kC2
t0
D

kC1Y
jD1

t2j
t2j�2

�
�
t2kC2
t2k

�kC1
;
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that is, tkC12k � tk2kC2t0, so t2kC22k � t2k2kC2t20 and hence

2k
p
t2k � 2kC2

p
t2kC2 k.2kC2/

p
t0:

Setting k D 2n, we obtain

t�1=.4n/4n � t�1=.4nC2/
4nC2 t�1=.2n.4nC2//

0 � t�1=.4nC2/
4nC2 .1C t0/

�1: (14.14)

Using (14.13) and (14.14) we derive

r�1=.2n/
2n � t�1=.4n/4n L. f 2/�1=.4n/ � t�1=.4n/4n .1C L. f 2//�1

� 1

2
.t�1=.4n/4n C t�1=.4nC2/

4nC2 /.1C t0/
�1.1C L. f 2//�1:

Summing over n 2 N, by the Carleman condition for the sequence .tn/, the right-
hand side yieldsC1 and so does the left hand side. ut

Applying Lemma 14.21 with q D xj, j D 1; : : : ; d, yields the following

Corollary 14.22 Let L be a positive linear functional on CdŒ x � and let f 2 RdŒ x �.
Suppose that QL.�/ WD L. f �/ is also a positive linear functional on CdŒ x �. If L
satisfies the multivariate Carleman condition, so does QL.
Proof of Theorem 14.20 Assume first that d D 2. Since the .s.n;0/ D L.xn1//n2N0

fulfills Carleman’s condition (14.10) by assumption, so does the sequence

.sn;2.kC1/ C s.n;2k//n2N0 D .L..xkC12 C x2k2 /x
n
1//n2N0

by Lemma 14.21. Hence this 1-sequence is determinate by Carleman’s Theorem 4.3.
Therefore, Corollary 14.13 applies and implies that s is a moment sequence.

In the case d � 3 the proof is similar. All sequences in (14.6), (14.7), and (14.8)
are of the form .L. fxnj //n2N0 or .L. fxnl //n2N0 for some polynomial f 2 PRdŒ x �2.

Since sŒ1�; : : : ; sŒd�1� satisfy Carleman’s condition by assumption, these sequences
do so for j; l D 1; : : : ; d � 1 by Lemma 14.21. Hence they are determinate by
Theorem 4.3. Thus, the assumptions of Theorem 14.16 are fulfilled; hence s is a
moment sequence.

Now suppose that Carleman’s condition (14.10) holds for sŒ1�; : : : ; sŒd�. Then,
arguing as in the preceding paragraph, it follows that for j D 1; : : : ; d all sequences
(14.6) are determinate. Hence Aj D Xj is self-adjoint on HL for j D; : : : ; d by
Remark 14.17. Therefore, by Theorem 14.2, s is strongly determinate. ut
Remark 14.23 The preceding proof of Theorems 14.20 and 14.19 was quite
involved. We used Theorem 14.16 to prove s is a moment sequence. However,
if we know already that s is a moment sequence, the determinacy assertion of
Theorem 14.19 follows easily: Since the multivariate Carleman condition implies
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Carleman’s condition for the marginal sequences, the latter are determinate by
Carleman’s Theorem 4.3 and hence s is determinate by Petersen’s Theorem 14.6. ı

The following corollary is the multidimensional counterpart of Corollary 4.11.

Corollary 14.24 Let � 2 MC.Rd/. Suppose that there exists an " > 0 such that

Z
Rd

e"kxk d�.x/ < C1: (14.15)

Then � 2MC.Rd/ and � is strongly determinate.

Proof The proof is similar to the proof of Corollary 4.11. Let j 2 f1; : : : ; dg and
n 2 N0. Then x2nj e�"jxj j � "�2n.2n/Š for xj 2 R (see (4.16)) and hence

Z
Rd

x2nj d� D
Z
Rd

x2nj e�"jxj je"jxj j d� � "�2n.2n/Š
Z
Rd

e"kxk d� < C1: (14.16)

Let p 2 RdŒ x �. Then p.x/ � c.1Cx2n1 C� � �Cx2nd / on Rd for some c > 0 and n 2 N,
so (14.16) implies that p is �-integrable. Thus � 2MC.Rd/:

Let s be the moment sequence of �. By (14.16) there is a constant M > 0 such
that

sŒ j�2n D Ls.x
2n
j / D

Z
Rd

x2nj d� � M2n.2n/Š for n 2 N0:

By Corollary 4.10, this inequality implies that sŒ j� satisfies Carleman’s condition
(14.10). Therefore, s and � are strongly determinate by Theorem 14.19. ut

The next theorem shows that Carleman’s condition can be used to localize the
support of representing measures.

Theorem 14.25 Let s be a real d-sequence and f D f f1; : : : ; fkg a finite subset of
RdŒ x �. Suppose that the corresponding Riesz functional Ls is Q.f/-positive (that is,
Ls. p2/ � 0 and Ls. fjp2/ � 0 for all j D 1; : : : ; k and p 2 RdŒ x �) and satisfies the
multivariate Carleman condtion. Then s is a determinate moment sequence and its
representing measure is supported on the semi-algebraic set K.f/.

Proof By Theorem 14.20, s is a determinate moment sequence. Let � denote its
unique representing measure. It suffices to show that Ls. fjp2/ � 0 for all p 2 RdŒ x �
implies that fj.x/ � 0 on supp�. For simplicity we suppress the index j.

Define a linear functional QL on RdŒ x � by QL.�/ D Ls. f �/. Since Ls. fp2/ � 0 for
p 2 RdŒ x � by assumption, QL is a positive functional on RdŒ x �. Therefore, since L
satisfies the multivariate Carleman condition, so does QL by Corollary 14.22. Thus, by
Theorem 14.20, QL is also a determinate moment functional; let � be its representing
measure. Then

Z
Rd

x˛ f .x/d�.x/ D Ls. fx
˛/ D QL.x˛/ D

Z
Rd

x˛ d�.x/; ˛ 2 Nd
0: (14.17)
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Put MC WD fx 2 Rd W f .x/ � 0g and M� WD fx 2 Rd W f .x/ < 0g. We denote
by �˙ the characteristic function of M˙ and define measures �˙; �˙ 2 MC.R/ by
d�˙ D �˙d� and d�˙ D ˙fd�˙: Then � D �C C �� and hence

Z
x2kl d�C.x/ �

Z
x2kl d�.x/; k 2 N0; l D 1; : : : ; d:

Therefore, since the moment sequence s of � satisfies the multivariate Carleman
condition, so does the moment sequence of �C and hence the moment sequence of
�C by Corollary 14.22. Consequently, �C is determinate by Theorem 14.20.

Since d�C � d�� D fd�C C fd�� D fd�, it follows from (14.17) that

Z
x˛ d�C.x/ D

Z
x˛ d��.x/C

Z
x˛ d�.x/ D

Z
x˛d.�� C �/.x/; ˛ 2 Nd

0:

Hence, since �C is determinate, �C D �� C � . From 0 D �C.M�/ � ��.M�/ � 0
we obtain ��.M�/ D 0 and so �� D 0.

The latter implies that f .x/ � 0 on supp�. Indeed, if we had f .x0/ < 0 for some
x0 2 supp�, then it would follow that �f .x/ � " > 0 on a ball B around x0 and

0 D ��.B/ D
Z
B
.�f .x// d��.x/ D

Z
B
.�f .x// d�.x/ � "�.B/ > 0;

which is a contradiction. ut
In the operator-theoretic approach Carleman’s condition is closely related to the

theory of quasi-analytic vectors. We briefly discuss this connection.
Let T be a symmetric linear operator on a Hilbert space and x 2 \1

nD1D.Tn/:

Since the operator T is symmetric, it is easily verified that the real sequence

t D .tn WD hTnx; xi/n2N0

is positive semidefinite and hence a moment sequence by Hamburger’s theorem 3.8.
The vector x is called quasi-analytic for T (see e.g. [Sm9, Definition 7.1]) if

1X
nD1
kTnxk�1=n D C1: (14.18)

Note that t2n D hT2nx; xi D kTnxk2 for n 2 N0. Therefore, the vector x is quasi-
analytic for T if and only if the sequence t satisfies Carleman’s condition (14.10).

Now suppose that s is a positive semidefinite d-sequence and let L D Ls be the
corresponding positive linear functional on RdŒ x �. Then we obtain

sŒ j�2n D Ls.x
2n
j / D hX2nj 1; 1iL D kXn

j 1k2L; j D 1; : : : ; d; n 2 N0:
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Hence the marginal sequence sŒ j� fulfills Carleman’s condition (14.10) if and only
if 1 is a quasi-analytic vector for the multiplication operator Xj by the variable xj.

Quasi-analytic vectors of commuting symmetric operators are studied in detail
in [Sm9, Section 7.4]. Theorem 7.18 therein gives for d D 2 an operator-theoretic
approach to Theorem 14.19 based on quasi-analytic vectors.

14.5 Moments of Gaussian Measure and Surface Measure
on the Unit Sphere

In this short section we interrupt the study of determinacy and compute the moments
of two important measures. These formulas are of interest in themselves.

Let � denote the Gaussian measure on Rd given by

d� D .2�/�d=2 e�kxk2=2 dx;

where dx is the Lebesgue measure of Rd. Obviously
R
Rd ekxkd�.x/ <1. Therefore,

Corollary 14.24 implies that � is a strongly determinate measure of MC.Rd/:

Further, let � be the surface measure of the unit sphere Sd�1 of Rd: Recall that
s˛.�/ and s˛.�/, where ˛ 2 Nd

0, denote the moments of these measures.
Let j 2 f1; : : : ; dg. Since both measures are invariant under the transformation

xj 7! �xj; xi 7! xi for i ¤ j, we have s˛.�/ D s˛.�/ D 0 if one number ˛j is odd.
Thus it suffices to determine the moments s2˛.�/ and s2˛.�/ for ˛ 2 Nd

0:

We begin with some preliminaries. Set .2k � 1/ŠŠ WD 1 � 3 � � � .2k � 1/ for k 2 N

and .�1/ŠŠ WD 1. Using the formulas
R1
0

e�t2=2 dt D p
�
2

and
R1
0

te�t2=2 dt D 1

and integration by parts we easily compute for k 2 N0;

Z 1

0

t2ke�t2=2dt D
r
�

2
.2k � 1/ŠŠ and

Z 1

0

t2kC1e�t2=2dt D kŠ

2k
: (14.19)

Further, for the Gamma function � .z/ WD R1
0 tz�1e�tdt; < z > 0, the following

formulas (see e.g. [RW, p. 278]) hold for k 2 N0:

�
�
kC 1=2� D p� 2�k .2k � 1/ŠŠ and � .kC 1/ D kŠ : (14.20)

Therefore, comparing (14.19) and (14.20) we calculate

Z 1

0

tne�t2=2dt D 2.n�1/=2 �
�
.nC 1/=2�; n 2 N0: (14.21)

This formula plays an essential role in the proof of the next proposition.
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Proposition 14.26 For ˛ 2 Nd
0 we have

s2˛.�/ D .2�/�d=2
Z
Rd

x2˛e�kxk2=2dx D 2j˛j��d=2 �
�
˛1 C 1=2

� � � �� �˛d C 1=2�;

s2˛.�/ D
Z
Sd�1

y2˛d�.y/ D 2 � .˛1 C 1=2/ � � �� .˛d C 1=2/
� .j˛j C d=2/

:

In particular, �.Rd/ D 1 and �.Sd�1/ D 2 �d=2

� .d=2/ .

Proof Set Q� D .2�/d=2�. Then, using formula (14.21) for n D 2˛j, we derive

s2˛. Q�/ D
Z
Rd

x2˛e�kxk2=2dx D
dY

jD1

Z
R

x2˛j e�x2j =2dxj D 2d
dY

jD1

Z 1

0

x2˛j e�x2j =2dxj

D 2d2.2j˛j�d/=2
dY

jD1
�
�
˛jC1=2

�D 2j˛jCd=2
dY

jD1
�
�
˛jC1=2

�
: (14.22)

This yields the formula for s2˛.�/ stated in the proposition.
On the other hand, setting r D kxk, applying the transformation x D ry, y 2 Sd�1;

and using (14.21) for n D 2j˛j C d � 1, we obtain

s2˛. Q�/ D
Z
Rd

x2˛e�kxk2=2dx D
Z 1

0

r2j˛jCd�1e�r2=2dr
Z
Sd�1

y2˛d�.y/

D 2.2j˛jCd�2/=2� ..2j˛j C d/=2/ s2˛.�/ D 2j˛j�1Cd=2� .j˛j C d=2/ s2˛.�/:

Inserting on the left the expression from (14.22) we get the formula for s2˛.�/.
The formulas for �.Rd/ and �.Sd�1/ are obtained by letting ˛ D 0 and using

that � .1=2/ D p� . ut

14.6 Disintegration Techniques and Determinacy

The results of this section are based on the following disintegration theorem for
measures. Recall that the image of a measure � by a map p is denoted by p.�/.

Proposition 14.27 Suppose that X and T are closed subsets of Euclidean spaces
and � is a finite Radon measure on X. Let p W X ! T be a �-measurable mapping
and � WD p.�/. Then there exist a mapping t 7! �t of T into the set of Radon
measures on X satisfying the following three conditions:

(i) supp �t 	 p�1.t/.
(ii) �t. p�1.t// D 1��a:e:
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(iii) For each nonnegative Borel function f on X we have

Z
X
f .x/ d�.x/ D

Z
T
d�.t/

�Z
X
f .x/ d�t.x/

�
: (14.23)

Proof This is a special case of [Bou, Proposition 2.7.13, Chapter IX]. ut
We retain the assumptions and notations of Proposition 14.27 and begin with the

preparations of Theorem 14.29 below.
Let A and B be countably generated complex �-algebras of �-integrable functions

on X and �-integrable functions on T, respectively, which contain the constant
functions. The involution is always the complex conjugation of functions. Suppose
that f . p.x// 2 A for all f 2 B.

Let g 2 A. Since (14.23) holds for f D gg and
R
fd� is finite, jgj2 is �t-integrable

�-a.e. Because A is a countably generated, there is a common�-null set N0 such that
jgj2 is �t-integrable for all g 2 A and t 2 TnN0: For notational simplicity we assume
that N0 D ; (for instance, we can set g D 0 on N0 for all g 2 A); then jgj2 is
�t-integrable on T: Since the unital �-algebra A is spanned by elements jgj2, each
f 2 A is �t-integrable on T and (14.23) holds.

We define linear functionals Lt, t 2 T, and L on A by

Lt. f / WD
Z
X
f .x/ d�t.x/ and L. f / WD

Z
X
f .x/ d�.x/ for f 2 A:

Lemma 14.28 For any f 2 A, the function t 7! Lt. f / is in L2.T; �/:

Proof We freely use the properties (i)–(iii) from Proposition 14.27. (ii) implies that
Lt.1/ D 1. By the above definitions and the Cauchy–Schwarz inequality we obtain

Z
T
d�.t/ jLt. f /j2 D

Z
T
d�.t/

ˇ̌
ˇ̌ Z

X
f d�t.x/

ˇ̌
ˇ̌2

�
Z
T
d�.t/

�Z
X
j f j2 d�t.x/

� �Z
X
1 d�t.x/

�

D
Z
T
d�.t/ Lt. f Nf /Lt.1/ D

Z
T
d�.t/ Lt. f Nf / D L. f Nf / < C1: ut

We assume that the following three conditions are satisfied:

(1) The measure � is determinate on T for B, that is, if �0 is another Radon
measure on T such that

R
f d� D R f d�0 for all f 2 B, then � D �0.

(2) B is dense in L2.T; �/.
(3) For �-almost all t 2 T, the measure �t is determinate on p�1.t/ for A, that is, if

�0
t is a Radon measure on the fibre p�1.t/ such that

R
g d�t D

R
g d�0

t for all
g 2 A, then �t D �0

t.

The main result of this section is the following fibre theorem for determinacy.



376 14 The Multidimensional Moment Problem: Determinacy

Theorem 14.29 Let A and B be as above and retain the preceding notation. If the
assumptions (1)–(3) hold, then the measure � is determinate on X for A.

Proof Suppose that � 0 is a Radon measure on X such that

Z
X
g d� D

Z
X
g d�0 for g 2 A: (14.24)

Let � D p.�/, �t and �0 D p.� 0/, �0
t, respectively, be the corresponding mea-

sures from the disintegration theorem and Lt and L0
t the corresponding functionals

for � and � 0, respectively. For f 2 B we have f . p.x// 2 A and we compute

Z
T
d�0.t/f .t/ D

Z
T
d�0.t/f .t/

Z
X
d�0

t.x/ (14.25)

D
Z
T
d�0.t/

Z
X
f .t/ d�0

t.x/ D
Z
X
d�0.t/

Z
X
f . p.x//d�0

t.x/ (14.26)

D
Z
X
f . p.x//d�0.x/ D

Z
X
f . p.x//d�.x/ D

Z
T
d�.t/f .t/: (14.27)

Here the equality in (14.25) holds, since �0
t. p

�1.t// D 1 �0-a.e. by (ii). For
the second equality in (14.26) we used that supp�0

t 	 p�1.t/ by (i) and hence
t D p.x/ �0

t-a.e. on supp�0
t. The first two equalities in (14.27) hold by (14.23)

and (14.24). By assumption (1), � is determinate on T for B. Hence the preceding
implies that � D �0.

Recall that B is countably generated and dense in L2.T; �/ by assumption (2).
Hence there exist a subset N of N and functions 'n 2 A, n 2 N, such that the subset
f Q'n W n 2 Ng of B is an orthonormal basis of L2.T; �/.

Fix f 2 A. We compute the Fourier coefficients of the function Lt. f / of L2.T; �/
with respect to this orthonormal basis by

Z
T
d�.t/ Lt. f / Q'n.t/ D

Z
T
d�.t/ Q'n.t/

Z
X
f .x/ d�t.x/

D
Z
T
d�.t/

Z
X
'n. p.x//f .x/ d�t.x/ D

Z
X
d�.x/ 'n. p.x//f .x/ D L. 'n. p.x// f .x//:

Since � D �0, the same reasoning with �t replaced by �0
t shows that

Z
T
d�.t/ L0

t. f / Q'n.t/ D L. 'n. p.x// f .x//:

Therefore, both functions Lt. f / and L0
t. f / from L2.T; �/ (by Lemma 14.28) have

the same Fourier developments

Lt. f / D
X
n2N

L. 'n. p/ f / Q'n.t/; L0
t. f / D

X
n2N

L. '. p/ f / Q'n.t/
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in L2.T; �/. Consequently, Lt. f / D L0
t. f / �-a-e. on T. That is, there is a �-null

subset Mf of T such that
R
X f .x/ d�t.x/ D

R
X f .x/ d�

0
t.x/ for t 2 TnMf . Since A is

countably generated, there is a �-null subset M of T such that the latter holds for all
f 2 A and t 2 TnM. But then we conclude from assumption (3) that �t D �0

t �-a.e.
on T. Therefore, since � D �0 as shown above, it follows from the disintegration
formula (14.23) that

R
X ' d� D

R
X ' d�

0 for all nonnegative functions, hence for all
functions, ' 2 Cc.XIR/. This implies that � D �0. ut

We now specialize the preceding general theorem to the moment problem and
develop a “reduction procedure” for proving determinacy.

Suppose that X is a closed subset of Rd: Let p1; : : : ; pm 2 RdŒ x � and define a
mapping p W X ! T by p.x/ D . p1.x/; : : : ; pm.x//, where T is a closed subset of Rm

such that p.X/ 	 T. Since the polynomials pj are continuous and X is closed, each
fibre p�1.t/ is a closed subset of Rm. In the case X D Rm the fibres p�1.t/; t 2 T,
are just the real algebraic varieties

p�1.t/ D fx 2 Rn W p1.x/ D t1; : : : ; pk.x/ D tkg:

Further, we set A WD CdŒ x � � CŒx1; : : : ; xd� and B WD CmŒ t � � CŒt1; : : : ; ; tm�. Note
that then the assumption f . p.x// 2 A for f 2 B is fulfilled.

Suppose that � 2MC.Rd/ and supp � 	 X. Let � and �t be the corresponding
measures from Proposition 14.27. For f 2 RmŒ t � 	 B it follows from equations
(14.25)–(14.27) that

Z
T
f .t/ d�.t/ D

Z
X
f . p.x// d�.x/ D L. f . p.x/// < C1:

Therefore, � 2 MC.Rm/. As noted above, there is a �-null set N0 such that all
g 2 RdŒ x � 	 A are �t-integrable for t 2 TnN0. Thus, �t 2MC.Rd/ �-a.e. on T.

Assumptions (1) and (2) mean that � is determinate on T (by Definition 14.7)
and that CmŒ t � is dense in L2.T; �/. In this case we shall call � strictly determinate
on T. Assumption (iii) says that �t is determinate on p�1.t/ �-a.e. on T:

Therefore, in the preceding setup Theorem 14.29 can be restated as follows.

Theorem 14.30 If � is strictly determinate on T and �t is determinate on the fibre
p�1.t/ for �-almost all t 2 T, then � is determinate on X.

Clearly, measures with compact support are strictly determinate by Weierstrass’
theorem. Combined with this fact Theorem 14.30 yields the following corollaries.

Corollary 14.31 If T is compact and the measure �t is determinate on the fibre
p�1.t/ for �-almost all t 2 T, then � is determinate on X.

Corollary 14.32 If � is strictly determinate on T and the fibre p�1.t/ is bounded
for �-almost all t 2 T, then � is determinate on X.

By specifying the sets X;T and the polynomials pj, there are a number of
applications of Theorem 14.30 and Corollaries 14.31 and 14.32. We mention three
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applications and retain the notation and the setup introduced before Theorem 14.30.
These results are of interest in themselves and illustrate the power of the fibre
theorem.

1. Let p1.x/ D x1; : : : ; pm.x/ D xm, m < d, and let X and T be closed subsets of Rd

and Rm, respectively, such that p.X/ 	 T. Then Theorem 14.30 yields:
The measure � is determinate on X if � D p.�/ is strictly determinate on T

for CmŒ t � and the measure �t is determinate on p�1.t/ for �-almost all t 2 T.
2. Suppose that p1; : : : ; pm 2 RdŒ x � are polynomials which are bounded on the

closed subset X of Rd. Put

˛j D inf f pj.x/ W x 2 Xg; ˇj D sup f pj.x/ W x 2 Xg; T D Œ˛1; ˇ1� � � � � � Œ˛m; ˇm�:

An immediate consequence of Corollary 14.31 is the following assertion:
The measure � is determinate on X if the fibre measures �t are determinate on

p�1.t/ for �-almost all t 2 T.
3. Let p.x/ D x21 C � � � C x2d, d � 2, and X D Rn, T WD p.X/ D RC. Then the

fibres are circles and hence compact. That � is determinate on RC means that
� is Stieltjes determinate. In this case, � is equal to the Friedrichs solution and
hence CŒt� is dense in L2.RC; �/. That is, determinacy on RC is the same as
strict determinacy on RC. Thus Corollary 14.32 gives:

The measure � is determinate if � D p.�/ is determinate on RC, or
equivalently, if � is Stieltjes determinate.

14.7 Exercises

1. Let � 2 MC.Rd/ and q 2 CdŒ x �. Suppose that q.x/ ¤ 0 for x 2 supp�:
Prove that CdŒ x � is dense in L2.Rd; jqj2d�/ if and only if q.x/CdŒ x � is dense
in L2.Rd; �/.

2. Let �; � 2MC.Rd/ and suppose that � Š �:
a. Let X be a real algebraic set in Rd such that supp�	X: Show that supp � 	

X:
b. Suppose that p 2 CdŒ x � is bounded on supp �. Prove that p is also bounded

on supp � and that sup fjp.x/j W x 2 supp �g D sup fjp.x/j W x 2 supp �g:
3. Let �1; : : : ; �d 2MC.R/. Show � WD �1 ˝ � � � ˝ �d 2MC.Rd/.
4. Let� D �1˝� � �˝�d ,�j 2MC.R/: Prove that the following are equivalent:

(i) Each measure �k; k D 1; : : : ; d, is determinate.
(ii) � is determinate.

(iii) � is ultradeterminate.

5. Let � 2MC.Rd/ and let L be the corresponding moment functional on CdŒ x �.
Let p WD �1x1 C � � � C �xd, where �j 2 R; and define a symmetric operator Ap
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on HL by Apf D p � f for f 2 CdŒ x �. Prove that if � is ultradeterminate, then
the operator Ap is essentially self-adjoint.

6. (A strongly determinate measure that is not ultradeterminate [Sm5])
Let �0 2 MC.R/ be indeterminate and N-extremal such that supp � \

.�"; "/ D ; for some " > 0 and define � by d� D .1 C x2/�1d�0. Let �j D
'j.�/, where '1.x/ D .x; 0/ and '2.x/ D .0; x/; x 2 R: Put � D �1 C �2.
a. Prove that � 2MC.R2/ is strongly determinate.
b. Prove that � is not ultradeterminate.

Hint: Show that the operator Ax1Cx2 (Exercise 5) is not essentially self-
adjoint.

7. (A strongly determinate measure with indeterminate marginal measures
[Sm5]).

Let �1 D P1
nD0 anıxn be an indeterminate N-extremal measure on R such

that x0 D 0 and xn ¤ 0 for n 2 N. Put �1 D P1
nD1 anı.xn;0/ and �2 DP1

nD1 anı.0;xn/.

a. Show that �1; �2 2MC.R2/ are determinate.
b. Show that � D �1 C �2 is strongly determinate.
c. Show that �1.�/ and �1.�/ are indeterminate.

Hint for a.: Use Exercise 7.13.

8. (A characterization of ultradeterminacy [Fu])
Let � 2 MC.Rd/ and let L be its moment functional. Consider the joint

graph GXWDf. f ;X1 f ; : : : ;Xd f / W f 2 CdŒ x �g of operators Xj on HL. Prove that
� is ultradeterminate if and only if there are self-adjoint operators A1; : : : ;Ad

on HL such that GX is dense in joint graph GAWDf. f ;A1 f ; : : : ;Ad f / W f 2
\d

jD1D.Aj/g: In this case we have Aj D Xj for j D 1; : : : ; d:
9. Let �; � 2 MC.Rd/: Suppose that d�Dj f .x/jd� for some bounded Borel

function f on Rd. Show that if � is strictly determinate (strongly determinate,
ultradeterminate), so is �:

10. Let f be a polynomially bounded Borel function on Rd, that is, j f .x/j � p.x/
on Rd for some p 2 RdŒ x �, and let " > 0: Define �1; �2 2 MC.Rd/ by

d�1 D j f .x/je�"kxkdx and d�2 D j f .x/je�"kxk2dx;

where dx stands for the Lebesgue measure on Rd. Show that �1 and �2 are
strongly determinate measures of MC.Rd/.

11. (Radon measures with bounded density on a semi-algebraic sets K.f/)
Prove that the assertions of Corollary 12.29 remain valid if the assumption

“K.f/ is compact” is replaced by the assumption “L� satisfies the multivariate
Carleman condition (14.11)”.
Hint: Show that L WD cL� � L� also satisfies (14.11) and use Theorem 14.25.
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12. Let ' 2 C1
0 .R

d/: Define a linear functional L on RdŒ x � by

L. p/ D h p.�i@1; : : : ;�i@d/'; 'i; p 2 RdŒ x �;

where @j WD @
@xj

and h�; �i denotes the scalar product of L2.Rd/ with respect to
the Lebesgue measure. Prove that L is an indeterminate moment functional.
Hint: For proving that L is a moment functional, use the Fourier transform; for
the indeterminacy mimic the proof of Example 6.14.

13. (A sufficient determinacy criterion [PVs2, Theorem 2.1])
Let Vd D fz D .z1; : : : ; zd/ 2 Cd W z21 C � � � C z2d D �1g. Let L be a moment

functional on RdŒ x �. For n 2 N, we define

	n.L/ D min fL. p2/ W p 2 RdŒ x �n; jp.z/j D 1 for z 2 Vd g:

Since 	n.L/ � 	nC1.L/ for n 2 N, the limit 	.L/ WD limn!1 	n.L/ exists.

a. Show that L is determinate if 	.L/ D 0.
b. Give an example of a determinate moment functional such that 	.L/ > 0.

Hints: For a., reduce this to the one-dimensional case and apply Petersen’s
theorem 14.6. For b., use Example 14.4.

14.8 Notes

Strong determinacy and ultradeterminacy have been invented by B. Fuglede [Fu],
while strict determinacy was introduced in [PSm]. The main part of Theorem 14.2
is an important classical result of A. Devinatz [Dv2]. Example 14.4 is taken from
[Sm5]. Proposition 14.5 can be found in [BC1] for d D 1 and in [Fu] for general
d. L.C. Petersen’s Theorem 14.6 was proved in [Pt]. Corollary 14.13 is another
classical result due to G. Eskin [Es]. Theorem 14.12 is due to J. Friedrich [Fr2].

The multivariate Carleman Theorem 14.19 was proved by A.E. Nussbaum [Nu1]
using his theory of quasi-analytic vectors. The proof given in the text is taken
from [PSm]. Another proof based on a localization techniques is given in [Ms3].
Extensions of Carleman’s condition and various ramifications are developed in [DJ].
Theorem 14.25 is due to J.B. Lasserre [Ls3].

The fibre theorem for determinacy (Theorem 14.29) and the corresponding
applications in Sect. 14.6 are due to the author; they are contained in [PSm]. The
determinacy for moment problems on curves was studied in [PSr].



Chapter 15
The Complex Moment Problem

In this chapter, we give a digression into the complex moment problem on Cd.
In Sect. 15.1, we discuss the equivalence of the complex moment problem on Cd

and the real moment problem on R2d. In Sect. 15.2, we briefly treat the moment
problems for two important �-semigroups (Zd and N0 � Zd). The operator-
theoretic approach to the complex moment problem (Theorem 15.6) is developed in
Sect. 15.3. In Sect. 15.4, we show that each positive functional on CdŒz; z� satisfying
the complex multivariate Carleman condition is a determinate moment functional
(Theorem 15.11). In Sect. 15.5, moment functionals on CŒz; z� are characterized in
terms of extensions to a larger algebra (Theorem 15.14). Section 15.6 solves the
two-sided complex moment problem on the complex plane (Theorem 15.15).

15.1 Relations Between Complex and Real Moment
Problems

The complex moment problem on Cd is the moment problem for the �-semigroup
N2d
0 with pointwise addition as semigroup operation and involution defined by

.m; n/� D .n;m/ for m; n 2 Nd
0. Recall from Example 2.3.2 that the map

.m; n/ � .m1; : : : ;md; n1; : : : ; nd/ 7! zmzn WD zm11 : : : zmd
d z n11 : : : z

md
d

extends by linearity to a �-isomorphism of the semigroup �-algebra CŒN2d
0 � on the

polynomial algebra CdŒz; z� WD CŒz1; z1; : : : ; zd; zd� with involution determined by

.zj/
� D zj; .zj/

� D zj; j D 1; : : : ; d:

We will write elements of CdŒz; z� as p.z; z/, where z D .z1; : : : ; zd/, z D
.z1; : : : ; zd/.

© Springer International Publishing AG 2017
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Let s D .sm;n/m;n2Nd
0

be a complex multisequence. The corresponding Riesz
functional Ls is the linear functional on CdŒz; z� defined by

Ls.z
mzn/ D sm;n; where m; n 2 Nd

0: (15.1)

Then the complex moment problem asks the following:
When does there exists a measure � 2 MC.Cd/ such that all p 2 CdŒz; z� are

�-integrable and

sm;n D
Z
Cd

zmzn d�.z/ for m; n 2 Nd
0; (15.2)

or equivalently,

Ls. p/ D
Z
Cd

p.z; z/ d�.z/ for p 2 CdŒz; z�‹ (15.3)

In this case we call s a complex moment sequence and Ls a moment functional.
It is known (by Corollary 2.16) and easily verified that a complex moment

sequence s D .sm;n/m;n2Nd
0

is positive semidefinite for the �-semigroup N2d
0 , that

is,

X
k;m;l;n2Nd

0

skCn;mCl �k;m � l;n � 0

for each finite complex sequence .�k;m/k;m2Nd
0
:

Further, by Proposition 2.7, s is positive semidefinite for N2d
0 if and only if its

Riesz functional Ls is a positive functional on the �-algebra CdŒz; z�. Therefore, each
moment functional is a positive functional on CdŒz; z�.

We now discuss the relations between the complex moment problem on Cd and
the real moment problem on R2d. For this reason we also consider the polynomial
�-algebra C2dŒ x � WD CŒx1; y1; : : : ; xd; yd� with involution given by

.xj/
� D xj; . yj/

� D yj; j D 1; : : : ; d:

Let z D .z1; : : : ; zd/ 2 Cd. We write zj D xjCiyj, where yj D Re zj and yj D Im zj,
and define a bijection � of Cd onto R2d by

�.z/ � �.z1; : : : ; zd/ D .x1; y1; : : : ; xd; yd/:

There is a �-isomorphism ˚ of the complex �-algebras CdŒz; z� and C2dŒ x � given
by

˚. p/.x1; y1; : : : ; xd; yd/ D p.x1 C iy1; : : : ; xd C iyd; x1 � iy1; : : : ; xd � iyd/
(15.4)
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for p.z; z/ 2 CdŒz; z�: Their Hermitian parts

CdŒz; z�h WD fp 2 CdŒz; z� W p� D pg ; C2dŒ x �h WD fp 2 C2dŒ x � W p� D pg D R2dŒ x �

are real algebras and the complex �-algebras CdŒz; z� and C2dŒ x � are the complex-
ifications (as defined in Sect. 12.1) of the two real algebras CdŒz; z�h and R2dŒ x �,
respectively. Therefore, from Lemma 2.17(i) we obtain

X
R2dŒ x �

2 D
X

C2dŒ x �
2 D ˚�XCdŒz; z�

2
� D ˚�X.CdŒz; z�h/

2
�
:

The �-isomorphism˚ and its inverse˚�1 map quadratic modules and preorderings
of one of these real algebras CdŒz; z�h and R2dŒ x �, respectively, onto quadratic
modules and preorderings of the other. Further, the bijection � of Cd and R2d maps
the character set Cd of the real algebra CdŒz; z�h onto the character set R2d of the real
algebra R2dŒ x �. Therefore, by means of the mappings � and˚ and their inverses all
concepts and results from real algebraic geometry and its applications to the moment
problem carry over from R2d and R2dŒ x � to Cd and CdŒz; z�h. We do not restate the
complex versions of these results. Our main aim in this chapter is to develop results
that are more specific to the complex case.

We will use the correspondence discussed in the preceding paragraph to derive
two interesting facts regarding the complex moment problem.

Proposition 15.1 There exists a positive semidefinite sequence s D .sm;n/m;n2N0

on the �-semigroup N2
0, and equivalently, a positive linear functional Ls on the �-

algebra C1Œz; z� � CŒz; z�, such that s is not a complex moment sequence and Ls is
not a moment functional.

Proposition 15.1 follows at once from Proposition 13.5. The following “com-
plex” Haviland theorem is an immediate consequence of the “real” Haviland
theorem 1.12 for R2dŒ x �:

Proposition 15.2 A multisequence s D .sm;n/m;n2Nd
0
is a complex moment

sequence if and only if Ls. p/ � 0 for all p 2 CdŒz; z� satisfying p.z; z/ � 0

for z 2 Cd.

As noted above, the moment problems on R2d and Cd are equivalent by the
isomorphism˚ of CdŒz; z� and C2dŒ x �. For d D 1 we state the formulas relating the
corresponding moments. Let L be a linear functional on C1Œz; z� D CŒz; z� and define
a linear functional QL on C2Œ x � D CŒx1; y1� and sequences s D .sm;n/, Qs D .Qsm;n/ by

QL. p/ D L.˚�1. p//; p 2 C2dŒ x �;

sm;n D L.zmzn/; Qsm;n D QL.xm1 yn1/; .m; n/ 2 N2
0:
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Some computations yield the following formulas for .m; n/ 2 N2
0 :

Qsm;n D 2�m�n
mX

kD0

nX
lD0

 
m

k

! 
n

l

!
in�2l skCl;mCn�k�l;

sm;n D
mX

kD0

nX
lD0

 
m

k

! 
n

l

!
im�k.�i/n�l QskCl;mCn�k�l:

15.2 The Moment Problems for the �-Semigroups
Zd andN0 � Zd

The moment problems for the �-semigroups Zd and N0 �Zd are moment problems
on the d-torus Td and on the cylinder set R �Td, respectively.

Let us begin with the �-semigroup Zd from Example 2.3.3. The semigroup
operation of Zd is addition and the involution is given by n� D �n. Further, the
map n D .n1; : : : ; nd/ 7! zn D zn11 � � � zndd gives a �-isomorphism of the group �-
algebra CŒZd� onto the �-algebra of trigonometric polynomials in d variables. For
notational simplicity we identify CŒZd� with the latter �-algebra, that is,

CŒZd� D CŒz1; z1; : : : ; zd; zd W z1z1 D z1z1 D 1; : : : ; zdzd D zdzd D 1�:

The characters of the complex �-algebraCŒZd�; or equivalently of its Hermitian part
CŒZd�h, are the point evaluations at points of the d-torus

Td D fz D .z1; : : : ; zd/ 2 Cd W jz1j D � � � D jzdj D 1 g:

Let us pass to the “real setting”. Set A WD ˚.CŒZd�h/, where ˚ is defined
by (15.4). Then A is a real unital algebra with 2d generators x1; y1; : : : ; xd; yd and
relations hj WD x2j C y2j � 1 D 0, j D 1; : : : ; d. That is, A of the form A D R2dŒ x �=I,

where I is the ideal of R2dŒ x � generated by h1; : : : ; hd. The character space OA is the
compact real algebraic set

OA D Z.I/ D �.Td/ D f.x1; y1; : : : ; xd; yd/ 2 R2d W x21 C y21 D 1; : : : ; x2d C y2d D 1g:

The following result says that strictly positive trigonometric polynomials on Td

are always sums of squares.

Proposition 15.3 Let p 2 CŒZd�. If p.z; z/ > 0 for z 2 Td, then p 2PCŒZd�2:

Proof The assumption implies that p 2 CŒZd�h, so ˚. p/ 2 A D R2dŒ x �=I, and
˚. p/.x1; y1; : : : ; xd; yd/ > 0 on OA: Hence it follows from Corollary 12.30(ii) that
˚. p/ 2P.R2dŒ x �=I/2 DP A2, so that p 2 ˚�1.

P
A2/ DPCŒZd�2. ut
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It is natural ask whether or not each nonnegative trigonometric polynomial on Td

is a sum of squares. This is true if and only if d � 2: For d D 1 this is an immediate
consequence of the Fejér–Riesz theorem 11.1, while for d D 2 this result is much
more subtle and follows (for instance) from [Ms1, Theorem 9.4.5].

The following proposition solves the moment problem for Zd.

Proposition 15.4 Let s D .sn/n2Zd be a complex sequence and Ls its Riesz func-
tional on CŒZd� defined by Ls.zn/ D sn; n 2 Zd: The following are equivalent:

(i) s is a positive semidefinite sequence on the �-semigroup Zd, that is,

X
n;m2Zd

sn�m�m �n � 0

for each finite complex sequence .�n/n2Zd :

(ii) Ls is a positive linear functional on the �-algebra CŒZd�.
(iii) s is a moment sequence on Zd, that is, there exists a Radon measure � on Td

such that

sn D
Z
Td

z�n d�.z/ for n 2 Zd:

Proof Proposition 2.7 yields (i)$(ii) and Lemma 2.12 gives (iii)!(ii).
The main implication (ii)!(iii) will be derived from Proposition 13.31. Indeed,

we define a linear functional QL on A by QL. p/ D Ls.˚. p//, p 2 CŒZd�h. By (ii),
Ls is a positive functional on CŒZd�, hence so is QL on A. Because OA is compact,
Proposition 13.31 applies and shows that QL is a moment functional on A. Since
A D ˚.CŒZd�h/ and OA D �.Td/, Ls is a moment functional on CŒZd�. ut

Next we turn to the �-semigroup N0 � Zd with coordinatewise addition as
semigroup composition and involution .k; n/� D .k;�n/, where k 2 N0, n 2 Zd. It
is straightforward to check that the semigroup �-algebra CŒN0 � Zd� is isomorphic
to the tensor product �-algebra CŒx�˝ CŒZd� and the characters of CŒN0 �Zd� are
exactly the point evaluations at points of R �Td.

The next proposition provides the solution of the moment problem for N0 �Zd.

Proposition 15.5 Let s D .sk;n/.k;n/2N0�Zd be a complex sequence and let Ls be its
Riesz functional on CŒN0 �Zd� defined by Ls.xkzn/ D sk;n, .k; n/ 2 N0 �Zd. Then
the following statements are equivalent:

(i) s is a positive semidefinite sequence on the �-semigroup N0 �Zd, that is,

X
.k;m/;.l;n/2N0�Zd

skCl;n�m �k;m � l;n � 0

for each finite complex sequence .�k;n/.k;n/2N0�Zd :

(ii) Ls is a positive linear functional on the �-algebra CŒN0 �Zd�.
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(iii) s is a moment sequence on N0 � Zd, that is, there exists a Radon measure �
on R �Td such that xkz�n is �-integrable and

sk;n D
Z
R�Td

xkz�n d�.x; z/ for .k; n/ 2 N0 �Zd:

Proof The proof is almost verbatim the same as the proof of Proposition 15.4. The
implication (ii)!(iii) follows again from Proposition 13.31, but now applied to the
real algebra RŒx�˝ A, where A D ˚.CŒZd�h/. ut

15.3 The Operator-Theoretic Approach to the Complex
Moment Problem

The main aim of this section is to derive Theorem 15.6 below, which is the
counterpart of Theorem 12.40 for the complex moment problem. As Theorem 12.40
is about extensions of commuting symmetric operators to strongly commuting
self-adjoint operators, Theorem 15.6 deals with extensions of commuting formally
normal operators to strongly commuting normal operators. In order to formulate
Theorem 15.6 we need further operator-theoretic considerations. All definitions and
results used in the following discussion can be found in [Sm9, Chapters 4 and 5].

Let Z be a densely defined linear operator on a Hilbert space. The operator Z is
called formally normal if

D.Z/ 	 D.Z�/ and kZfk D kZ�fk for f 2 D.Z�/

and Z is said to be normal if Z is formally normal and D.Z/ D D.Z�/. Note that Z
is normal if and only if Z is closed and Z�Z D ZZ�.

For each normal operator Z there exists a unique spectral measure EZ on the
Borel �-algebra of C such that

Z D
Z
C

� dEZ.�/:

If Z1 and Z2 are normal operators acting on the same Hilbert space, we say that Z1
and Z2 strongly commute if the spectral measures EZ1 and EZ2 commute, that is,
EZ1 .M/EZ2 .N/ D EZ2 .N/EZ1 .M/ for all Borel subsets M;N of C. In this case,

Z1Z2' D Z2Z1' for ' 2 D.Z1Z2/ \D.Z2Z1/; (15.5)

but (15.5) does not imply the strong commutativity of Z1 and Z2. A number of
equivalent formulations of strong commutativity are given in [Sm9, Section 5.6].
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Now suppose that N D .N1; : : : ;Nd/ is a fixed d-tuple of strongly commuting
normal operators N1; : : : ;Nd on a Hilbert space K. Then, by the multidimensional
spectral theorem [Sm9, Theorem 5.21], there exists a unique spectral measure EN

on the Borel �-algebra of Cd such that

Nj D
Z
Cd
�j dEN.�1; : : : ; �d/ for j D 1; : : : ; d:

Further, if M1; : : : ;Md are Borel subsets of C, then we have

EN.M1 � � � � �Md/ D EN1 .M1/ � � �ENd.Md/: (15.6)

We state basic properties of the functional calculus for the d-tuple N, see [Sm9,
Theorem 4.16 and formulas (4.32), (5.32)]. For any measurable function f on Cd

there is a normal operator f .N/ D R
Cd f .�/ dEN.�/ on K with dense domain

D. f .N// D f' 2 K W
Z
Cd
j f .�/j2 dhEN.�/'; 'i <1g: (15.7)

Let f ; g be measurable functions on Cd. If ' 2 D. f .N// and  2 D.g.N//, then

hf .N/'; g.N/ i D
Z
Cd

f .�/g.�/ dhEN.�/';  i: (15.8)

Further, f .N/� D f .N/. For ˛; ˇ 2 C and � 2 D. f .N// \D.g.N// we have

� 2 D..˛f C ˇg/.N// and .˛f C ˇg/.N/� D ˛f .N/� C ˇg.N/�:

If 
 2 D.g.N// and 
 2 D.. fg/.N//, then


 2 D. f .N/g.N// and f .N/g.N/
 D . fg/.N/
:

Let p.N;N�/ denote the operator f .N/ obtained for f .z/ D p.z; z/ 2 CdŒz; z�. In
particular, Nn is the operator for the function zn, n 2 Nd

0. The linear subspace

D1.N/ WD \n2Nd
0
D.Nn/:

is dense in K. From (15.7) it follows that all operators p.N;N�/ are defined on
D1.N/: The properties of the functional calculus stated above imply that the map

p 7! 	N. p/ WD p.N;N�/dD1.N/

is a �-representation 	N of the �-algebra CdŒz; z� on the domain D.	N/ WD D1.N/.
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Fix ' 2 D1.N/ and define a measure �' 2 MC.Cd/ by �'.�/ WD hEN.�/'; 'i.
Let p 2 CdŒz; z�. Formula (15.8), applied with f D p; g D 1; ' D  , yields

L'. p/ WD h	N. p/'; 'i D hp.N;N�/'; 'i D
Z
Cd

p.z; z/ d�'.z/: (15.9)

This shows that L'.�/ D h	N.�/'; 'i is a moment functional on CdŒz; z� and �' is a
representing measure of L' , see (15.3).

We now turn to a special case that is crucial for the moment problem. Suppose
that � is a Radon measure on Cd: Let Nj denote the multiplication operator by the
coordinate function zj on the Hilbert space G WD L2.Cd; �/, that is,

.Nj'/.z/ WD zj'.z/ for ' 2 D.Nj/ WD f' 2 G W zj � ' 2 Gg:

Then the adjoint N�
j is the multiplication operator by zj and kNj'k D kN�

j 'k for
' 2 D.Nj/ D D.N�

j /; that is, Nj is a normal operator.
For a Borel subset M of C set Mj D fz 2 Cd W zj 2 Mg. Let �Mj denote the

characteristic function of Mj and define ENj.M/' WD �Mj � ' for ' 2 G. Then ENj

is the spectral measure of Nj, that is, Nj' D
R
C
zj dENj.z/' for ' 2 D.Nj/. Since

the spectral measures ENj and ENk act as multiplications by characteristic functions,
they commute, that is, Nj and Nk strongly commute for j; k D 1; : : : ; d: For a Borel
set M of Cd let EN.M/ be the multiplication operator by the characteristic function
of M. Then EN is the spectral measure of the d-tuple N D .N1; : : : ;Nd/ of strongly
commuting normal operators N1; : : : ;Nd and we have �.�/ D hEN.�/1; 1i.

The preceding facts hold for any measure � 2 MC.Cd/. Now we assume in
addition that all polynomials of CdŒz; z� are in L2.Cd; �/. Then 1 is in the domain
D1.N/ and the above considerations apply to the d-tuple N and ' D 1: Therefore,
setting �.�/ D hEN.�/1; 1i, it follows from (15.9) that

L. p/ WD h	N. p/1; 1i D hp.N;N�/1; 1i D
Z
Cd

p.z; z/ d�.z/ (15.10)

for p 2 CdŒz; z�: Therefore, L is a moment functional and �.�/ D hEN.�/1; 1i is a
representing measure of L.

Hence L is a positive linear functional on the �-algebra CdŒz; z�. Recall that �L

denotes the GNS representation (see Definition 12.39) associated with L. Let us
describe the representation �L: By (15.10) we have L. pq/ D R

pq d� for p; q 2
CdŒz; z�: Comparing this with (12.31) it follows that the scalar product h�; �iL on the
domain DL of �L is just the scalar product of L2.Cd; �/. Thus DL can be identified
with the subspace CdŒz; z� of L2.Cd; �/ and �L acts by �L. p/q D p � q for p 2
CdŒz; z�, q 2 DL. In particular, we have �L.zj/ 	 Nj for j D 1; : : : ; d.

Now let L be an arbitrary positive linear functional on CdŒz; z�. Put Zj WD �L.zj/.
By (12.29) we have h�L.zj/';  i D h'; �L..zj/�/ i for '; 2 DL, so that

�L.zj/ D �L..zj/
�/ 	 �L.zj/

�: (15.11)
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Using once again (12.29) and finally (15.11) we derive for arbitrary ' 2 DL,

kZj'k2 D k�L.zj/'k2 D h�L.zj/'; �L.zj/'i D h'; �L..zj/
�/�L.zj/'i

D h'; �L.zj zj/'i D h'; �L.zjzj/'i D h�L..zj/
�/'; �L..zj/

�/'i
D h�L.zj/

�'; �L.zj/
�'i D k�L.zj/

�'k2 D k.Zj/�'k2: (15.12)

This proves that the operator Zj D �L.zj/ is formally normal.
Obviously, for any j; k D 1; : : : ; d, the operators Zj and Zk commute on the

domain DL, because zj and zk commute in CdŒz; z� and Zj and Zk leave the domain
DL invariant. Thus, .Z1; : : : ;Zd/ is a d-tuple of pairwise commuting formally normal
operators on the dense and invariant domain DL of the Hilbert space HL.

The results established above contain the main technical parts for the following
theorem on the operator-theoretic approach to the complex moment problem.

Theorem 15.6 Let s D .sm;n/m;n2Nd
0
be a complex multisequence and let Ls be its

Riesz functional defined by (15.1). The following statements are equivalent:

(i) s is a complex moment sequence, or equivalently, Ls is a moment functional on
CdŒz; z�:

(ii) There exists a d-tuple N D .N1; : : : ;Nd/ of strongly commuting normal
operators N1; : : : ;Nd on a Hilbert space G and a vector ' 2 D1.N/ such
that

sm;n D hNm';Nn'i for m; n 2 Nd
0: (15.13)

(iii) s is a positive semidefinite sequence for the �-semigroup N2d
0 , or equivalently,

Ls is a positive functional on the �-algebra CdŒz; z�, and there exists a d-tuple
N D .N1; : : : ;Nd/ of strongly commuting normal operators N1; : : : ;Nd on a
Hilbert space G such thatHLs is a subspace of G and

�Ls.z1/ � Z1 	 N1; : : : ; �Ls.zd/ � Zd 	 Nd : (15.14)

If (iii) holds and EN is the spectral measure of the d-tuple N, then

�.�/ WD hEN.�/1; 1i (15.15)

is a representing measure for s and Ls. Each solution of the complex moment
problem for s resp. Ls is obtained in this manner.

Proof
(i)!(iii) Since Ls is a moment functional, it is a positive functional. Let � be

a representing measure for Ls. Let Nj denote the multiplication operator by zj on
G WD L2.Cd; �/. Then, as shown above, N D .N1; : : : ;Nd/ is a d-tuple of strongly
commuting normal operators on G such that �Ls.zj/ 	 Nj, j D 1; : : : ; d; and �.�/ D
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hEN.�/1; 1i. This proves (iii) and the latter shows that each representing measure �
of Ls is of the form (15.15).

(iii)!(ii) By (iii), �Ls.zj/ 	 Nj for j D 1; : : : ; d: Hence

�Ls.z
n/ D �Ls.z1/

n1 : : : �Ls.zd/
nd 	 Nn1

1 : : :N
nd
d 	 Nn; n 2 Nd

0: (15.16)

Using (15.1), the definition of the scalar product in DLs , and (15.16) we obtain

sm;n D Ls.z
nzm/ D h�Ls.z

m/1; �Ls.z
n/1i D hNm1;Nn1i; m; n 2 Nd

0;

(15.17)

which is statement (ii) with ' D 1.
(ii)!(i) Using first (15.13) and then (15.8) we obtain

sm;n D hNm';Nn'i D
Z

zmzn dhEN.z/'; 'i; m; n 2 Nd
0; (15.18)

which proves that s is a moment sequence.

Finally, suppose that (iii) holds. From (15.17) and (15.18) with ' D 1 it follows
that �.�/ D hEN.�/1; 1i is a representing measure for s. This completes the proof of
Theorem 15.6. ut
Remark 15.7 In Theorem 15.6(ii), N1; : : : ;Nd are strongly commuting normal
operators and ' 2 D1.N/. Hence Theorem 15.6 remains valid if (15.13) is replaced
by sm;n D hNm.N�/n'; 'i for m; n 2 Nd

0: ı
We restate the main part of Theorem 15.6 in the special case d D 1 separately as

Corollary 15.8 A positive linear functional L on C1Œz; z� D CŒz; z� is a moment
functional if and only if the formally normal operator Z D �L.z/ has a normal
extension acting on a possibly larger Hilbert space G, that is, there exists a normal
operator N on a Hilbert space G such thatHL is a subspace of G and Z 	 N.

If this holds and EN denotes the spectral measure of the normal operator N,
then �.�/ D hE.�/1; 1i is a representing measure for L. All solutions of the moment
problem for L are of this form.

A by-product of the study of the complex moment problem is the following
operator-theoretic result, which is of interest in itself.

Corollary 15.9 There exists a formally normal operator on a Hilbert space which
has no normal extension on a possibly larger Hilbert space.

Proof From Proposition 15.1, there exists a positive functional L on CŒz; z� that is
not a moment functional. By Corollary 15.8, Z D �L.z/ has the desired properties.

ut
Remark 15.10 A densely defined linear operator T on a Hilbert space H is called
subnormal if there exists a normal operator N on a Hilbert space G such that H is
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a subspace of G and T 	 N. Using this notion Corollary 15.8 says that a positive
linear functional L on CŒz; z� is a moment functional if and only if the (formally
normal) operator Z D �L.z/ is subnormal. ı

15.4 The Complex Carleman Condition

A complex moment sequence s, likewise its Riesz functional Ls, is called determi-
nate if s, or equivalently Ls, has a unique representing measure.

The next theorem is a fundamental result on the complex moment problem.

Theorem 15.11 Let s D .sm;n/m;n2Nd
0
be a positive semidefinite complex sequence

for the �-semigroup N2d
0 . If the complex multivariate Carleman condition

1X
nD1

Ls.z
n
j z

n
j /

� 1
2n D 1 for j D 1; : : : ; d (15.19)

holds, then s is a determinate complex moment sequence and its Riesz functional Ls
is a determinate moment functional on CdŒz; z�:

Proof For notational simplicity we identify the �-algebras CdŒz; z� and C2dŒ x �
by the �-isomorphism ˚ from Sect. 15.1. Then the complex moment problem
for Ls becomes a real moment problem on C2dŒ x � and it suffices to prove the
corresponding assertions for this real moment problem. Our aim is to apply
Theorem 14.19.

Recall that zj D xj C iyj, where .xj/� D xj and . yj/� D yj, and Zj D �Ls.zj/.
Using the basic property (12.33) of the GNS construction we obtain

Ls.x
2n
j / D h�Ls.x

2n
j /1; 1i D h�Ls.xj/

n1; �Ls.xj/
n1i D k�Ls.xj/

n 1k2; (15.20)

Ls.z
n
j z

n
j / D h�Ls.z

n
j z

n
j /1; 1i D h�Ls.zj/

n1; �Ls.zj/
n1i D k.Zj/n 1k2: (15.21)

Further, since 2xj D zj C zj, we derive

2n k�Ls.xj/
n 1k D k.�Ls.zj/C �Ls.zj//

n 1k D k.Zj C .Zj/�/n 1k

D
����

nX
kD0

 
n

k

!
.Zj/

�k.Zj/n�k 1

���� �
nX

kD0

 
n

k

!
k.Zj/�k.Zj/n�k 1k

D
nX

kD0

 
n

k

!
k.Zj/k.Zj/n�k 1k D

nX
kD0

 
n

k

!
k.Zj/n 1k D 2n k.Zj/n 1k:

Here for the third equality we used that the operators Zj and Z�
j commute, so the

binomial theorem applies, while the fourth equality follows from the fact that the
operator Zj is formally normal, that is, from Eq. (15.12).
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Combining the preceding estimate with (15.20) and (15.21) we conclude that

Ls.x
2n
j / � Ls.z

n
j z

n
j /; n 2 N0:

Almost the same reasoning shows that

Ls. y
2n
j / � Ls.z

n
j z

n
j /; n 2 N0:

Therefore, assumption (15.19) implies that the functional Ls on C2dŒ x � satisfies the
multivariate Carleman condition (14.11) of the real case, so the assertions follow
from Theorem 14.19. ut

We illustrate the power of Theorem 15.11 by deriving two results for the moment
problem on bounded subsets of Cd. For a sequence s D .sm;n/m;n2Nd

0
we set

s. j/n WD s.0;:::;0;n;:::;0/;.0;:::;0;n;:::;0/;

where the number n stands at the places j and d C j. Further, for r D .r1; : : : ; rd/,
where r1 > 0; : : : ; rd > 0, let Dr denote the closed polydisc

Dr D fz D .z1; : : : ; zd/ 2 Cd W jzjj � rj; j D 1; : : : ; dg:

Corollary 15.12 A sequence s D .sm;n/m;n2Nd
0
is a complex moment sequence

which has a representing measure supported on the polydisc Dr if and only if s
is positive semidefinite for the �-semigroup N2d

0 and there are numbers Mj > 0

such that

s. j/n � Mjr
2n
j for n 2 N; j D 1; : : : ; r: (15.22)

Proof It is clear that a complex moment sequence is positive semidefinite for N2d
0 .

If s has a representing measure � with support contained in Dr , then

s. j/n D
Z
Cd

znj z
n
j d�.z/ � r2nj �.C

d/;

which gives (15.22).
Now we prove the if direction. From the definition of s. j/n we get s. j/n D Ls.znj z

n
j /.

For sufficiently large n we have Mj � 22n and therefore by (15.22),

Ls.z
n
j z

n
j /

1
2n D .s. j/n /

1
2n � 2rj:

Hence the Carleman condition (15.19) is fulfilled, so s is a complex moment
sequence by Theorem 15.11. Let � be a representing measure of s.
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To show that � is supported on Dr we use the correspondence between moment
problems of Cd and R2d and apply Proposition 12.15 with gj.x/ D x2j C y2j Š zjzj
for j D 1; : : : ; d: Then (15.22) implies (12.15) and the set G defined by (12.14) is
just the polydisc Dr. Hence supp� 	 Dr by Proposition 12.15. ut
Corollary 15.13 A sequence s D .sm;n/m;n2Nd

0
is a complex moment sequence

on Cd which has a representing measure with compact support if and only if s
is positive semidefinite for the �-semigroup N2d

0 and there is a constant c > 0 such

that the sequences .cns. j/n /n2N0 , j D 1; : : : ; d, are bounded.
Proof The assertion is easily derived from Corollary 15.12. It suffices to note that
condition (15.22) holds if and only if all sequences .cns. j/n /n2N0 are bounded, where
c WD .maxj r2j /

�1. ut

15.5 An Extension Theorem for the Complex
Moment Problem

This section deals with the complex moment problem for d D 1, that is, with the
moment problem for the �-semigroupN2

0 with involution .m; n/� D .n;m/. Clearly,
N2
0 is a �-subsemigroup of the larger �-semigroup

NC D f.m; n/ 2 Z2 W mC n � 0g with involution .m; n/� D .n;m/:

Hence CŒNd
0� is a �-subalgebra of the larger �-algebra CŒNC�.

The following result is the Stochel–Szafraniec extension theorem.

Theorem 15.14 A linear functional L on CŒNd
0� D CŒz; z� is a moment functional

if and only if L has an extension to a positive linear functional on CŒNC�.

Proof First we describe the semigroup �-algebra CŒNC�. From its definition it is
clear that CŒNC� is the complex �-algebra generated by the functions zmzn on Cnf0g,
where m; n 2 Z and mC n � 0. If r.z/ denotes the modulus and u.z/ the phase of z,
then zmzn D r.z/mCnu.z/m�n. Then, setting k D mC n, it follows that

CŒNC� D Linfr.z/ku.z/2m�k W k 2 N0;m 2 Zg :

The two functions r.z/ and u.z/ itself are not in CŒNC�, but the functions r.z/u.z/ D
z and v.z/ WD u.z/2 D zz�1 are in CŒNC� and they generate the �-algebra CŒNC�.
Writing z D x1 C ix2 with x1; x2 2 R, we get

1C v.z/ D 1C x1 C ix2
x1 � ix2

D 2 x
2
1 C i x1x2
x21 C x22

; 1 � v.z/ D 2 x
2
2 � i x1x2
x21 C x22

:



394 15 The Complex Moment Problem

This implies that the complex algebra CŒNC� is generated by the five functions

x1; x2;
x21

x21 C x22
;

x22
x21 C x22

;
x1x2

x21 C x22
: (15.23)

The Hermitian part CŒNC�h of the complex �-algebra CŒNC� is the real algebra
generated by the functions (15.23). This real algebra is the special case d D 2 of the
�-algebra A treated in Sect. 13.7. Thus, if we identify C with R2 in the obvious way,
the assertion of Theorem 15.14 follows at once from Theorem 13.40. ut

In terms of sequences Theorem 15.14 can be rephrased in the following manner:
A positive semidefinite sequence c D .cm;n/.m;n/2N2

0
for the �-semigroup N2

0 is

a moment sequence for N2
0 if and only if there is a positive semidefinite sequence

Qc D .Qcm;n/.m;n/2NC
for the �-semigroup NC such that Qcm;n D cm;n for .m; n/ 2 N2

0.
Using this reformulation we now give a proof of Theorem 15.14 in the context

of �-semigroups.

Second Proof of Theorem 15.14 This proof makes essential use of the �-semigroup
N0 � Z with involution .k; l/� D .k;�l/ and its �-subsemigroup S given by
S D f.k; l/ 2 N0 �Z W kC l eveng. It is straightforward to check that the map

! W NC ! S; !.m; n/ WD .mC n;m� n/

is a �-isomorphism of NC and S.
First we suppose that c has an extension to a positive semidefinite sequence Qc for

NC. We define a function ' W N0 �Z W! R by

'..k; l// WD Qc!�1.k;l/ if .k; l/ 2 S; (15.24)

'..k; l// WD 0 if .k; l/ 2 N0 � Z; .k; l/ … S: (15.25)

We show that ' is a positive semidefinite function on the �-semigroup N0 � Z.
Suppose that finitely many elements si 2 N0�Z and complex numbers �i are given.
Set u WD .0; 1/. For s; t 2 N0 � Z we easily verify that s C t 2 S if and only if
s; t 2 S or s; t … S. Further, sC u 2 S if s … S. Since the sequence Qc is positive
semidefinite on NC and !�1 is a �-isomorphism of S onto NC, the restriction of '
to S is positive semidefinite on S. Using the preceding facts we derive

X
i;j

'.s�
i C sj/ � i �j D

X
s�i Csj2S

'.s�
i C sj/ � i �j

D
X

si;sj2S
'.s�

i C sj/ � i �j C
X

si;sj…S
'.s�

i C sj/ � i �j

D
X

si;sj2S
'.s�

i C sj/ � i �j C
X

si;sj…S
'..siCu/� C .sjCu// � i �j � 0;

that is, ' is positive semidefinite on N0 �Z.
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Hence, by Proposition 15.5, .'.k; l//.k;l/N0�Z is a moment sequence for N0 � Z.
Let � be a representing measure for this sequence and let � denote its image under
the mapping R �T 3 .r; z/ 7! rz 2 C. Using (15.24) and (15.25) we obtain

cm;n D '.!.m; n// D
Z
R�T

rmCnzn�md�.r; z/

D
Z
R�T

.rz/m.rz/nd�.r; z/ D
Z
C

zmznd�.z/; m; n 2 N0;

that is, c is a moment sequence for N2
0.

Conversely, assume that c is a moment sequence for N2
0 and let � be a

representing measure. Then, for m; n 2 N0, we have

cm;n D �.f0g/ımCn;0 C
Z
Cnf0g

zmznd�.z/: (15.26)

Since � is a representing measure for c, the function zmz n is �-integrable on Cnf0g
for mC n � 0, that is, for .m; n/ 2 NC. Therefore, the right-hand side of (15.26) is
well-defined for .m; n/ 2 NC; let Qcm;n denote the corresponding number. It is easily
verified that the second summand in (15.26) defines a positive semidefinite sequence
for NC. Obviously, the map .m; n/ 7! ımCn;0 defines a character of NC. Hence the
first summand in (15.26) is a positive semidefinite sequence for NC as well. Thus,
Qc D .Qc.m;n// is a positive semidefinite sequence for the �-semigroup NC: ut

15.6 The Two-Sided Complex Moment Problem

The two-sided complex moment problem is the moment problem for the �-
semigroup Z2 with involution .m; n/� D .n;m/.

It is easily verified that the map .m; n/ 7! zmzn gives a �-isomorphism of the
semigroup �-algebra CŒZ2� on the �-algebra CŒz; z; z�1; z�1� of complex Laurent
polynomials in z and z. For notational simplicity we identify these �-algebras. The
character space of CŒZ2� consists of evaluation functionals at points of C� WD
Cnf0g:

Let s D .sm;n/.m;n/2Z2 be a complex sequence. As usual, Ls is the Riesz functional
on CŒZ2� defined by Ls.zmzn/ D sm;n, .m; n/ 2 Z2.

Then the two-sided complex moment problem is the following question:
When does there exist a Radon measure � on C� such that the function zmzn on

C� is �-integrable and

smn D
Z
C�

zmzn d�.z/ for .m; n/ 2 Z2;
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or equivalently,

Ls. p/ D
Z
C�

p.z; z/ d�.z/ for p 2 CŒZ2� D CŒz; z; z�1; z�1� ‹

Note that this requires conditions for the measure � at infinity and at zero. In the
affirmative case we call s a moment sequence for Z2 and Ls a moment functional.

The following fundamental result is Bisgaard’s theorem.

Theorem 15.15 A linear functional L on CŒZ2� is a moment functional if and only
if L is a positive functional, that is, L. f �f / � 0 for all f 2 CŒZ2�.

In terms of �-semigroups the main assertion of this theorem says that each
positive semidefinite sequence on Z2 is a moment sequence on Z2. This result is
really surprising, since C� has dimension 2 and no additional condition (in terms of
positivity or of some appropriate extension) is required.

Proof The only if part is obvious. We prove the if part.
First we describe the semigroup �-algebra CŒZ2� in terms of generators. Clearly,

a vector space basis of CŒZ2� D CŒz; z; z�1; z�1� is the set fzkzl W k; l 2 Zg. Writing
z D x1 C ix2 with x1; x2 2 R we get

z�1 D x1 � ix2
x21 C x22

and z�1 D x1 C ix2
x21 C x22

:

Hence CŒZ2� is the complex unital algebra generated by the four functions

x1; x2; y1 WD x1
x21 C x22

; y2 WD x2
x21 C x22

(15.27)

on R2nf0g. Note that all four functions are unbounded on R2nf0g.
Let A be the Hermitian part of the complex �-algebra CŒZ2�. Then A is a real

algebra and its character set OA is given by the point evaluations �x at x 2 R2nf0g:
(Obviously, �x is a character for x 2 R2nf0g: Since . y1 C iy2/.x1 � ix2/ D 1, there
is no character � on A for which �.x1/ D 0 and �.x2/ D 0.)

The three functions

h1.x/ D x1y1 D x21
x21 C x22

; h2.x/ D x2y2 D x22
x21 C x22

; h3.x/ D x1y2 D x2y1 D x1x2
x21 C x22

are elements of A and they are bounded on OA D f�x W x 2 R2; x ¤ 0 g:
To apply Theorem 13.10 we consider a nonempty fibre set given by hj.x/ D �j,

where �j 2 R for j D 1; 2; 3: Then �1 C �2 D 1, so we can assume without
loss of generality that �1 ¤ 0: In the quotient algebra A=I� we then have
x1y1 D �1 ¤ 0, so that y1 D �1x�1

1 , and x2y1 D x1y2 D �3, so that y2 D �3x�1
1

and x2 D �3�
�1
1 x1. Thus the algebra A=I� is generated by x1 and x�1

1 and hence
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a quotient of the algebra RŒx1; x�1
1 � of Laurent polynomials. Since

P
RŒx; x�1�2

obeys (MP) by Theorem 3.16, so does the preordering
P
.A=I�/2 of its quotient

algebra A=I� by Corollary 13.16. Therefore,
P

A2 satisfies (MP) by Theorem 13.10.
By definition, this means that each positive functional on A, hence on CŒZ2�, is a
moment functional. ut
Remark 15.16 The generators x1; x2; y1; y2 of the algebra A satisfy the relations

x1y1 C x2y2 D 1 and .x21 C x22/. y
2
1 C y22/ D 1: ı

15.7 Exercises

1. Let s D .sm;n/m;n2Nd
0

be a positive semidefinite sequence for N2d
0 . Show that

jskCm;lCnj2 � skCl;kCl smCn;mCn for k; l;m; n 2 Nd
0.

2. Let s D .sm;n/m;n2N0 be a positive semidefinite sequence for N2
0. Show that there

is a measure � 2MC.R/ supported on RC such that sn;n D
R
xn d� for n 2 N0.

3. Let � 2 MC.Cd/. Suppose that all polynomials p 2 CdŒz; z� are �-integrable.
Define � 2 MC.Cd/ by d� D .1Ckzk2/�1d�, where kzk2 WD z1z1C � � � C zdzd.
Show that the complex moment sequence of � is determinate.

4. Suppose that � 2 MC.Cd/ satisfies
R
e"kzk2 d� < 1. Show that all moments of

� are finite and the moment sequence of � is determinate.
5. Let s D .sm;n/m;n2N0 be a complex sequence and let R > r > 0. Give

necessary and sufficient conditions for s to be a complex moment sequence with
a representing measure supported on the following set K:

a. K WD fz 2 C W r � jzj � Rg.
b. K WD fz 2 C W Im z � 0; r � jzj � Rg.

6. Let s be a positive semidefinite sequence for the �-semigroup N4
0. Show that s is

a complex moment sequence on C2 with representing measure supported on the
closed ball f.z1; z2/ 2 C W jz1j2 C jz2j2 � r2g if and only if there is a constant
M > 0 such that

nX
kD0

 
2n

k

!
s2k;4n�2k;2k;4n�2k � Mr4n for n 2 N0:

7. Let s D .sm;n/m;n2N0 be a complex moment sequence with representing measure
� supported on D D fz 2 C W jzj � 1g. What can be said about the support of �
if

a. s1;1 D s0;0,
b. sm;n D sm�n;0 for m � n,
c. s1;1 D s2;0,
d. sm;n D smCn;0 for m; n 2 N0?
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8. Let s be a complex moment sequence and let � be a representing measure of s.
For p 2 CŒz; z�we define a Radon measure �p on C by d�p.z/ D j p.z; z/j2d�.z/.
Express the moment sequence of �p in terms of p and s.

15.8 Notes

The interplay between the complex moment problem and subnormality has been
known and investigated for a long time by operator-theorists [Br, Fo]. Theorem 15.6
for d D 1 goes back to Y. Kilpi [Ki], see also [StS2, Proposition 3]. Normal
extensions of formally normal unbounded operators have been extensively studied
by J. Stochel and F.H. Szafraniec [StS1, StS2, StS3].

The two formulas at the end of Sect. 15.1 are taken from [StS4]. Proposition 15.5
is due to A. Devinatz [Dv1]. The existence of formally normal operators without
normal extensions (Corollary 15.9) was discovered in [Cd], see [Sm3] and [St1]
for simple explicit examples. The complex Carleman condition was investigated in
[StS1]; Theorem 15.11 can be found therein. A solution of the moment problem for
discs without using Carleman’s condition is given in [Sf].

Theorem 15.14 was proved in [StS4]; our second proof is the original proof in
[StS4], while our first proof is taken from [Sm11]. Theorem 15.15 is due to T.M.
Bisgaard [Bi]; the very short proof in the text is also from [Sm11].



Chapter 16
Semidefinite Programming and Polynomial
Optimization

“Finding” the minimum or infimum pmin of a real polynomial p over a
semi-algebraic set K.f/ is a basic optimization problem. Sum of squares
decompositions of polynomials by means of Positivstellensätze and moment
problem methods provide powerful tools for polynomial optimization. The aim
of this chapter is to give a short digression into these applications by outlining the
main ideas.

In Sect. 16.2, we introduce two relaxations pmom
n and psos

n for pmin in terms of
Hankel matrices and the quadratic moduleQ.f/ and formulate them as a semidefinite
program and its dual. In Sects. 16.3 and 16.4, these relaxations are investigated on
K.f/ and Rd, respectively. If the quadratic module Q.f/ is Archimedean and hence
K.f/ is compact, a simple application of the Archimedean Positivstellensatz shows
that both relaxations converge to the minimum pmin (Theorem 16.6). Section 16.1
contains a brief introduction to semidefinite programming.

In this chapter we use some results of positive semidefinite matrices from
Appendix A.3.

16.1 Semidefinite Programming

Let Symn denote the vector space of real symmetric n � n-matrices and h�; �i the
scalar product on Symn defined by hA;Bi D TrAB: Recall that A � 0 means that
the matrix A is positive semidefinite and A � 0 that A is positive definite.

Now we define a semidefinite program and its dual program.
Suppose that a vector b 2 Rm and mC 1 matrices A0; : : : ;Am 2 Symn are given.

Then the primal semidefinite program (SDP) is the following:

p� D inf
y2Rm

˚
bTy W A. y/ WD A0 C y1A1 C � � � C ymAm � 0g: (16.1)
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That is, one minimizes the linear function bTy D Pm
jD1 bjyj in a vector variable

y D . y1; : : : ; ym/T 2 Rm subject to the linear matrix inequality (LMI) constraint

A. y/ WD A0 C y1A1 C � � � C ymAm � 0: (16.2)

The set of points y 2 Rm satisfying (16.2) is called a spectrahedron. By Propo-
sition A.18, the matrix A. y/ is positive semidefinite if and only if all its principal
minors are nonnegative. Since each such minor is a polynomial, the set of points
for which A. y/ � 0 is described by finitely many polynomial inequalities. Hence
each spectrahedron is a basic closed semi-algebraic set. By (16.2), a spectrahedron
is convex. But a convex basic closed semi-algebraic set is not necessarily a
spectrahedron.

Let p 2 RmŒy�: Further, let e 2 Rm be such that p.e/ > 0. Then the polynomial
p is called hyperbolic with respect to e if for each y 2 Rm the univariate polynomial
p.e C ty/ 2 RŒt� has only real zeros. In this case, the closure of the connected
component of the set fy 2 Rm W p. y/ > 0g containing e is called rigidly convex.
If A.e/ � 0, it can be shown that p. y/ WD detA. y/ is a hyperbolic polynomial with
respect to e and the corresponding spectrahedron is rigidly convex. Polyhedra and
ellipsoids are spectrahedra. The set f. y1; y2/ 2 R2 W y41 C y42 � 1g is not rigidly
convex, hence it is not a spectrahedron. Spectrahedra form an interesting class of
sets, but their study is outside the scope of this book (see e.g. [BTB]).

If all matrices Aj are diagonal, the constraint A. y/ � 0 consists of inequalities
of linear functions, so (16.1) is a linear program. Conversely, each linear problem
becomes a semidefinite program by writing the linear constraints as an LMI with a
diagional matrix. Thus, linear programs are special cases of semidefinite programs.

The dual program associated with (16.1) is defined by

p� D sup
Z2Symn

f�hA0;Zi W Z � 0 and hAj;Zi D bj; j D 1; : : : ;mg: (16.3)

Thus, one maximizes the linear function �hA0;Zi D �TrA0Z in a matrix variable
Z 2 Symn subject to the constraints Z � 0 and hAj;Zi D TrAjZ D bj,
j D 1; : : : ;m: It can be shown that the dual program (16.3) is also a semidefinite
program.

A vector y 2 Rm resp. a matrix Z 2 Symn is called feasible for (16.1) resp.
(16.3) if it satisfies the corresponding constraints. If there are no feasible points, we
set p� D C1 resp. p� D �1. A program is called feasible if it has a feasible point.

Proposition 16.1 If y is feasible for (16.1) and Z is feasible for (16.3), then

bTy � p� � p� � �hA0;Zi: (16.4)
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Proof Since y is feasible for (16.1) and Z is feasible for (16.3), A. y/ � 0 and Z � 0.
Therefore, hA. y/;Zi � 0 by Proposition A.21(i), so using (16.3) we derive

bTy D
mX
jD1

yjhAj;Zi D hA. y/;Zi � hA0;Zi � �hA0;Zi:

Taking the infimum over all feasible vectors y and the supremum over all feasible
matrices Z we obtain (16.4). ut

In contrast to linear programming, p� is not equal to p� in general (see Exercise
15.4). The number p� � p� is called the duality gap. The next proposition shows
that, under the stronger assumption of strict feasibility, the duality gap is zero.

Proposition 16.2

(i) If p� > �1 and (16.1) is strictly feasible (that is, there exists a vector y 2 Rm

such that A. y/ � 0), then p� D p� and the supremum in (16.3) is a maximum.
(ii) If p� < C1 and (16.3) is strictly feasible (that is, there exists a matrix Z 2

Symn such that Z � 0 and hAj;Zi D bj for j D 1; : : : ;m), then p� D p� and the
infimum in (16.1) is a minimum.

Proof We carry out the proof of (i); the proof of (ii) is similar.
The subset U of positive definite matrices is an open convex cone in the vector

space SymnC1 (in any norm topology). We define matrices Ai 2 SymnC1

QA0 D
�
p� 0
0 A0

�
and QAj D

��bj 0
0 Aj

�
; j D 1; : : : ;m;

and consider the convex subset

C WD ˚ QA0 C y1 QA1 C � � � C ym QAm W y1; : : : ; ym 2 R
�

of SymnC1. Then U \ C D ;. (Indeed, otherwise A0 C y1A1 C � � � C ymAm � 0 and
p� �Pj bjyj > 0 which contradicts the definition of p�.) Therefore, by separation
of convex sets (Theorem A.26(i)), there are a linear functional L on SymnC1 and a
real number a such that L.A/ � a < L.B/ for A 2 C and B 2 U . Clearly, L ¤ 0.
Since U is a cone, it follows that a � 0. Hence L � 0 on C and L > 0 on U . Since
L � 0 on C, we have L. QA0/ � 0 and L. QAj/ D 0 for j D 1; : : : ; n:

By Riesz’ theorem for the Hilbert space .SymnC1; h�; �i/, there exists a matrix
QZ 2 SymnC1 such that L.�/ D h�; QZi. Since the closure of U is the cone of positive
semidefinite matrices and L > 0 on U , it follows that L.B/ D hB; QZi D h QZ;Bi � 0
for all B � 0. Therefore, QZ � 0 by Proposition A.21(ii). We write QZ as

QZ D
�
z0 z
zT Z

�
;
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where z0 2 R; z 2 Rn;Z 2 Symn. Then L. QA0/ � 0 and L. QAj/ D 0; j D 1; : : : ;m;
yield

hA0;Zi C z0p� � 0 and hAj;Zi D z0bj; j D 1; : : : ;m: (16.5)

A crucial step is to prove that z0 ¤ 0. Assume to the contrary that z0 D 0. Then
z D 0, because QZ � 0. Since L ¤ 0, we have QZ ¤ 0, so Z ¤ 0: By z0 D 0, (16.5)
implies hA0;Zi � 0 and hAj;Zi D 0, so that hA. y/;Zi � 0 for all y 2 Rm. But by the
assumption of strict feasibility there exists a y 2 Rm such that A. y/ � 0. Fix such
a y. Since QZ � 0, we have Z � 0 and hence hA. y/;Zi � 0 by Proposition A.21(i).
Thus, hA. y/;Zi D 0, so that A. y/Z D 0 by Proposition A.21(i). Now A. y/ � 0

implies that A. y/ is invertible. Hence Z D 0, which is a contradiction. This proves
that z0 ¤ 0.

From QZ � 0 we get z0 > 0. Upon scaling we can assume that z0 D 1. From
(16.5) we then obtain hAj;Zi D bj for j D 1; : : : ;m, so Z is feasible for the dual
program (16.3), and�hA0;Zi � p�. Therefore, p� � �hA0;Zi � p�. Since p� � p�
by Proposition 16.1, we get p� D p� D �hA0;Zi. This shows that the supremum in
(16.3) is a maximum. ut

A large number of problems in various mathematical fields can be formulated in
terms of semidefinite programming, see e.g. [VB]. We give only two examples.

Example 16.3 (Largest eigenvalue of a symmetric matrix) Let �max.B/ denote the
largest eigenvalue of B 2 Symn. Then

�max.B/ D min
y2R fy W . yI � B/ � 0g

gives �max.B/ by a semidefinite program. Since this program and its dual are strictly
feasible (take y 2 R such that . yI � B/ � 0 and Z D I), Proposition 16.2 yields

�max.B/ D max
Z2Symn

fhB;Zi W Z � 0; hI;Zi D 1g:

A semidefinite program for the sum of the j largest eigenvalues of B is developed in
[OW]. ı
Example 16.4 (Sos representation of a polynomial) By Proposition 13.2, a poly-
nomial f .x/ D P

˛ f˛x
˛ 2 RdŒx�2n is in

P
RdŒx�2n if and only if there exists a

positive semidefinite matrix G such that f .x/ D .xn/
TGxn, where xn is given by

(13.2). If we write xn.xn/
T D P

˛2N2n A˛x
˛ with A˛ 2 Symd.n/, Eq. (13.5) means

that hG;A˛i D TrGA˛ D f˛ for ˛ 2 Nd
0; j˛j � 2n. Therefore, f 2PRdŒx�2n if and

only if there exists a matrix G 2 Symd.n/ such that

G � 0 and hQ;A˛i D f˛ for ˛ 2 Nd
0; j˛j � 2n: (16.6)
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Hence f is a sum of squares if and only if the feasibility condition (16.6) of the
corresponding semidefinite program is satisfied. That is, testing whether or not f is
a sum of squares means checking the feasibility of a semidefinite program. ı

16.2 Lasserre Relaxations of Polynomial Optimization with
Constraints

In this section and the next, f D f f0; : : : ; fkg is a fixed finite subset of RdŒx� and
p 2 RdŒx�; p ¤ 0. For simplicity we assume that f0 D 1 and fj ¤ 0 for all j.

Our aim is to minimize the polynomial p over the semi-algebraic set K.f/: That
is, we want to “compute”

pmin WD inff p.x/ W x 2 K.f/g: (16.7)

Let n 2 N0. We denote by nj the largest integer such that nj � 1
2
.n � deg. fj//,

where j D 0; : : : ; k; and set

Q.f/n W D
� kX

jD0
fj�j W �j 2

X
RdŒx�

2; deg. fj�j/ � n

�

D
� kX

jD0
fj�j W �j 2

X
RdŒx�

2
nj

�
:

Let Q.f/�n denote the set of linear functionals L on RdŒx�n satisfying L.1/ D 1 and
L.g/ � 0 for all g 2 Q.f/n.

Now we define two relaxations of (16.7), called Lasserre relaxations, by

pmom
n WD inf

˚
L. p/ W L 2 Q.f/�n

�
; (16.8)

psos
n WD sup

˚
� 2 R W p � � 2 Q.f/n

�
: (16.9)

Here we set psos
n D �1 if there is no � 2 R such that p � � 2 Q.f/n.

Let us motivate these relaxations. Obviously, pmin is the supremum of numbers
� 2 R such that p � � � 0 on K.f/. Clearly, each f 2 Q.f/ is nonnegative on K.f/.
Replacing p � � � 0 on K.f/ by the stronger requirement p � � 2 Q.f/n gives the
number psos

n , which is less then or equal to pmin. Further, by definition, pmin is the
infimum of all evaluations of p at points of K.f/. Taking the infimum over the larger
set of functionals Q.f/�n yields the number pmom

n , which is also less than or equal to
pmin:

Next we want to reformulate the two relaxations (16.8) and (16.9) in terms of a
semidefinite program and its dual. Let us begin with (16.8).

In order to describe the functionals L of Q.f/�n we introduce the
�dCn

n

�
variables

y˛ WD L.x˛/, where ˛ 2 Nd
0, j˛j � n. If the functional L is given by a Radon
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measure �, then y˛ is just the ˛-th moment of �. But in general L 2 Q.f/�n does not
imply that L is given by a Radon measure, so y˛ is only a variable here.

Let L be a linear functional on RdŒx�n. Then, by definition, L belongs to Q.f/�n if
and only if L.1/ D 1 and for j D 0; : : : ; k we have

L. fjq
2/ � 0 for q 2 RdŒx�nj : (16.10)

Now we reformulate the conditions (16.10) in terms of the variables y˛. Clearly,
L.1/ D 1 means that y0 D 1. Let us fix j D 0; : : : ; k and write fj D P

˛ fj;˛x
˛. We

denote by Hnj. fjy/ the type
�dCnj

nj

� � �dCnj
nj

�
-matrix with entries

Hnj. fjy/˛;ˇ WD
X

�
fj;�y˛CˇC� ; where j˛j � nj; jˇj � nj: (16.11)

That is, Hnj. fy/ is a truncation of the localized infinite Hankel matrix H. fjy/
whose entries are defined by (12.12). For q D P

˛ a˛x
˛ 2 RdŒx�nj repeating the

computation of (12.13) we derive

L. fjq
2/ D

X
˛;ˇ;�

fj;�a˛aˇL.x
˛CˇC� /D

X
˛;ˇ;�

fj;˛aˇa�y˛CˇC�D
X
˛;ˇ

Hnj. fjy/˛;ˇa˛aˇ:

(16.12)

That is, (16.10) holds if and only if the matrix Hnj. fjy/ is positive semidefinite. Let
H.f/. y/ denote the block diagonal matrix with diagonal blocks Hn0 . f0y/;Hn1 . f1y/;
: : : ;Hnk. fky/. Then, by the preceding, condition (16.10) is satisfied for all
j D 0; : : : ; k if and only if the matrix H.f/. y/ is positive semidefinite.

Note that H.f/. y/ is a symmetric N � N-matrix, where N WD Pk
jD0

�dCnj
nj

�
. By

(16.11), all matrix entries of H.f/. y/ are linear functions with real coefficients of
the variables y˛, where ˛ 2 Nd

0, j˛j � n. Hence, inserting the condition y0 D 1,
there are (constant!) real symmetric N � N-matrices A˛ such that

H.f/. y/ D A0 C
X

˛2Nd
0 ;0<j˛j�n

y˛A˛: (16.13)

We write the polynomial p as p.x/ DP˛ p˛x
˛ . Then L. p/ D p0 CP˛¤0 p˛y˛ .

By (16.8), pmom
n is the infimum of the function L. p/ in the M WD �dCn

n

�� 1 variables
y˛, where 0 < j˛j � n, subject to the condition that the matrix H.f/. y/ given by
(16.13) is positive semidefinite.

Summarizing, the relaxation (16.8) leads to the primal semidefinite program

pmom
n � p0 D inf

. y˛/2RM

� X
0<j˛j�n

p˛y˛ W A0 C
X

0<j˛j�n

y˛A˛ � 0
�
: (16.14)
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Our next aim is to show that (16.9) yields the corresponding dual program.
Suppose that � 2 R and p � � 2 Q.f/n, that is,

p � � D
kX

jD0
fj�j; where �j 2

X
RdŒx�

2
nj : (16.15)

By Proposition 13.2, �j 2 PRdŒx�2nj if and only if there is a positive semidefinite

matrix Z. j/ D .Z. j/˛;ˇ/j˛j;jˇj�nj of type
�dCnj

nj

� � �dCnj
nj

�
such that

�j.x/ D
X

j˛j;jˇj�nj

Z. j/˛;ˇx
˛Cˇ:

Let Z be the block diagonal matrix of type N � N with blocks Z.0/; : : : ; ; Z.k/.
Clearly, Z � 0 if and only if Z. j/ � 0 for j D 0; : : : ; k.

Recall that fj DP˛ fj;˛x
˛: From (16.13) it follows that the j-th diagonal block of

the matrix A˛ has the .ˇ; �/-matrix entry
P

ı fj;ı , where the summation is over all ı
satisfying ˛ D ˇ C � C ı. Hence, equating coefficients in (16.15) yields

p0 � � D
kX

jD0
fj;0Z. j/00 D TrA0Z D hA0;Zi;

p˛ D
kX

jD0

X
ˇC�CıD˛

fj;ıZ. j/ˇ;� D TrA˛Z D hA˛;Zi; ˛ ¤ 0:

Thus, taking the supremum of � in (16.9) is equivalent to taking the supremum of
��p0 D �hA0;Zi subject to the conditions p˛ D hA˛;Zi, ˛ 2 Nd

0, 0 < j˛j � n.
By the preceding, the relaxation (16.9) leads to the corresponding dual program

psos
n �p0 D sup

Z2SymN

˚� hA0;Zi W Z � 0; p˛ D hA˛;Zi for 0 < j˛j � n
�
:

(16.16)

16.3 Polynomial Optimization with Constraints

Let us retain the notation from the preceding section. Some simple properties of the
numbers (16.8) and (16.9) are given in the next lemma.

Lemma 16.5

(i) psos
n � psos

nC1 and pmom
n � pmom

nC1 for n 2 N0.
(ii) psos

n � pmom
n � pmin for n 2 N0.
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Proof

(i) Obviously,Q.f/n is a subspace of Q.f/nC1. Therefore, p�� 2 Q.f/n implies that
p � � 2 Q.f/nC1, so that psos

n � psos
nC1. Since the restrictions of functionals from

Q.f/�nC1 belong to Q.f/�n , it follows that pmom
n � pmom

nC1 .
(ii) Since polynomials of Q.f/ are nonnegative on K.f/, each point evaluation at

x 2 K.f/ is in Q.f/�n . Hence pmom
n � p.x/ for all x 2 K.f/. This implies that

pmom
n � pmin.

Let L 2 Q.f/�n . If p�� 2 Q.f/n, then L. p��/D L. p/��L.1/DL. p/�� � 0,
that is, � � L. p/: Taking the supremum over � and the infimum over L we get
psos
n � pmom

n . ut
As an application of the Archimedean Positivstellensatz we show that for an

Archimedean module Q.f/ both relaxations converge to the minimum of p.

Theorem 16.6 Suppose that the quadratic module Q.f/ is Archimedean. Then the
set K.f/ is compact, so p attains its minimum over K.f/, and we have

lim
n!1 psos

n D lim
n!1 pmom

n D pmin: (16.17)

Proof By Corollary 12.9, the semi-algebraic set K.f/ is compact. Fix � 2 R such
that � < pmin. Then p.x/�� > 0 onK.f/ and hence p�� 2 Q.f/ by the Archimedean
Positivstellensatz (Theorem 12.36(i)), that is, p � � D P

j fj�j for some elements
�j 2PRdŒx�2. We choose n 2 N such that n � deg. fj�j/ for all j D 0; : : : ; k. Then
we have p�� DPj fj�j 2 Q.f/n and hence psos

n � � by the definition (16.9) of psos
n .

Since � < pmin was arbitrary and we have psos
n � pmom

n � pmin and psos
n � psos

nC1 by
Lemma 16.5, this implies (16.17). ut

The following propositions describe two interesting situations. The first shows
that the supremum in (16.16) is attained if K.f/ has interior points and the second
says that we have finite convergence if the quadratic module Q.f/ is stable.

Proposition 16.7 Suppose that K.f/ has a nonempty interior. Then psos
n D pmom

n for
n 2 N. If pmom

n > �1, then the supremum in (16.16) is a maximum.

Proof Clearly, Q.f/n is of the form (13.26). Therefore, since K.f/ has an interior
point, it follows from Lemma 13.48 and Proposition 13.46 that Q.f/n is closed in
RdŒx�n.

Suppose that � 2 R and � > psos
n . Then p � � … Q.f/n by the definition psos

n :

Therefore, because Q.f/n is a closed convex set in RdŒx�n, Theorem A.26(ii) applies,
so there exists a linear functional L on RdŒx�n such that L. p� �/ < 0 and L.g/ � 0
for all g 2 Q.f/n. Pick x 2 K.f/ and define L".g/ D L.g/C "g.x/ for g 2 RdŒx�n
and " > 0. Then, L" � 0 on Q.f/n and L". p � �/ < 0 if " > 0 is sufficiently small.
Further, L".1/ � " > 0. Hence, upon replacing L" by L".1/�1L", we can assume that
L".1/ D 1. Then L" 2 Q.f/�n and hence

pmom
n � L". p/ D L". p� �/C L".�/ < L".�/ D �:
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Thus we have shown that � > psos
n implies � > pmom

n . Therefore, since psos
n � pmom

n
by Lemma 16.5(ii), the equality psos

n D pmom
n holds.

Assume now in addition that pmom
n > �1: The set K.f/ has an interior point,

so it contains an open ball U. Define L.g/ D R
U g.x/dx for g 2 RdŒx�n, where

dx means the Lebesgue integration on Rd. Since U 	 K.f/; we have L 2 Q.f/�n :
Let q D P

˛ a˛x
˛ 2 RdŒx�nj ; q ¤ 0. Since fj ¤ 0, hence fjq2 ¤ 0, and U is open,

using (16.12) we obtain

X
˛;ˇ

Hnj. fjy/˛;ˇa˛aˇ D L. fjq
2/ D

Z
U
. fjq

2/.x/ dx > 0: (16.18)

Thus Hnj. y/ � 0 for each j, so that H.f/. y/ � 0. This means that the semidefinite
program (16.14) is strictly feasible. Therefore, by Proposition 16.2(i), its dual
program (16.16) attains its maximum. ut
Proposition 16.8 Suppose that the quadratic module Q.f/ is stable. Then there
exists an n0 2 N0, depending only on deg. p/, such that psos

n D psos
n0

for all n � n0.

Proof We use the characterization of stability given by condition (�) in Sect. 13.8.
It says that for any n 2 N0 there exists a number l.n/ 2 N0 such that each q 2 Q.f/n
can be represented as q D P

j fj�j with �j 2 PRdŒx�2 such that deg. fj�j/ � l.n/.
Recall that f1 D 1. Set n0 WD max.deg. p/; l.deg. p///.

Suppose that n � n0. First let psos
n D �1. Then, by definition, there is no � 2 R

such that p � � 2 Q.f/n. Hence there is no � 2 R such that p � � 2 Q.f/n0 , so
that psos

n0
D �1. Now assume that psos

n > �1. Let � be a real number such that
� < psos

n . Then p � � 2 Q.f/n by definition. Since deg. p � �/ � deg. p/, it follows
from the definition of n0 that p� � 2 Q.f/n0 , so that psos

n0
� �. The preceding proves

that psos
n0
� psos

n . It is obvious that psos
n � psos

n0
for n � n0. Thus, psos

n D psos
n0

. ut
Remark 16.9 Suppose that K.f/ is compact and Q.f/ is the preorder T.f/: Then Q.f/
is Archimedean by Proposition 12.22 and has property (MP) by Theorem 12.25.
Therefore, if d � 2 and K.f/ has interior points, Proposition 13.50 implies that
Q.f/ is not stable. Thus, in this case, Proposition 16.7 applies, but Proposition 16.8
does not. Likewise, if dimK.f/ � 2, it can be shown that the assumptions of
Theorem 16.6 and Proposition 16.8 exclude each other. ı
Remark 16.10 It is natural to look for conditions which imply finite convergence for
the limit limn!1 pmom

n D pmin: The flat extension theory developed in Sect. 17.6
below yields such a result:

Let m WD maxf1; deg. fj/ W j D 0; : : : ; kg and n > m. If the infimum in (16.8) is
attained at L and rankHn�m.L/ D rankHn.L/, then pmom

k D pmin for all k � n:
To prove this we take Theorem 17.38 for granted and apply this result with

n replaced by n � m and QL by L. Since L 2 Q.f/�n , the positivity condition in
Theorem 17.38(ii) is fulfilled. Therefore, by Theorem 17.38(i), L has an r-atomic
representing measure �, where r D rankHn�m.L/: Using that L. p/ D pmom

n
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(because L attains the infimum (16.8)) and L.1/ D R
1d� D 1 (by L 2 Q.f/�n )

we derive

pmom
n � pmin D pmin

Z
1d� �

Z
p.x/d� D L. p/ D pmom

n ; (16.19)

so that pmom
n D pmin and hence pmom

k D pmin for k � n. Further, from (16.19) it
follows easily that each atom of � minimizes the polynomial p over the set K.f/. ı

16.4 Global Optimization

In this section, we specialize the setup of Sect. 16.2 to the case k D 1; f1 D 1. Then
K.f/ D Rd and (16.7) becomes a global optimization problem on Rd:

pmin WD inf f p.x/ W x 2 Rd g: (16.20)

First we rewrite the two relaxations (16.8) and (16.9) in this case. For this we
suppose that n � deg. p/.

Obviously, Q.f/ D P
RdŒx�2; so Q.f/n is the set of � 2 P

RdŒx�2 such that
deg.�/ � n. Since we assumed that n � deg. p/, it follows from Lemma 13.1 that
p � � 2 Q.f/n if and only if p � � 2PRdŒx�2: Thus

psos
n D sup

˚
� 2 R W p � � 2

X
RdŒx�

2
�

(16.21)

does not depend on n � deg. p/. Let us denote the number from (16.21) by psos.
Recall that b n

2
c is the largest integer not greater than n

2
: Then Q.f/�n is the set of

linear functionals L on RdŒx�n such that L.1/ D 1 and L.g2/ � 0 for g 2 RdŒx�b n
2 c:

Set y˛ D L.x˛/ for j˛j � n: The matrix H.f/. y/ from Sect. 16.2 is the truncated
Hankel matrix Hb n

2 c.L/ with entries Hb n
2 c.L/˛;ˇ D y˛Cˇ; j˛j; jˇj � b n2c: Clearly, a

linear functional L on RdŒx�n is in Q.f/�n if and only if Hb n
2 c.L/ � 0; so that

pmom
n D inf

˚
L. p/ W Hb n

2 c.L/ � 0; y0 D 1
�
:

From Proposition 16.7 and Lemma 16.5(ii) we conclude that

psos � psos
n D pmom

n � pmin for n � deg. p/;

that is, both semidefinite programs (16.14) and (16.16) yield the same lower bound
psos for the polynomial p.x/ on Rd.

It is obvious that pmin D �1 if deg. p/ is odd. Now assume that 2k WD deg. p/
is even. It may happen that this lower bound is trivial, that is, psos D �1. The
nontrivial case psos > �1 holds if the semidefinite program (16.16) for (16.21) is
feasible. This means that p is, upon adding a constant, a sum of squares in RdŒx�.
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The following proposition gives a necessary condition and a sufficient condition
for psos > �1. Let p2k denote the homogeneous part of p of degree 2k D deg. p/;
k 2 N.

Proposition 16.11 If psos > �1, then we have p2k 2PRdŒx�2. Conversely, if

p2k � c.x21 C � � � C x2d/
k 2

X
RdŒx�

2 (16.22)

for some constant c > 0, then psos > �1.

Proof First suppose that psos > �1. Then there exists a real number � such that
. p � �/ 2PRdŒx�2, say p � � DPi q

2
i . Comparing the parts of degree 2k > 0 on

both sides it follows that p2k 2PRdŒx�2.
To prove the second assertion we assume that (16.22) holds. In this proof we

write f � g if f � g 2PRdŒx�2 and abbreviate� WD x21 C � � � C x2d: Let

p.x/� p2k.x/ D
X

j˛j<2k
a˛x

˛:

For ˛ 2 Nd
0; j˛j < 2k; we write x˛ D xˇx� with jˇj < k and j� j � k: Since

2a˛x
˛ C ja˛j."�2x2ˇ C "2x2� / D ja˛j."�1xˇ C .sign a˛/" x

�/2 � 0

for " > 0, we conclude that there are real numbers b˛ such that

p.x/ � p2k.x/� "2
X
j˛jDk

b˛x
2˛ C

X
j˛j<k

b˛x
2˛: (16.23)

The multinomial theorem implies that �k � x2˛ for ˛ 2 Nd
0, j˛j D k: Therefore,

c
2
�k � "2Pj˛jDk b˛x

2˛ for sufficiently small " > 0. Since p2k � c�k by (16.22), it
follows from (16.23) that

p.x/ � c

2
�k C

X
j˛j<k

b˛x
2˛: (16.24)

If k D 1, the sum in (16.24) is a constant �, so that . p.x/� �/ 2PRdŒx�2.
Now assume that k � 2. For a > 0 set q. y/ D ak � 2�.k�1/.a C y/k C yk.

It can be verified that the polynomial q.x/ is nonnegative on RC (in fact, it attains
its minimum 0 at y D a). Hence q 2 PRŒy�2 C y

P
RŒy�2 by Proposition 3.2.

Therefore, setting y D �, we get q.�/ 2PRdŒx�2. Expanding .aC�/k yields

q.�/ D .1 � 2�.k�1//.ak C�k/� 2�.k�1/
k�1X
jD1

 
k

j

!
a j�k�j � 0: (16.25)
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Dividing by 1� 2�.k�1/ > 0, estimating�k by (16.25), and using (16.24) we obtain

p.x/ � c

2.2.k�1/ � 1/
k�1X
jD1

 
k

j

!
aj�k�j C

X
1�j˛j<k

b˛x
2˛ C b0 � c

2
ak: (16.26)

If j˛j < k, then �j˛j � x2˛ by the multinomial theorem. Hence, if a is sufficiently
large, the first summand in (16.26) is greater than the second sum. Thus, we have
p.x/ � b0 � c

2
ak. Setting � D b0 � c

2
ak; this yields . p.x/� �/ 2PRdŒx�2. ut

We illustrate the preceding with two examples.

Example 16.12 Consider the Motzkin polynomial p D x21x
2
2.x

2
1 C x22 � 3/C 1, see

(13.6). Then pmin D 0. Further, there is no � 2 R such that . p� �/ 2PRŒx1; x2�2.
Hence psos D �1: But p6 D x41x

2
2C x21x

4
2 2

P
RŒx1; x2�2. This shows the necessary

condition given in Proposition 16.11 is not sufficient. ı
Example 16.13 Let pı WD x21x

2
2.x

2
1 C x22 � 3/ C 1 C ı.x61 C x62/ for ı � 0. It can

be shown that . pı/min D ı
1Cı : If ı > 0, then . pı/6 D x41x

2
2 C x21x

4
2 C ı.x61 C x62/

satisfies condition (16.22). Hence, by Proposition 16.11, we have . pı/sos > �1 for
all ı > 0.

Note that limı!C0. pı/min D 0, but limı!C0. pı/sos D �1: (Indeed, otherwise
there exist a � 2 R and a positive null sequence .ın/ such that pın � � is inP

RŒx1; x2�2 for all n. Since
P

RŒx1; x2�2 is closed, then p0 � � D limn. pın � �/
would be in

P
RŒx1; x2�2, which contradicts Example 16.12.) ı

16.5 Exercises

1. Show that the closed unit disc in R2 and the set f.x1; x2/ 2 R2 W x1x2 � 1g are
spectrahedra.

2. Find a semidefinite program that is strictly feasible such that its dual program is
not feasible. What can be said about p� for such a program?

3. Consider the problem of minimizing x1 subject to the constraints x1 � 0 and
x1x2 � 1, where .x1; x2/ 2 R2.

a. Write this as a semidefinite program.
b. Show that p� D 0 and the infimum in (16.1) is not attained.

4. (A semidefinite program with positive finite duality gap [VB])
Consider the problem of minimizing x1 subject to the constraint

0
@0 x1 0

x1 x2 0

0 0 x1 C 1

1
A � 0:

Show that this is a semidefinite program such that p� D 0 and p� D �1.
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5. Let �min.B/ the smallest eigenvalue of B 2 Symn. Describe ��min.B/ by a
semidefinite program and determine the dual program. Show that both programs
are strictly feasible.

6. Prove by induction on d that x2k1 � � � C x2kd � 1

2.d�1/.k�1/ .x
2
1 C � � � C x2d/

k 2 RdŒx�2

for k 2 N.
7. Find an example p 2 PRŒx1; x2�2 such that pmin D psos D 0, but p2k does not

satisfy condition (16.22) in Proposition 16.11.

16.6 Notes

The semidefinite relaxations and corresponding results are due to J.B. Lasserre
[Ls1] who first applied Positivstellensätze and moment methods in polynomial
optimization. Proposition 16.11 is taken from Marshall [Ms2] and parts of our
approach follow [Ms1]. Semidefinite programming is treated in [V] and [BN].

As noted in this chapter’s introduction, we wanted to give only a small glimpse
into the main ideas. There is now an extensive literature on this area. We refer to the
books [Ms1, Ls2, BTB, AL] and the articles [Pa, Sw3, La2, Nie].

An important result on finite convergence (that is, pmom
n D pmin for large n) of the

relaxation (16.8) was obtained by J. Nie [Nie]. He proved finite convergence under
the assumptions that the quadratic module is Archimedean and standard sufficient
optimality conditions (linear independence of gradients, strict complementarity,
second order sufficient condition) hold at each global minimizer. Since these
conditions hold generically, Nie’s theorem implies that (16.8) has finite convergence
generically if the quadratic module is Archimedean.



Part IV
The Multidimensional Truncated

Moment Problem



Chapter 17
Multidimensional Truncated Moment Problems:
Existence

This chapter and the next two are devoted to the truncated K-moment problem:
Given a subset N of Nd

0, a sequence s D .s˛/˛2N, and a closed subset K of Rd,
when does a Radon measure � on K exist such that s˛ D

R
x˛ d� for all ˛ 2 N?

In the affirmative case we call s a truncated K-moment sequence and the
corresponding Riesz functional Ls a truncated K-moment functional.

The existence results developed in this chapter provide important theoretical
insights into the truncated moment problem, but for proving that a given sequence
is a truncated K-moment sequence their usefulness is limited. While the main
results in previous chapters (for instance, Theorems 10.1, 10.2 and 12.25, 12.36)
contain tractable criteria in terms of Hankel matrices, the solvability conditions of
this chapter are difficult to verify. One reason is that useful descriptions of strictly
positive polynomials up to a fixed degree 2n are missing. If the strict Positivstel-
lensatz (Theorem 12.24) is applied, the degrees of the involved polynomials of
the preordering exceed 2n in general (see e.g. [Ste2] for an elaborated example in
dimension one).

In Sects. 17.1 and 17.2, we formulate the truncated K-moment problem and its
projective version and derive basic existence criteria in terms of positivity conditions
(Theorems 17.3, 17.9, 17.10, and 17.15).

Hankel matrices are useful tools for the truncated moment problem. We introduce
and study them in Sects. 17.3 and 17.4. In Sect. 17.5, we solve the full moment
problem on RdŒx� with finite rank Hankel matrix. The positive semidefiniteness of
the Hankel matrix is not sufficient for being a truncated moment functional, but
combined with a flatness condition it is. This is the flat extension theorem of Curto
and Fialkov (Theorems 17.35 and 17.36). It is stated and discussed in Sect. 17.6 and
proved in Sect. 17.7.

In this chapter, if not stated otherwise, N denotes a nonempty (finite or infinite)
subset of Nd

0, A D fx˛ W ˛ 2 Ng is the set of monomials, A D Lin fx˛ W ˛ 2 Ng is
their linear span, and K is a closed subset of Rd. In Section 17.2, K also denotes a

© Springer International Publishing AG 2017
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closed subset of the projective space Pd.R/. Further, we assume the following:

There exists an element e 2 A such that e.x/ � 1 for x 2 K: (17.1)

There are at least two important special cases where condition (17.1) is satisfied.
First, if 0 2 N, then (17.1) holds with e.x/ D 1 2 A: The second case is when A is
the vector space of homogeneous polynomials of degree 2n and K is a subset of the
unit sphere Sd�1; then e.x/ WD .x21 C � � � C x2d/

n 2 A and e.x/ D 1 on K.

17.1 The TruncatedK-Moment Problem
and Existence Criteria

First we recall two standard notations. For a real sequence s D .s˛/˛2N the
associated Riesz functional is the real-valued linear functional Ls on A given by
L.x˛/ D s˛ , ˛ 2 N: For a measure � 2 MC.Rd/ such that A 	 L1.Rd; �/, L�

denotes the linear funtional on A defined by

L�. p/ D
Z
Rd

p.x/ d�.x/; p 2 A: (17.2)

Definition 17.1 A real sequence sD.s˛/˛2N is called a truncated K-moment
sequence if there exists a measure � 2 MC.Rd/ supported on K such that

x˛ 2 L1.Rd; �/ and s˛ D
Z
Rd

x˛ d�.x/ for ˛ 2 N: (17.3)

A real-valued linear functional L on A is a truncated K-moment functional if there
is a measure � 2 MC.Rd/ supported on K such that L D L�, that is,

p 2 L1.Rd; �/ and L. p/ D
Z
Rd

p.x/ d�.x/ for p 2 A: (17.4)

Each such measure � is called a representing measure of L; the set of representing
measures is denoted by ML;K.

For K D Rd we call a truncated K-moment sequence simply a truncated moment
sequence and a truncated K-moment functional a truncated moment functional, and
we denote the set of representing measures by ML.

Obviously, s satisfies (17.3) if and only if Ls does (17.4). That is, s is a truncated
K-moment sequence if and only if Ls is a truncated K-moment functional. We often
prefer to work with functionals rather than sequences.
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Note that each measure � satisfying (17.2), (17.3), or (17.4) is finite. Indeed,
using the element e 2 A from condition (17.1) we obtain

�.Rd/ D
Z
1 d� �

Z
e d� D L.e/ <1:

Thus, the truncated K-moment problem asks: when is a sequence s D .s˛/˛2N a
truncated K-moment sequence, or equivalently, when is a linear functional L on A a
truncatedK-moment functional? Equations (17.3) and (17.4) are equivalent versions
of the truncated K-moment problem.

In the special case N D Nd
0;A D RdŒx� we obtain the (full) multidimensional

K-moment problem. But here our main emphasis will be on finite sets N.
Let us relate the truncatedK-moment problem to the moment problem on a finite-

dimensional space E treated in Sect. 1.2. We set X D K and consider the linear
subspace E WD AdK of C.KIR/ spanned by the restrictions of functions f dK, f 2 A.
That is, E is the quotient vector space of A by the equivalence relation “f � g if and
only if f .x/ D g.x/ for x 2 K”.

Obviously, if QL is a linear functional on E, then L. f / WD QL. f dK/; f 2 A, defines
a linear functional L on A such that

L. f / D 0 for f 2 A; f dK D 0: (17.5)

Conversely, if L is a linear functional on A satisfying (17.5), then there is a well-
defined (!) linear functional QL on E given by

QL. f dK/ WD L. f /; f 2 A; (17.6)

and it is clear that L is a truncated K-moment functional according to Definition 17.1
if and only if QL is a moment functional on E by Definition 1.1. Further, it is obvious
that L and QL have the same representing measures. This correspondence can be
used to restate results from Sect. 1.2 in the present setting. However, one has to be
careful: While f 2 A is only zero if f is the null polynomial, g 2 E is zero if and
only if g.x/ D 0 for all x 2 X : This occasionally leads to slight modifications in the
formulations of results.

There are two important cases where (17.5) is satisfied. First, if f dK D 0 implies
f D 0; this happens if K has a nonempty interior in Rd. Secondly, by Lemma 17.4,
if condition (17.8) holds, in particular, if L is a truncated K-moment functional.

Theorem 17.2 If the set N is finite, then each truncated K-moment functional L on
A has a k-atomic representing measure � 2ML;K, where k � jNj D dimA and all
atoms of � are in K.

Proof Since L is a truncated K-moment functional, (17.5) is satisfied. Hence the
assertion follows from Corollary 1.25, applied to QL and E. ut
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The following standard notation is often used in the sequel:

Pos.A;K/ WD f p 2 A W p.x/ � 0 for x 2 Kg: (17.7)

Theorem 17.3 Suppose that K is a compact subset of Rd. A linear functional L on
A is a truncated K-moment functional if and only if

L. p/ � 0 for all p 2 Pos.A;K/: (17.8)

In this case the set ML;K of representing measures is vaguely compact.

The following simple fact is used several times.

Lemma 17.4 If a functional L on A satisfies (17.8) (for instance, if L is a truncated
K-moment functional), then (17.5) holds, so the functional QL on E given by (17.6) is
well-defined.

Proof Let f 2 A and f dK D 0. Then ˙f 2 Pos.A;K/ and hence L.˙f / � 0 by
(17.8), so that L. f / D 0. This means that (17.5) is satisfied. ut
Proof of Theorem 17.3. The necessity of condition (17.8) is obvious. Conversely,
suppose that (17.8) holds. Then the functional QL is well-defined by Lemma 17.4.
Since X WD K is compact and condition (17.1) is assumed, it follows from
Proposition 1.9, that QL on E, hence L on A, has a representing measure with support
in X D K.

We prove that the set ML;K DMQL is vaguely compact. Let f 2 Cc.KIR/. Then
there is a constant Mf such that jf .x/j � Mf e.x/ for x 2 K and therefore

sup
�2ML;K

ˇ̌ Z
K
f d�

ˇ̌ � Mf sup
�2ML;K

Z
K
e d� D MfL.e/ D Mf QL.edX / <1:

Hence, MQL DML;K is relatively vaguely compact by Theorem A.6.
Let .�i/i2I be a net of measures �i 2ML;K converging vaguely to � 2 MC.K/.

Since K is compact, AdK 	 Cc.KIR/ and hence

Z
K
f d� D lim

i

Z
K
f d�i D lim

i
L. f / D L. f / for f 2 A;

so that � 2 ML;K. This shows that ML;K is vaguely closed. Being relatively
vaguely compact and vaguely closed, ML;K is vaguely compact. ut

If the set K is only closed and not compact, A is not necessarily an adapted
subspace of C.K;R/ and in contrast to Haviland’s theorem 1.12 condition (17.8) is
not sufficient for being a truncated K-moment functional. A simple counterexample
in dimension one was given in Example 9.30. Counterparts of Theorem 17.3 for
closed sets K will be obtained in the next section (Theorems 17.13 and 17.15).
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For m 2 N we abbreviate

Nd
0;m WD f˛ D .˛1; : : : ; ˛d/ 2 Nd

0 W j˛j WD ˛1 C � � � C ˛d � m g: (17.9)

Recall that RdŒx�m are the polynomials p 2 RŒx1; : : : ; xd� such that deg. p/ � m.
Our main guiding example for the preceding setup is the following. The reader

might always think of this important special case. Let n 2 N and set N WD Nd
0;2n.

Then A D RdŒx�2n and Definition 17.1 has the following form.

Definition 17.5 A sequence s D .s˛/˛2Nd
0;2n

is a truncated K-moment sequence if

there is a measure � 2 MC.Rd/ supported on K such that x˛ is �-integrable and

s˛ D
Z
Rd

x˛ d�.x/ for ˛ 2 Nd
0;2n:

A linear functional L on RdŒx�2n is a truncated K-moment functional if there exists
a measure � 2 MC.Rd/ with support in K such that p is �-integrable and

L. p/ D
Z
Rd

p.x/ d�.x/ for p 2 RdŒx�2n:

The next theorem restates Theorems 17.2 and 17.3 in this special case. Put

Pos.K/2n WD f p 2 RdŒx�2n W p.x/ � 0 for x 2 Kg: (17.10)

Theorem 17.6 Suppose that K is a compact subset of Rd. A linear functional L on
RdŒx�2n is a truncated K-moment functional if and only if

L. p/ � 0 for all p 2 Pos.K/2n: (17.11)

In this case, ML;K is a vaguely compact subset of MC.K/ and L has a k-atomic
representing measure, where k � �2nCd

d

�
and all atoms of � are in K.

The next result is Stochel’s theorem. It says that solving the truncatedK-moment
problem on RdŒx�2n for all n 2 N leads to a solution of the full K-moment problem.

Theorem 17.7 Let K be a closed subset of Rd and L a linear functional on RdŒx�.
Suppose that for each n 2 N the restriction Ln WD LdRdŒx�2n is a truncated
K-moment functional on RdŒx�2n, that is, there exists a measure �n 2 MC.Rd/

supported on K such that

Ln. p/ � L. p/ D
Z

p.x/ d�n.x/ for p 2 RdŒx�2n: (17.12)

Then L is aK-moment functional. Further, L has a representing measure� which
is the limit of a subsequence .�nk /k2N in the vague convergence of MC.K/:
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Proof Apply Theorem 1.20 to X D K, E D AdK, En D RdŒx�2n. ut
The following corollary rephrases Theorem 17.7 in terms of sequences.

Corollary 17.8 Let s D .s˛/˛2Nd
0
be a real multisequence. If for each n 2 N

the truncation s.n/ WD .s˛/˛2Nd
0;2n

has a representing measure supported on K, the
sequence s does as well.

17.2 The Truncated Moment Problem on Projective Space

In this section, we study truncated moment problems on the real projective space
Pd.R/ and apply this to the truncated K-moment problem for closed sets in Rd.

Let Pd.R/ be the d-dimensional real projective space. The points of Pd.R/ are
equivalence classes of .dC 1/-tuples .t0; : : : ; td/ ¤ 0 of reals under the equivalence
relation

.t0; : : : ; td/ � .t00; : : : ; t0d/ if .t0; : : : ; td/ D �.t00; : : : ;0d / (17.13)

for some � ¤ 0. The equivalence class is denoted by Œt0 W � � � W td� and t0; : : : ; td are
called homogeneous coordinates of the point t D Œt0 W � � � W td� 2 Pd.R/: That is,
Pd.R/ D .RdC1nf0g/= �. The map

' W .t1; : : : ; td/ 7! Œ1 W t1 W � � � W td� (17.14)

is an injection of Rd into Pd.R/. We identify t 2 Rd with its image '.t/ in Pd.R/.
In this manner Rd becomes a subset of Pd.R/. The complement of Rd in Pd.R/ is
the hyperplane Hd1 D fŒ0 W t1 W � � � W td� 2 Pd.R/g at infinity. Note that Hd1 can be
identified with Pd�1.R/.

We denote by HdC1;2n the homogeneous polynomials from RŒx0; x1; : : : ; xd� of
degree 2n. Recall that RdŒx�2n are the polynomials from RŒx1; : : : ; xd� of degree at
most 2n. It is not difficult to verify that the map

� W p.x0; : : : ; xd/ 7! Op.x1; : : : ; xd/ WD p.1; x1; : : : ; xd/

is a bijection of the vector spaces HdC1;2n and RdŒx�2n with inverse given by

��1 W q.x1; : : : ; xd/ 7! Lq.x0; : : : ; xd/ WD x2n0 q

�
x1
x0
; : : : ;

xn
x0

�
: (17.15)

If deg.q/ D 2n, then Lq is the homogenization of q. Clearly, the mappings ˚ and
˚�1 preserve the positivity of polynomials on corresponding sets.
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There is a unique topology on the space Pd.R/ for which the maps

.t0; : : : ; tj�1; tjC1; : : : ; td/ 7! Œt0 W � � � W tj�1 W 1 W tjC1 W � � � W td�; j D 1; : : : ; d;

of Rd into Pd.R/ are homeomorphisms. Then Pd.R/ is a compact topological
Hausdorff space and Rd is dense in Pd.R/. In fact, Pd.R/ is even a C1-manifold.

Each homogeneous polynomial q 2 HdC1;2n can be considered as a continuous
function, denoted by Qq, on the projective space by

Qq.t/ WD q.t0; : : : ; td/

.t20 C � � � C t2d/
n
; t D Œt0 W � � � W td� 2 Pd.R/: (17.16)

(Indeed, the fraction in (17.16) is invariant under the equivalence relation (17.13),
so Qq.t/ is well-defined. It is easily verified that Qq.t/ is continuous on Pd.R/.)

If we replace Rd by the projective space Pd.R/ and consider homogeneous poly-
nomials, then for each closed subset K of Pd.R/ truncated K-moment functionals
can be defined almost verbatim in the same manner as for closed subsets of Rd. We
will restate the corresponding definition in Theorem 17.9.

To formulate Theorem 17.9 we assume that N is a nonempty subset of the set

f˛ D .˛0; : : : ; ˛d/ 2 NdC1
0 W ˛0 C ˛1 C � � � C ˛d D 2ng:

Then A WD Lin fx˛0 W ˛ 2 Ng is a subspace of the vector space HdC1;2n. Further,
suppose that K is a closed subset of the projective space Pd.R/ and define

Pos.A;K/ D f p 2 A W Qp.x/ � 0 for x 2 Kg:

Theorem 17.9 Let L be a linear functional on A. Assume that there exists an e 2 A
such that Qe.x/ � 1 for x 2 K. Then L is a truncated K-moment functional, that is,
there exists a Radon measure � on Pd.R/ with support in K such that

L. p/ D
Z
Pd.R/

Qp.t/ d�.t/ for p 2 A; (17.17)

if and only if

L. p/ � 0 for all p 2 Pos.A;K/: (17.18)

In this case, the set ML;K of such measures � is compact in the vague topology of
MC.K/ and L has a k-atomic representing measure, where k � jNj D dimA and
all atoms of � are in K.

Proof The proof is almost verbatim the same as the proof of Theorem 17.3. Note
that the closed subset K of the compact space Pd.R/ is compact. The assumption
on e is needed in order to apply Proposition 1.26 with X D K. ut
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It is well-known that the real projective space Pd.R/ can be identified with the
quotient space Sd= � of the unit sphere

Sd D f.x0; : : : ; xd/ 2 RdC1 W x20 C x21 � � � C x2d D 1g

under the equivalence relation “�” on Sd W “x � y if and only if x D y or x D �y”.
The space Sd=� is obtained from Sd by identifying antipodal points. (The map x 7!
xkxk�1 gives a topological homeomorphism of RdC1=� on Sd=�.) One could even
take Sd=� with the quotient topology as the definition of the space Pd.R/.

Let SdC denote the set of points of Sd for which the first nonzero coordinate is
positive. Clearly, there is a canonical bijection of Sd=� on SdC. We can equip SdC
with the compact topology induced from Sd=� under this bijection and treat the
truncated projective moment problem on SdC. This topology on SdC is different from
the topology induced from Sd. But, since moment functionals on finite-dimensional
spaces have finitely atomic representing measures, this does not cause any difficulty.

Now we avoid the use of the projective space Pd.R/ and look directly for integral
representations by measures on Sd. The next theorem restates the assertions of
Theorem 17.9 in a slightly different form.

Theorem 17.10 Let A be as above and let K be a closed subset of Sd: For a linear
functional L ¤ 0 on A the following statements are equivalent:

(i) L. p/ � 0 for all p in Pos.A;K/ � f f 2 A W f .x/ � 0 for x 2 Kg.
(ii) L is a truncated K-moment functional, that is, there exists a measure � 2

MC.Sd/ supported on K such that

L. p/ D
Z
Sd
p.x/ d�.x/ for p 2 A: (17.19)

(iii) There is a k-atomic measure � 2 MC.Sd/, k � dimA, with all atoms in K
for which (17.19) holds, that is, there are points x1; : : : ; xk 2 K and positive
numbers c1; : : : ; ck such that

L. p/ D
kX

jD1
cjp.xj/ for p 2 A: (17.20)

Proof Obviously, (iii)!(ii)!(i). The main implication (i)!(iii) follows from
Proposition 1.26, applied to X D K and the subspace E WD AdX of C.X IR/: ut
Remark 17.11 Obviously, the polynomial e.x/ WD .x20C� � �Cx2d/

n satisfies Qe.t/ D 1
for t 2 Pd.R/ and e.x/ D 1 for x 2 Sd. Therefore, if e is in A, it can be taken in
Theorems 17.9 and 17.10 to satisfy assumption (17.1). ı

In the remaining part of this section we return to the truncated K-moment
problem for A D RdŒx�2n and study the case of a closed subset K of Rd.
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We consider K as a subset of the projective space Pd.R/ by the injection '
defined by (17.14). Let K� denote the closure of K in Pd.R/. Then K� is the
disjoint union of K and the intersection K1 of K� with Hd1.

For p 2 RdŒx�2n let p2n denote its homogeneous part of degree 2n and put

fp2n.t/ WD p2n.t1; � � � ; td/
.t21 C � � � C t2d/

n
for t D .0 W t1 W � � � W td/ 2 Hd1 Š Pd�1.R/:

Note that the fraction is a well-defined continuous function on Hd1:

Lemma 17.12 Let �1 be a Radon measure onHd1 supported on K1. Then

L1. p/ WD
Z
K1

fp2n.t/ d�1.t/; p 2 RdŒx�2n; (17.21)

defines a linear functional L1 on RdŒx�2n such that L1. p/ � 0 for p 2 Pos.K/2n:

Proof Let p 2 Pos.K/2n: Since Lp.1; x/ D p.x/ � 0 for x 2 K, Lp � 0 on '.K/ Š K.
Therefore, Lp � 0 on the closure K� D K [K1 of K, so that Lp.0; t/ D p2n.t/ � 0
and hence fp2n.t/ � 0 for .0; t/ 2 K1: Then L1. p/ � 0 by (17.21). ut

This functional L1 satisfying condition (17.11) is the main new ingredient of the
next theorem. The following result characterizes those linear functionals on RdŒx�2n
for which the positivity condition (17.11) is fulfilled.

Theorem 17.13 Let K be a closed subset of Rd and let L be a linear functional on
RdŒx�2n. Then L satisfies (17.11) if and only if there are Radon measures � on Rd

with support in K and �1 onHd1 with support in K1 such that

L. p/ D
Z
K
p.t/ d�.t/C

Z
K1

fp2n.t/ d�1.t/ for p 2 RdŒx�2n: (17.22)

Proof Using Lemma 17.12 we conclude that both summands of (17.22) are
nonnegative on Pos.K/2n, so L satisfies condition (17.11).

Conversely, assume that (17.11) holds. Define a linear functional LL on HdC1;2n
by

LL.Lp/ D L. p/; p 2 RdŒx�2n: (17.23)

Suppose that eLp � 0 on K�: Then we have p � 0 on K by (17.15) and (17.16) and
hence LL.Lp/ D L. p/ � 0 by (17.11). That is, Theorem 17.9 applies to the compact
subset X WD K� of Pd.R/ and the functional LL on E WD HdC1;2ndK�. Therefore,
there exists a Radon measure Q� on Pd.R/ supported on K� such that

LL.Lp/ D
Z
K�

eLp .t/ d Q�; p 2 RdŒx�2n: (17.24)
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Define Radon measures �1 on Hd1 by �1.M/ D Q�.M/;M 	 Hd1; and � on Rd

by

d�.t1; : : : ; td/ D .1C t21 C � � � C t2d/
�nd Q�.Œ1 W t1 W � � � W td�/: (17.25)

Since supp Q� 	 K�, �1 and � are supported on K1 and K, respectively.
First let q 2 RdŒx�2n�1. Then, by (17.15) and (17.16), we have

eLq .t/ D t2n0 q
� t1
t0
; : : : ; tdt0

�
.t20 C � � � C t2d/

n
D t0 q0

�
t1; : : : ; td/

.t20 C � � � C t2d/
n
; t D Œt0 W � � � W td� 2 Pd.R/;

for some polynomial q0. Therefore, if t 2 K1, then t0 D 0, so that

eLq .t/ D 0 for t 2 K1: (17.26)

Now let p 2 RdŒx�2n. Then q WD p � p2n 2 RdŒx�2n�1: Again by (17.15)
and (17.16),

eLp .t/ D p
�
t1; : : : ; td/

.1C t21 C � � � C t2d/
n

for t D Œ1 W t1 W � � � W td� 2 K: (17.27)

Hence, using the formulas (17.23)– (17.27) we derive

L. p/ D LL.Lp/ D
Z
K�

eLp .t/ d Q�.t/ D
Z
K
eLp .t/ d Q�.t/C

Z
K1

fp2n.t/ d Q�.t/C
Z
K1

eLq .t/ d Q�.t/

D
Z
K

p.t1; : : : ; td/

.1C t21 C � � � C t2d/
n
d Q�.Œ1 W t1 W � � � W td�/C

Z
K1

fp2n.t/ d�1.t/

D
Z
K
p.t/ d�.t/C

Z
K1

fp2n.t/ d�1.t/;

which proves (17.22). ut
Remark 17.14

1. If the set K in Theorem 17.13 is compact, then K1 is empty, so the second
summand in (17.22) does not occur and we obtain Theorem 17.6.

2. Theorem 17.13 explains why for noncompact sets K the positivity condi-
tion (17.11) is not sufficient for L to be a truncated K-moment functional. The
reason is that there may be a functional L1 given by some measure at “infinity”.

3. Most of the results and notions developed in this chapter and the next have their
counterparts for the truncated moment problem on Pd.R/. We leave it to the
reader to state the corresponding projective versions.

4. The truncated moment problem on a closed subset K of Pd.R/ has several
advantages. First, since Pd.R/ and hence K is compact, truncated K-moment
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functionals are characterized by the positivity condition (17.18). As noted in
Remark 2, for the truncated moment problem on Rd condition (17.18) is not
sufficient. Secondly, homogeneous polynomials are more convenient to deal with
and additional technical tools such as the apolar scalar product (see Sect. 19.1)
are available. ı
Finally, we use the truncated moment problem on Pd.R/ to derive the following

result on the truncated moment problem for closed subsets of Rd.

Theorem 17.15 Let K be a closed subset of Rd and L0 a linear functional on
RdŒx�2n�2; n 2 N. Then L0 is a truncated K-moment functional on RdŒx�2n�2 if
and only if L0 admits an extension to a linear functional L on RdŒx�2n such that

L. p/ � 0 for p 2 Pos.K/2n: (17.28)

Proof Let L0 be a truncated K-moment functional. Then, by Theorem 17.2, L0 has
a finitely atomic representing measure �. Clearly, RdŒx�2n 	 L1.K; �/ and the
functional L defined by L. p/ D R f d�, p 2 RdŒx�2n, satisfies (17.28).

Conversely, assume that (17.28) holds. Then, by Theorem 17.13, L is of the
form (17.22). If p 2 RdŒx�2n�2, then p2n D 0. Hence the second summand in (17.22)
vanishes and we obtain L0. p/ D

R
K p.t/ d�.t/ for p 2 RdŒx�2n�2. ut

17.3 Hankel Matrices

Recall that N is a nonempty subset of Nd
0 and A D Lin fx˛ W ˛ 2 Ng: Throughout

this section, we suppose that L is a linear functional on the linear subspace

A2 WD Lin f p q W p; q 2 Ag D Lin fxˇ W ˇ 2 NC Ng

of RdŒx�. Note that in contrast to Sects. 17.1–17.2 we now consider functionals on
A2 rather than A:

The following definition contains the basic notions studied in this section.

Definition 17.16 The Hankel matrix of L is the symmetric matrix

H.L/ D .h˛;ˇ/˛;ˇ2N; where h˛;ˇ WD L.x˛Cˇ/; ˛; ˇ 2 N:

The (cardinal) number rankL WD rankH.L/ is called the rank of L. The kernel NL

and the real algebraic set VL are defined by

NL D f f 2 A W L. fg/ D 0 for all g 2 Ag; (17.29)

VL D ft 2 Rd W f .t/ D 0 for all f 2 NLg: (17.30)
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Hankel matrices are fundamental tools for the study of truncated moment
problems. Many problems and properties of the functional L are easily translated
into those for the matrix H.L/, see e.g. Proposition 17.17 below.

Further, we introduce a symmetric bilinear form h�; �i0 on A � A by

h f ; gi0 WD L. fg/; f ; g 2 A:

Equation (17.29) means that NL is just the kernel of the bilinear form h �; �i0: This
is one reason for the importance of the vector space NL. We define a symmetric
bilinear form h �; �i on the quotient space DL WD A=NL by

h f CNL; gCNLi WD h f ; gi0 D L. fg/; f ; g 2 A: (17.31)

Clearly, this bilinear form h �; �i is non-degenerate, that is, its kernel is trivial. Let us
write Qf for the equivalence class f CNL. Then, by (17.31) we have

L. fg/ D hQf ; Qgi; f ; g 2 A: (17.32)

Since each element of A2 is a sum of products fg with f ; g 2 A, all numbers s˛ ,
˛ 2 NC N; and hence the functional L can be recovered from the space .DL; h�; �i/
by using Eq. (17.32).

Let us fix an ordering of the index set N; for instance, we can take the
lexicographic ordering. For f D P

˛2N f˛x
˛ 2 A we let Ef D . f˛/T denote the

coefficient vector of f written as a column according to the ordering of N. Since
Ef has only finitely many nonzero terms f˛ , products such as Ef TH.L/ and H.L/Ef are
well-defined. If the set N is finite, then Ef 2 RjNj:

A number of basic facts on Hankel matrices are collected in the next proposition.
In dimension one some assertions have been already noted in Lemma 9.20.

Proposition 17.17

(i) For f 2 A and g 2 A we have

L. fg/ D Ef TH.L/Eg: (17.33)

(ii) A polynomial f 2 A belongs to f 2 NL if and only if Ef 2 kerH.L/: In
particular, dimNL D dim kerH.L/.

(iii) rankL � rankH.L/ D dim .A=NL/ � dim DL.
(iv) L is a positive functional (that is, L. f 2/ � 0 for f 2 A by Definition 2.2) if and

only if the Hankel matrix H.L/ is positive semidefinite.
(v) If the functional L is positive, thenNL D f f 2 A W L. f 2/ D 0g.

(vi) If L is a truncated moment functional, then supp� 	 VL for each representing
measure � of L:
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Proof

(i) Let f D P
˛2N f˛x

˛ 2 A and g D P
˛2N g˛x

˛ 2 A. Clearly, then we have
fg DP˛;ˇ2N f˛gˇx

˛Cˇ and therefore

L. fg/ D
X
˛;ˇ2N

f˛gˇL.x
˛Cˇ/ D

X
˛;ˇ2N

h˛;ˇf˛gˇ D . f˛/ TH.L/.gˇ/ D Ef TH.L/Eg:

(ii) follows at once by combining the definition (17.29) of NL and (17.33).
(iii) Let us take m 2 N column vectors

h.1/ D .h˛.1/;ˇ/ˇ2N; : : : ; h
.m/ D .h˛.m/;ˇ/ˇ2N; where ˛.1/; : : : ; ˛.m/ 2 N;

of the Hankel matrix H.L/ and consider a linear combination of these vectors
with real coefficients c1; : : : ; cm. Put p.x/ DPi cix

˛.i/ . Then p 2 A and

mX
iD1

cih˛.i/;ˇ D L

� mX
iD1

cix
˛.i/xˇ

�
D L. p.x/xˇ/; ˇ 2 N:

Hence this linear combination of h.1/; : : : ; h.m/ is zero if and only if p 2
NL: Thus, fh.1/; : : : ; h.m/g is a maximal set of linearly independent column
vectors of H.L/ if and only if fx˛.1/ ; : : : ; x˛.m/g is a maximal set of linearly
independent monomials in the quotient vector space DL D A=NL. This implies
rankH.L/ D dim DL.

If the set N is finite, this equality can be obtained by a shorter reasoning:
Using that dim kerH.L/ D dimNL by (ii) and the rank-nullity characterization
we get

rankH.L/ D dimRjNj � dim kerH.L/

D dim A� dimNL D dim.A=NL/ D dim.DL/:

(iv) is obtained from (17.33) by setting f D g.
(v) If f 2 NL, then L. f 2/ D 0 by setting f D g in (17.33). We prove the converse.

Since L is a positive functional, the Cauchy–Schwarz inequality (2.7) holds:

L. fg/2 � L. f 2/L.g2/ for f ; g 2 A: (17.34)

Therefore, if L. f 2/ D 0, then L. fg/ D 0 for all g 2 A, so that f 2 NL.
(vi) follows at once from Proposition 1.23. ut

Suppose that the functional L is positive on A2, that is, L. f 2/ � 0 for f 2 A:
Then, by (17.32), the non-degenerate symmetric bilinear form h�; �i onDL is positive
definite and hence a scalar product. Thus, .DL; h�; �i/ is a real unitary space. Further,
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by Proposition 17.17(iii), DL is finite-dimensional if and only if the Hankel matrix
H.L/ has finite rank. In this case the unitary space .DL; h�; �i/ is obviously complete,
that is, .DL; h�; �i/ is a real finite-dimensional Hilbert space. In particular, DL has
finite dimension if the set N is finite.

The next proposition shows that NL obeys some ideal-like properties.

Proposition 17.18 Let p 2 NL and q 2 A. Suppose that pq 2 A.

(i) If L is a positive functional and pq2 2 A, then pq 2 NL.
(ii) If L is a truncated K-moment functional, then pq 2 NL.

Proof

(i) Since the functional L is positive, the Cauchy–Schwarz inequality (17.34)
holds. Using that pq2 2 A and L. p2/ D 0 we obtain

L.. pq/2/2 D L. p pq2/2 � L. p2/L.. pq2/2/ D 0;

so that pq 2 NL by Proposition 17.17(iv).
(ii) Let � 2ML;K. Recall that supp� 	 VL by Proposition 17.17(vi). Therefore,

since p 2 NL and hence p.x/ D 0 on VL, we get

L.. pq/2/ D
Z
K
. pq/2.x/ d�.x/ D

Z
VL\K

p.x/2q.x/2 d�.x/ D 0:

Thus, p q 2 NL again by Proposition 17.17(iv). ut
We restate the preceding results in the case of our standard example.

Corollary 17.19 Let N be the set Nd
0;2n (see (17.9)) and let L be a linear functional

on A D RdŒx�2n. Suppose that p 2 NL and q 2 RdŒx�n.

(i) If L is a positive functional and p q 2 RdŒx�n�1, then p q 2 NL.
(ii) If L is a truncated K-moment functional and p q 2 RdŒx�n, then p q 2 NL.

Proof

(i) Proposition 17.18(i) yields the assertion in the case q D xj; j D 1; : : : ; d. Since
NL is a vector space, repeated applications give the general case.

(ii) follows from Proposition 17.18(ii). ut
Remark 17.20 Example 9.29, Case 1, shows that the assertion p q 2 NL in
Corollary 17.19(i) is no longer valid if p q 2 RdŒx�n. This provides an important
difference between positive functionals and moment functionals! ı
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17.4 Hankel Matrices of Functionals with Finitely
Atomic Measures

Throughout this section, � is a finitely atomic signed measure

� D
kX

jD1
mjıxj ; where mj 2 R; xj 2 Rd for j D 1; : : : ; k; (17.35)

and L denotes the corresponding functional on A2 defined by

L. f / D
Z

f .x/ d� D
kX

jD1
mjf .xj/; f 2 A2: (17.36)

Ifmj � 0 for all j, then� is a Radon measure and L is a truncated moment functional.
Clearly, � is k-atomic if all mj > 0 and the points xj are pairwise distinct.

For x 2 Rd, we denote the column vector .x˛/˛2N by sN.x/ or simply by s.x/ if
no confusion can arise. Note that sN.x/ is the moment vector of the delta measure ıx
for A, not for A2!

Proposition 17.21 For the Hankel matrix H.L/ of the functional L we have

H.L/ D
kX

jD1
mjsN.xj/ sN.xj/

T ; (17.37)

rankH.L/ � k D jsupp�j � jVLj: (17.38)

Suppose that mj ¤ 0 for j D 1; : : : ; k. Then the following are equivalent:
(i) rankH.L/ D k.

(ii) The point evaluations lx1 ; : : : ; lxk on A (!) are linearly independent.
(iii) The vectors sN.x1/; : : : ; sN.xk/ are linearly independent.

Proof Clearly, for x 2 Rd the .˛; ˇ/-entry of the matrix s.x/s.x/T is just x˛Cˇ:
This means that s.x/s.x/T is the Hankel matrix of the point evaluation lx on A2.
Since L DPj mjlxj , this yields the formula (17.37) for H.L/.

By (17.37), the matrix H.L/ is a sum of k matrices mjs.xj/s.xj/T . These matrices
are of rank one (if mj ¤ 0) or rank zero (if mj D 0). Hence rankH.L/ � k. Since
supp� 	 VL, it is obvious that jsupp�j � jVLj:

Now we assume that mj ¤ 0 for all j and prove the equivalence of (i)–(iii).

(i)$(ii) Let f D P
˛2N f˛x

˛ 2 A: Recall that Ef is the column vector . f˛/T : Let
h.˛/ be the ˛-th column of H.L/ and e˛ D .ı˛;ˇ/ˇ2N the ˛-th basis vector. Then

H.L/Ef D X
˛2N

f˛H.L/e˛ D X
˛2N

f˛h
.˛/ D X

˛2N

f˛

kX
jD1

mjx
˛
j s.xj/ D

kX
jD1

mjlxj. f /s.xj/:

(17.39)
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Since mj ¤ 0 and imH.L/ is contained in the span of vectors s.x1/; : : : ; s.xk/,
it follows from (17.39) that rankH.L/ D dim imH.L/ is k if and only if the
restrictions of point evaluations lx1 ; : : : ; lxk to A are linearly independent.

(ii)$(iii) Clearly, s.xj/ is the column .lxj.x
˛//˛2N. Thus, if c1; : : : ; ck 2 R, thenP

j cjs.xj/ is the column vector
�
.
P

j cjlxj
�
.x˛//˛2N: Therefore,

P
j cjs.xj/ D 0 if and

only if
P

j cjlxj D 0 on A. Hence (ii) and (iii) are equivalent. ut
Corollary 17.22 For each truncated K-moment functional L on A2 we have

rankH.L/ � jVL \Kj: (17.40)

Proof By Theorem 17.2 and Proposition 17.17(vi), there is a k-atomic measure
� 2 ML;K and supp� 	 VL \ K: Since rankH.L/ � jsupp�j by (17.38), this
yields (17.40). ut
Example 17.23 Let d D 1;N D f0; 1g, so that A D fa C bx W a; b 2 Rg. The
functionals l�1; l0; l1 are linearly independent on A2, but they are linearly dependent
on A, since 2l0 D l�1 C l1 on A. For L D l�1 C l0 C l1 we have rankH.L/ D 2. ı

Note that (17.40) is a necessary condition for truncated K-moment functionals.
There are several necessary conditions for a linear functional L on A2 to be a

truncated moment functional. These are
� the positivity condition:

L. f 2/ � 0 for f 2 A; (17.41)

� the rank-variety condition:

rankH.L/ � jVLj; (17.42)

� the consistency condition:

p 2 NL; q 2 A and pq 2 A imply pq 2 NL: (17.43)

The positivity condition is obvious. Conditions (17.42) and (17.43) follow
from (17.40) and Proposition 17.18(ii), applied with K D Rd.

Another necessary condition is given in Proposition 18.15(ii) below.

Remark 17.24 Let h.˛/ D .h˛;ˇ/ˇ2N denote the ˛-th column vector and CH.L/ the
linear span of column vectors h.˛/, ˛ 2 N, of the Hankel matrix H.L/. We define a
surjective linear mapping ' W A! CH.L/ by

f D
X
˛2N

f˛x
˛ 2 A 7! '. f / D

X
˛2N

f˛h
.˛/:
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These “functions” '. f / of column vectors are another tool. By (17.39) we have

H.L/Ef D
X
˛2N

f˛h
.˛/ D '. f / for f D

X
˛2N

f˛x
˛ 2 A:

Hence rankH.L/ D dim imH.L/ D dimCH.L/: By Proposition 17.17(ii), NL is the
kernel of '. Hence the consistency condition (17.43) can be reformulated as

p; q; p q 2 A and '. p/ D 0 H) '. p q/ D 0: ı

Example 17.28 below shows that it may happen that jVLj > rankH.L/. Now we
turn to functionals for which equality holds in the rank-variety condition (17.42).

Definition 17.25 A linear functional L on A2 is called minimal if rankH.L/ is finite
and rankH.L/ D jVLj:

Our next aim is to derive two simple but very useful formulas (17.45)
and (17.47).

Let � and L be as above and let F D f f1; : : : ; fng be a finite subset of A: Define

MF D

0
BB@
f1.x1/ f1.x2/ : : : f1.xk/
f2.x1/ f2.x2/ : : : f2.xk/
: : : : : : : : : : : :

fn.x1/ fn.x2/ : : : fn.xk/

1
CCA �

0
BB@
lx1 . f1/ lx2 . f1/ : : : lxk. f1/
lx1 . f2/ lx2 . f2/ : : : lxk. f2/
: : : : : : : : : : : :

lx1 . fn/ lx2 . fn/ : : : lxk. fn/

1
CCA :

Then, using (17.36) we compute

MF .m1; : : : ;mk/
T D .L. f1/; : : : ;L. fn//T : (17.44)

For minimal functionals L we will use (17.44) to derive the masses mj from
the points xi and the functional L. If L is minimal, then rankH.L/ D jVLj and
hence (17.38) and Proposition 17.33(iii) imply that k D rankH.L/ D dim.A=NL/.

Lemma 17.26 Let � and L be defined by (17.35) and (17.36), respectively,
and suppose that L is minimal. Let f f1; : : : ; fkg be a subset of A such that the
representatives Qfj D fj C NL form a basis of the quotient space A=NL. Then the
k � k-matrix MF is invertible and

.m1; : : : ;mk/
T D .MF /�1.L. f1/; : : : ;L. fk//T : (17.45)

Proof Assume to the contrary that the matrix MF is not invertible. Then the column
rank of MF is less than k, so there exist reals ˛1; : : : ; ˛k, not all zero, such that
˛1f1.xj/C � � � C ˛kfk.xj/ D 0 for all j. From the definition (17.36) of L we compute
that f WD ˛1f1 C � � � C ˛kfk 2 A satisfies L. f 2/ D 0, so that f 2 NL: This
contradicts the linear independence of the set f Qf1; : : : ; Qfkg in A=NL. Thus, MF is
invertible and (17.45) follows from (17.44). ut
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Now we introduce the matrix

HF .L/ D

0
BB@
L. f 21 / L. f1f2/ : : : L. f1fn/
L. f1f2/ L. f 22 / : : : L. f2fn/
: : : : : : : : : : : :

L. f1fn/ L. f2fn/ : : : L. f 2n /

1
CCA : (17.46)

If N is finite and F is our standard basis fx˛ W ˛ 2 Ng, then HF .L/ is just the “usual”
Hankel matrix H.L/ from Definition 17.16. Let D.m/ denote the diagonal matrix
with diagonal entries m1; : : : ;mk. Then a simple computation yields

0
BB@
L. f 21 / L. f1f2/ : : : L. f1fn/
L. f1f2/ L. f 22 / : : : L. f2fn/
: : : : : : : : : : : :

L. f1fn/ L. f2fn/ : : : L. f 2n /

1
CCA D

0
BB@
f1.x1/ f1.x2/ : : : f1.xk/
f2.x1/ f2.x2/ : : : f2.xk/
: : : : : : : : : : : :

fn.x1/ fn.x2/ : : : fn.xk/

1
CCA

0
BB@
m1 0 : : : 0

0 m2 : : : 0

: : : : : : : : : : : :

0 0 : : : mk

1
CCA

0
BB@
f1.x1/ f2.x1/ : : : fn.x1/
f1.x2/ f2.x2/ : : : fn.x2/
: : : : : : : : : : : :

f1.xk/ f2.xk/ : : : fn.xk/

1
CCA

which means that

HF .L/ D MFD.m/.MF /T : (17.47)

Proposition 17.27 If N is finite and L is a minimal truncated moment functional on
A2, then L is determinate and its unique representing measure is rankH.L/-atomic.

Proof Set k WD rankH.L/. Since L is minimal, k D jVLj. We write VL D
fx1; : : : ; xkg. Let � be an arbitrary representing measure of L. Since supp � 	 VL

by Proposition 17.17(vi), � is of the form � DPk
jD1mjıxj with mj � 0 for all j.

Now we apply (17.47) to the standard Hankel matrix H.L/. If mj D 0 for one j,
then rankD.m/ < k and hence rankH.L/ < k by (17.47), which is a contradiction.
Thus, mj > 0 for all j, so � is k-atomic.

We choose a set f f1; : : : ; fkg as in Lemma 17.26. Then the numbers mj are given
by (17.45), so the measure � is uniquely determined and L is determinate. ut
Example 17.28 (An example for which jVLj > rankH.L/) Suppose that d D 2;

n � 3; and A D RŒx1; x2�n: Set

p.x1; x2/ D .x1 � ˛1/ � � � .x1 � ˛n/; q.x1; x2/ D .x2 � ˇ1/ � � � .x2 � ˇn/;

where ˛i; ˇj are real numbers such that ˛1 < � � � < ˛n and ˇ1 < � � � < ˇn: Then
Z. p/\ Z.q/ D f.˛i; ˇj/ W i; j D 1; : : : ; ng.
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We define an n2-atomic measure � such that all atoms are in Z. p/ \ Z.q/ and
a truncated moment functional L on A2 by L. f / D R

f d�; f 2 A2. Then we have
L. p2/ D L.q2/ D 0, so that p; q 2 NL. Clearly, p and q are linearly independent in
NL. Hence rankH.L/ D dim .A=NL/ �

�nC2
2

��2. From supp� 	 VL and p; q 2 NL

we obtain n2 D jsupp�j � jVLj � jZ. p/\ Z.q/j D n2. Thus, VL D Z. p/\Z.q/
and

jVLj � rankH.L/ � n2 �
 
nC 2
2

!
C 2 D

 
n � 1
2

!
: (17.48)

We show that L is determinate. Let � be a representing measure of L. Since
supp � 	 VL D Z. p/ \ Z.q/, � can be written as � D Pn

i;jD1 mijı.˛i;ˇj/: Let us fix
i; j 2 f1; : : : ; ng: Put fij WD .x1 � ˛i/�1.x2 � ˇj/�1p q. Then L. fij/ D

R
fij d� D mij.

Hence the measure � is uniquely determined by L, that is, L is determinate.
From the assumption n � 3 and (17.48) it follows that jVLj > rankH.L/ and the

difference jVLj � rankH.L/ is large as n becomes large. Since L is determinate, L
has no .rankL/-atomic representing measure, so L is not minimal. ı

17.5 The Full Moment Problem with Finite Rank
Hankel Matrix

Throughout this section, we assume that N D Nd
0. Then A D A2 D RdŒx� and we are

concerned with the full moment problem.
Let L be a positive functional on the real �-algebra RdŒx� with identity involution

(that is, f � D f for f 2 RdŒx�). We consider the GNS construction associated
with L, see Sect. 12.5. By Proposition 17.17(iv), the vector space NL defined
in (17.29) coincides with the left ideal NL from Lemma 12.38. Therefore, by
(17.32), .DL; h�; �i/ is the domain of the GNS representation �L of RdŒx�. Recall
that, by the definition of the GNS representation,�L. p/ acts on DL by multiplication
with p.

Theorem 17.29 Suppose that L is a positive linear functional on RdŒx� such that
rankH.L/ D r, where r 2 N. Then L is a moment functional with unique
representing measure �. This measure � has r atoms and supp� D VL.

Proof By Proposition 17.17, dim DL D rankH.L/ D r. As noted before the
theorem, DL is the representation space of the GNS representation �L. Therefore,
Xk WD �L.xk/, k D 1; : : : ; d; are commuting self-adjoint operators acting on the r-
dimensional unitary space DL. From linear algebra it is known that these operators
have a common set of eigenvectors, say e1; : : : ; er, which form an orthonormal basis
of DL. Let Xkej D tkjej and put tj D .t1j; : : : ; tdj/T . Since all eigenvalues of Xk are
real, tj 2 Rd. We develop the vector 1 2 DL with respect to this orthonormal basis
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and obtain 1 DPr
jD1mjej. Set � WDPr

jD1m2j ıtj . For p 2 RdŒx� we derive

L. p/ D h�L. p/1; 1i D hp.�L.x1/; : : : ; �L.xd//1; 1i D hp.X1; : : : ;Xd/1; 1i

D
rX

i;jD1
hp.t1j; : : : ; tdj/mjej;mieii D

rX
jD1

p.tj/m
2
j D

Z
p.t/ d�.t/: (17.49)

Here the first equality holds by formula (12.33), while the second equality follows
from the fact that �L is an algebra homomorphism. (This is just the finite-
dimensional version of the proof of Theorem 12.40.) By (17.49),� is a representing
measure of L.

By the properties of the GNS construction, �L.RdŒx�/1 D DL. Hence mj ¤ 0 for
all j. Since rankH.L/ D r, the point evaluations lt1 : : : ; ltr on A D RdŒx� are linearly
independent by Proposition 17.21. Therefore, ti ¤ tj for i ¤ j. By the preceding we
have shown that � DPr

jD1m2j ıtj is r-atomic. Because � has finite, hence compact,
support, Proposition 12.17 implies that L has only one representing measure. (This
fact also follows from the uniqueness of the spectral decomposition of X1; : : : ;Xd.)

By Proposition 17.17(vi), supp� 	 VL. We prove that VL 	 supp�. Let t0 2 VL.
Assume to the contrary that t0 … supp� D ft1; : : : ; trg: By Lagrange interpolation
there exists a p 2 RdŒx� such that p.t0/ D 1 and p.tj/ D 0 for j D 1; : : : ; r. Then

L. p2/ D
Z

p2 d� D
rX

jD1
mjp.tj/

2 D 0;

so that p 2 NL. Since p.t0/ D 1, t0 … VL, which is a contradiction. Thus we have
shown that VL D supp�. ut

17.6 Flat Extensions and the Flat Extension Theorem

In this section we derive another result, called the flat extension theorem, which
provides a sufficient condition for the solvability of the truncated moment problem.
To formulate this theorem we begin with some preliminaries.

We suppose in this section that N is a finite subset of Nd
0, A D fx˛ W ˛ 2 Ng

and A D Linfx˛ W ˛ 2 Ng. Now let N0 be another subset of Nd
0. We denote by

B D fx˛ W ˛ 2 N0g the corresponding monomials and by B the linear span of
elements of B.

Definition 17.30 We say the set B is connected to 1 if 1 2 B and each p 2 B,
p ¤ 1, can be written as p D xi1 : : : xik with xi1 ; xi1xi2 ; : : : ; xi1 � � � xik 2 B:

Example 17.31 Clearly, f1; x1; x2; x1x2g and f1; x2; x2x3; x1x2x3g are connected to 1,
but f1; x1; x2; x1x2x3g is not. ı
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From now on we assume that B is a subset of A. Then B2 is a subspace of A2:

Definition 17.32 A linear functional L on A2 is called flat with respect to B if

rankH.L/ D rankH.L0/;

where L0 denotes the restriction to B2 of L.

To motivate this definition we write the Hankel matrix H.L/ as a block matrix

H.L/ D
�
H.L0/ X12
X21 X22

�
:

The matrix H.L/ is called a flat extension (see Definition A.22) of the matrix H.L0/
if rankH.L/ D rankH.L0/. Hence the functional L is flat with respect to B if and
only if the Hankel matrix H.L/ is a flat extension of the Hankel submatrix H.L0/.

The next proposition contains a reformulation of the flatness condition that can be
used in noncommutative settings as well. Another proof based on Hankel matrices
is sketched in Exercise 17.6. Recall that NL is defined by (17.29).

Proposition 17.33 A linear functional L on A2 is flat with respect to B if and only
if A D BCNL. In this case, NL0 D NL \ B:

Proof Clearly, NL \ B 	 NL0 and there are canonical maps �1 and �2:

B=NL0
�1 B=.NL \ B/

�2! A=NL:

Here the dimensions are increasing from left to right, so by Proposition 17.17(iii),

rankH.L0/ D dim .B=NL0 / � dim .B=.NL \ B/

� dim .A=NL/ D rankH.L/:

Therefore, L is flat with respect to B if and only if we have equality throughout, that
is, �1 and �2 are bijections, or equivalently, A D BCNL and NL0 D NL \ B:

To complete the proof we show that A D B C NL implies that NL0 D NL \ B.
Obviously, NL \ B 	 NL0 . To prove the converse inclusion, let f 2 NL0 . We write
g 2 A as g D g1 C g2 with g1 2 B and g2 2 NL. Then fg1 2 B2. Since f 2 NL0 and
g2 2 NL, we get L. fg/ D L. fg1/C L. fg2/ D L0. fg1/ D 0, so that f 2 NL \ B: ut
Proposition 17.34 Let L be a linear functional on A2 which is flat with respect to
B. If L. p2/ � 0 for all p 2 B2, then L.q2/ � 0 for all q 2 A2.

Proof Let L0 denote the restriction to B2 of L. Since L0 is positive on B2 by
assumption, H.L0/ � 0. Because L is flat with respect to B, H.L/ is a flat extension
of H.L0/. Then H.L/ � 0 by Theorem A.24(iii). Hence L is positive on A2. ut

The next result is the flat extension theorem.



436 17 Multidimensional Truncated Moment Problems: Existence

Theorem 17.35 Suppose that B is a finite set of monomials of RdŒx� such that B is
connected to 1 and

A D B [ x1�B [ � � � [ xd�B: (17.50)

Let A and B be the linear spans of A and B, respectively. Suppose that L is a linear
functional on A2 which is flat with respect to B.

Then L has a unique extension to a linear functional QL of RdŒx� such that QL is
flat with respect to A. If L. p2/ � 0 for all p 2 B, then QL. f 2/ � 0 for all f 2 RdŒx�.
Further, if I.NL/ denotes the ideal of RdŒx� generated byNL, then

NQL D I.NL/ and VQL D VL: (17.51)

The functional QL on RdŒx� is also flat with respect to B, because the functional L
on A2 is flat with respect to B.

The proof of Theorem 17.35 is lengthy and will be given in the next section. The
following theorem of Curto and Fialkow contains the main applications concerning
the truncated moment problem.

Theorem 17.36 Let A;B;A;B satisfy the assumptions of Theorem 17.35 and let L
be a linear functional on A2 which is flat with respect to B. Suppose that L. p2/ � 0
for p 2 B. Then L is a minimial truncated moment functional.

In particular, L is determinate and its unique representing measure� is r-atomic,
where r WD rankH.L/ � jBj, and satisfies supp� D VL.

Proof Let QL be the positive linear functional on RdŒx� from Theorem 17.35. Since
both L and QL are flat with respect to B, we have

r D rankH.L/ D rankH. QL/ D rankH.L0/ � jBj:
Therefore, it follows from Theorem 17.29 that QL, hence L, has an r-atomic
representing measure � and supp� D VQL. Since VL D VQL by (17.51), we have
r D rankH.L/ D jVLj, so L is minimal and hence determinate by Proposition 17.27.

ut
The most important application of Theorem 17.36 concerns the following case:

N0 D Nd
0;n�1; N D Nd

0;n; B D fx˛ W j˛j � n � 1g; A D fx˛ W j˛j � ng:
Then it is obvious that B is connected to 1, assumption (17.50) holds,

B2 D RdŒx�2n�2; and A2 D RdŒx�2n:

Let L be a linear functional on RdŒx�2n. Recall from Definition 17.16 that the Hankel
matrix of L is the matrix Hn.L/ WD H.L/ with entries

h˛;ˇ WD L.x˛Cˇ/; where ˛; ˇ 2 Nd
0; j˛j; jˇj � n:
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Clearly, the Hankel matrix of the restriction L0 of L to RdŒx�2n�2 is the matrix
Hn�1.L/ WD H.L0/ with entries h˛;ˇ, where ˛; ˇ 2 Nd

0; j˛j; jˇj � n � 1: Further,
jBj D dimRdŒx�n�1 D

�n�1Cd
d

�
. Then Theorem 17.36 has the following special

case.

Theorem 17.37 Suppose that L is a linear functional on RdŒx�2n; n 2 N, such that

L. p2/ � 0 for p 2 RdŒx�n�1 and r WD rank Hn.L/ D rank Hn�1.L/: (17.52)

Then L is a determinate truncated moment functional and its unique representing
measure is r-atomic with r � �n�1Cd

d

�
.

The next theorem deals with the truncated K-moment problem, where

K WD K.f/ D fx 2 Rd W f0.x/ � 0; : : : ; fk.x/ � 0g (17.53)

is the semi-algebraic set associated to a finite subset f D f f0; : : : ; fkg of RdŒx� with
f0 D 1: Let us abbreviate m WD maxf1; deg. fj/ W j D 1; : : : ; kg:
Theorem 17.38 Let L be a linear functional on RdŒx�2n, n 2 N, and r WD
rankHn.L/. Retaining the preceding notation, the following are equivalent:

(i) L is a truncated K-moment functional which has an r-atomic representing
measure � with all atoms in K.

(ii) L extends to a linear functional QL on RdŒx�2.nCm/ such that rankHnCm. QL/ D
rankHn.L/ and QL. fjp2/ � 0 for all p 2 RdŒx�n and j D 0; : : : ; k:

Proof
(i)!(ii) Let QL be the truncated K-moment functional on RdŒx�2.nCm/ given by a

measure � as in (i). Then, by (17.38),

r D jsupp�j � rankHnCm. QL/ � rankHn.L/ D r;

so that rankHnCm. QL/ D rankHn.L/. The positivity condition is obvious.
(ii)!(i) Since rankHn.L/ D rankHnCm. QL/, QL is flat with respect to RdŒx�n.

Therefore, since L. p2/ � 0 for p 2 RdŒx�n by assumption (with f0 D 1),
Proposition 17.34 implies that QL.q2/ � 0 for q 2 RdŒx�nCm. Further, QL is flat with
respect to RdŒx�nCm�1: (This is where m � 1 is used!) Hence, by Theorem 17.37,
QL, hence L, is a truncated moment functional with r-atomic representing measure
� DPr

iD1miıxi , where all mi > 0. It remains to prove that all atoms xj; j D 1; : : : ; r;
are in K.

Since jsupp�j D r D rankHn.L/, it follows from Proposition 17.21 (i)$(ii)
that the functionals lx1 ; : : : ; lxr are linearly independent on RdŒx�n. Hence there are
polynomials p1; : : : ; pr 2 RdŒx�n such that lxi. pj/ � pj.xi/ D ıij for all i; j. Let
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j; k 2 f0; : : : ; rg. Then we have fkp2j 2 RdŒx�2.nCm/ and

QL. fkp2j / D
Z

fkp
2
j d� D

rX
iD1

mifk.xi/pj.xi/
2 D mjfk.xj/ � 0:

Since mj > 0, we conclude that fk.xj/ � 0 for all k. Hence xj 2 K by (17.53). ut
Remark 17.39

1. The proof of the implication (ii)!(i) shows that � is also a representing measure
for the functional QL on RdŒx�2.nCm/.

2. As we have discussed in Remark 16.10, Theorem 17.38 has an interesting
application to polynomial optimization over the set K. ı

17.7 Proof of Theorem 17.36

The following “truncated ideal-like” property of NL will be used twice below.

Lemma 17.40 If f 2 NL and xi f 2 A, then xi f 2 NL:

Proof Since xi f 2 A, we have xi f D p C q with p 2 B and q 2 NL by the
equality A D B C NL from Proposition 17.33. Therefore, by f 2 NL and by the
assumption (17.50), for all g 2 B 	 A we have xig 2 xiB 	 A and

0 D L. f .xig// D L. pg/C L.qg/ D L. pg/ D L0. pg/;

so that p 2 NL0 . Hence p 2 NL and xi f D pC q 2 NL. ut
By Proposition 17.33 the flatness implies that A D BCNL. We choose a subspace

D of B such that A is the direct sum of vector spaces D and NL.
Without loss of generality we assume that 1 2 D. (If such a choice is impossible,

then 1 2 NL. But then a repeated application of Lemma 17.40 yields A 2 NL, so
that L � 0 and the assertion holds trivially.)

Let � denote the projection of A onto D 	 B with respect to the direct sum

A D D ˚NL: (17.54)

Further, let Xi W D ! D; i D 1; : : : ; d, denote the operator Xi W D ! D defined by
Xi. f / WD �.xi f /, f 2 D. The crucial step of the proof is the following

Lemma 17.41 If f 2 D, then XiXjf D XjXi f for i; j D 1; : : : ; d and f 2 D.

Proof Let f 2 D. By the definition of the operators Xj and Xi we obtain

XiXj. f / D Xi.�.xjf // D �.xi�.xjf // D xixjf � xi.I��/.xjf / � .I��/.xi.�.xjf ///:



17.7 Proof of Theorem 17.36 439

Therefore, .XiXj � XjXi/f D g0 C g1 C g2, where

g0 WD .I � �/.xj.�.xi f ///� .I � �/.xi.�.xjf ///;
g1 WD xj.I � �/.xi f /; g2 WD �xi.I � �/.xjf /:

Clearly, g0 2 NL by the definition of the projection � . Since .I � �/.xi f / 2 NL

and g1 D xj.I � �/.xjf / 2 xjB 	 A, Lemma 17.40 implies that g1 2 NL. The same
reasoning shows that g2 2 NL. Thus g0 C g1 C g2 2 NL.

On the other hand, the sum g0 C g1 C g2 D .XiXj � XjXi/f belongs to D. Since
D \NL D f0g by (17.54), we conclude that XiXjf D XjXi f . ut

Let p 2 RdŒx�. Since the operators Xi and Xj on D commute by Lemma 17.41,
it follows that p.X/ WD p.X1; : : : ;Xd/ is a well-defined linear operator mapping D
into itself. Recall that 1 2 D. Set '. p/ WD P.X/1 2 D. Clearly, the map p 7! p.X/
is an algebra homorphism of RdŒx� into the linear operators of D. Hence we have

'. pq/ D p.X/'.q/; p; q 2 RdŒx�: (17.55)

In particular, this implies that ker' is an ideal of RdŒx�.

Lemma 17.42

(i) '. p/ D �. p/ for p 2 A.
(ii) L. pq/ D L.'. pq// for p; q 2 A:

Proof

(i) The proof is given by induction on the degree of p. Obviously, '.1/ D �.1/ D
1. Suppose that the assertion holds for all p of degree k. Let q 2 A and deg.q/ D
k C 1. It suffices to prove the assertion for monomials q 2 A. Since A D BC,
we have q D xip for some i and p 2 B or q 2 B. In the latter case, q is also of
the form q D xip for some i and p 2 B, because B is connected to 1. Thus, in
any case, q D xip. Then deg. p/ D k and hence '. p/ D �. p/ by the induction
assumption. From (17.55) and (17.54) we obtain

'.q/ D Xi.'. p// D Xi.�. p// D �.xi�. p// D xi�. p/C g

for some g 2 NL. Similarly, by (17.54), q D xip D xi.�. p/ C h/ for some
h 2 NL. Thus we have xi�. p/ D q � xih D '.q/ � g, which implies that
xih 2 A. Therefore, since h 2 NL, it follows from Lemma 17.40 that xih 2 NL.
Applying the projection � to the identity q � xih D '.q/ � g we get �.q/ D
�.'.q// D '.q/. This completes the induction.

(ii) First we show that

L. pq/ D L.'. pq// for q 2 B; p 2 A: (17.56)
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We proceed by induction on deg. p/. For constant p this follows from (i), since
L.q/ D L.�.q// D L.'.q// for q 2 A. Assume that (17.56) holds for all p 2 A
with deg. p/ D k. Suppose that f 2 A and deg. f / D k C 1. Arguing as in the
proof of (i), we can assume without loss of generality that f D xip with p 2 B.
Thus we obtain

L. fq/ D L. pxiq/ D L. p'.xiq// D L.'. pxiq// (17.57)

by applying first (i) and then the induction hypothesis. Using the definitions of
'.g/ and g.X/ for g 2 RdŒx� and applying (17.55) twice we derive

'. p'.xiq// D p.X/.'.xiq// D P.X/.Xi.q//

D .xip/.X/.q/ D f .X/.q/ D f .X/'.q/ D '. fq/:

Inserting this into (17.57) we get L. pq/ D L.'. pq//: This proves (17.56).
Let p; q 2 A. From (i) we obtain L. pq/ D L. p'.q//. Using first this equality,

then (17.56), and finally (17.55) we derive

L. pq/ D L. p'.q// D L.'. p'.q// D L.P.X/'.q// D L.'. pq//

which completes the proof. ut
Now we define a linear functional QL on RdŒx� by

QL. f / D L.'. f //; f 2 RdŒx�: (17.58)

Lemma 17.42(ii) implies that QL. f / D L. f / for f D pq, where p; q 2 A, and hence
for all f 2 A2. Therefore, QL is an extension of L.

The first statement of the next lemma shows that QL is flat with respect to A.

Lemma 17.43

(i) rankH. QL/ D rankH.L/ D dimD.
(ii) NQL D I.NL/ D ker' and VQL D VL:

Proof First we show that

I.NL/ 	 ker' 	 NQL: (17.59)

If p 2 NL, then �. p/ D 0 and hence '. p/ D p.X/1 D 0, so that p 2 ker'. From
(17.55) we conclude that ker' is an ideal of RdŒx�. Hence I.NL/ 	 ker'.

Now we verify the second inclusion of (17.59). Let f 2 ker'. Then, by (17.55),
for p 2 RdŒx� we obtain

QL. fp/ D L.'. fp// D L. p.X/'. f // D 0;

so that f 2 NQL. This proves (17.59).
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From (17.54) and Lemma 17.42(i) it follows that RdŒx� D D C I.NL/. Using
this equality, the corresponding definitions, Proposition 17.17(ii), and (17.59) we
derive

dimD D dim.A=NL/ D rankH.L/ � rankH. QL/;
rankH. QL/ D dim.RdŒx�=NQL/ � dim.RdŒx�= ker '/

� dim.RdŒx�=I.NL// � dimD:

Hence we have equalities throughout and therefore also in (17.59). This proves (i)
and the first assertion of (ii). Since NL and I.NL/ define the same real algebraic set
VL, the equality NQL D I.NL/ implies that VQL D VL: ut
Lemma 17.44 If L0 is another linear functional on RdŒx� such that L0 is an
extension of L and L0 is flat with respect to A, then L0 D QL.
Proof Since L0 is flat with respect to A, NL D NL0 \ A by Proposition 17.33.
Obviously, NL0 is an ideal. Hence ker' D J .NL/ 	 NL0 by Lemma 17.43(ii).

Let f 2 RdŒx�. Then '. f / 2 D 	 A and hence '.'. f // D �.'. f // D '. f / by
Lemma 17.42(i), so that . f � '. f // 2 ker' 	 NL0 . Therefore, L0. f � '. f // D 0.
Since L0dD D L, we get L0. f / D L0.'. f // D L.'. f // D QL. f /. Thus, L0 D QL. ut
Lemma 17.45 Suppose that L. p2/ � 0 for p 2 B. Then QL is positive on RdŒx�:

Proof By Proposition 17.34, L is positive on A2. Since QL is flat with respect to A by
Lemma 17.43(i), the assertion follows by repeated application of Proposition 17.34.
Alternatively, one can also argue as follows.

Let f 2 RdŒx�: Then g WD . f�'. f // 2 ker' D NQL as noted in the proof of
Lemma 17.44. Hence QL.2'. f /gC g2/ D 0. Since L is positive on A2 and '. f / 2 A,

QL. f 2/ D QL..'. f /C g/2/ D QL.'. f /2/C QL.2'. f /gC g2/ D L.'. f /2/ � 0: ut

Putting the preceding lemmas together we have proved Theorem 17.35. ut

17.8 Exercises

1. Give an example of a truncated K-moment functional and a closed set K such
that ML;K is not vaguely compact.

2. Let p 2 RdŒx�2n and let Lp 2 HdC1;2n be defined by (17.15).

a. Show that p 2PRŒx�2n if and only if Lp 2P.HdC1;n/2:
b. Show that the following are equivalent:

(i) p.x/ � 0 for all x 2 Rd.
(ii) Lp.y/ � 0 for all y 2 RdC1.

(iii) Lp.y/ � 0 for all y 2 Sd:
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3. Show that for a linear functional L on HdC1;2n the following are equivalent:

(i) There exists a Radon measure on RdC1 such that p 2 L1.RdC1; �/ and
L. p/ D R p d� for p 2 HdC1;2n:

(ii) There is a Radon measure on Sd such that L. p/ D R p d� for p 2 HdC1;2n:
(iii) L. p/ � 0 for all p 2 HdC1;2n such that p � 0 on Sd:

4. Let L be a linear functional on HdC1;2n given by a k-atomic measure on RdC1.
Show that L has a k0-atomic representing measure on Sd, where k0 � k. Find
examples where k0 D k and examples where k0 D k is impossible.

5. Prove that for a linear functional L on RdŒx�2n the following are equivalent:

(i) L is a truncated moment functional.
(ii) There exist a number k 2 N and an extension QL of L to a positive linear

functional on RdŒx�2nC2k such that rank HnCk.L/ D rank HnCk�1.L/:

Hint: For instance, combine Theorems 17.15 and 17.29 and Proposition 17.21.
6. Let L be a positive functional on A2. Give a second proof for both assertions of

Proposition 17.33 by applying Proposition A.25 to Hankel matrices.
7. Show that Proposition 17.27 remains valid for arbitrary sets N. Use this result to

give another proof of the determinacy assertion of Theorem 17.29.
8. ([CFM, Lemma 2.5]) Let m1; : : : ;mk 2 R and let x1; : : : ; xk 2 Rd be pairwise

distinct points. Define a functional L on A2 by L. f / D Pk
jD1mjf .xj/; f 2 A2.

Suppose that k D rankH.L/: Use formula (17.47) to prove that the following are
equivalent:

(i) L. f 2/ � 0 for all f 2 A.
(ii) m1 � 0; : : : ;mk � 0.

(iii) m1 > 0; : : : ;mk > 0.

17.9 Notes

The multidimensional truncated moment problem was first investigated in the
(unpublished) Thesis of J. Matzke [Mt] and independently by R. Curto and L.
Fialkow [CF2, CF3]. It is now an active research area, see e.g. [Pu4, La1, CF5,
FN1, FN2, BlLs, Bl2, Sm10, F1, DSm1, DSm2]. Multidimensional trigonometric
truncated moment problems and related extension problems are treated in the
monograph [BW].

Theorem 17.7 is from J. Stochel [St2], while Theorem 17.13 was proved
in [Sm10]. Theorem 17.15 was obtained in [Mt] and independently in [CF5].
Theorem 17.29 is contained in [CF2]. Minimal moment functionals have been first
studied in [CFM] where they are called “extremal”.

The flat extension Theorem 17.36 was obtained by R. Curto and L. Fialkow
[CF2]. Theorem 17.35 and the proof presented in the text are taken from [LM];
see [MS] for a general result that applies to noncommutative �-algebras as well.
Another approach to the flat extension theory is given in [Vs3].
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The following result was proved in [CF4] (see [F1] for a correction): Suppose
that N D N2

0;n, n 2 N; n � 2, and p 2 RŒx1; x2�, deg. p/ � 2. If L is a linear
functional on RŒx1; x2�2n satisfying the positivity condition (17.41), the consistency
condition (17.43), and p 2 NL, then L is a truncated moment functional.



Chapter 18
Multidimensional Truncated Moment Problems:
Basic Concepts and Special Topics

While the preceding chapter dealt with existence questions, this chapter is devoted to
fundamental notions and various special topics concerning the structure of solutions.

In Sect. 18.1, we begin the study of the cone of truncated K-moment functionals.
We investigate its extreme points, introduce its Carathéodory number and consider
extreme points of the solution set.

In Sects. 18.2 and 18.3, we define two real algebraic sets VC.L;K/ and V.L/
associated with a truncated K-moment functional resp. a linear functional L on
A. These sets are fundamental concepts for truncated moment problems. They
contain the supports of representing measures. The set V.L/ is called the core
variety of L. If L is a moment functional, then V.L/ coincides with the set of
atoms of representing measures (Theorem 18.21) and L is determinate if and only if
jV.L/j � dim.AdV.L// (Theorem 18.23). We show that a linear functional L ¤ 0

on A is a truncated moment functional if and only if L.e/ > 0 and V.L/ is not empty
(Theorem 18.22).

Section 18.4 deals with the maximal mass 	L.t/ of the one point set ftg among
all representing measures of L. In Sect. 18.5, we construct ordered maximal mass
representations (Theorem 18.38). In Sect. 18.6, we use evaluation polynomials for
the study of truncated moment problems (Theorems 18.42, 18.43, and 18.46).

In this chapter, N denotes a fixed finite subset of Nd
0, A is the linear span of

monomials x˛, ˛ 2 N, and, if not specified otherwise, K is a closed subset of Rd.
Further, we retain condition (17.1) from Chap. 17 and assume the following:

There exists an element e 2 A such that e.x/ � 1 for x 2 K: (18.1)

18.1 The Cone of Truncated Moment Functionals

In this section, we use some concepts and results on convex sets from Appendix A.6.
The main objects of this chapter are introduced in the following definition.

© Springer International Publishing AG 2017
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Definition 18.1 The moment cone S.A;K/ is the set of truncated K-moment
sequences .s˛/˛2N and L.A;K/ is the set of truncated K-moment functionals on A.

Clearly, L.A;K/ is a cone in the dual space A�, S.A;K/ is a cone in RjNj and the
map s 7! Ls is a bijection of RjNj and A� which maps S.A;K/ onto L.A;K/.

Set E D AdK and X D K. Then we are in the setup of Section 1.2. Clearly,
f 7! f dK maps Pos.A;K/ onto EC. As discussed in Sect. 17.1, L 7! QL is a bijection
of L.A;K/ onto the cone L of moment functionals of E 	 C.KIR/. Here QL is
the linear functional on E defined by QL. f dK/ D L. f /; f 2 A, see (17.6) and Lemma
17.4. Repeating verbatim the reasoning from the proof of Proposition 1.27 we obtain

L.A;K/ 	 Pos.A;K/^ D L.A;K/: (18.2)

If L 2 L.A;K/;L ¤ 0, condition (18.1) implies that L.e/ > 0. Thus, L 7! L.e/ is a
strictly L.A;K/-positive linear functional on A�. Hence, by (A.24), the convex set

L1.A;K/ WD fL 2 L.A;K/ W L.e/ D 1g (18.3)

is a base of the cone L.A;K/, see Definition A.38. If the set K is compact, there are
further and stronger results.

Proposition 18.2 Suppose that K is compact.

(i) L.A;K/ D Pos.A;K/^.
(ii) S.A;K/ is closed inRjNj and L.A;K/ is closed in the unique norm topology of

the finitedimensional vector space A�:
(iii) L1.A;K/ is compact base of the cone L.A;K/ in A�.

Proof

(i) is a restatement of Theorem 17.3.
(ii) Since L is closed in E� by Proposition 1.26(ii) and L 7! QL is a linear bijection

of L.A;K/ onto L, so is L.A;K/ in A�. Therefore, since the homeomorphism
s 7! Ls of RjNj on A� maps S.A;K/ onto L.A;K/, the cone S.A;K/ is closed
in RjNj:

(iii) Let K be a ball in Rd containing K. We equip A with the supremum norm k � kK
on K. The norm topology of A� is given by the dual norm of k � kK on A�. Let
L 2 L1.A;K/. Then, by Theorem 17.2, L has a k-atomic representing measure
� D Pk

jD1 cjıxj , where k � jNj D dimA and cj > 0, xj 2 K. Using condition
(18.1) we obtain L.e/ D 1 D P

j cje.xj/ �
P

j cj, so that cj � 1 for all j.
Therefore,

jL. f /j �
kX

jD1
cjj f .xj/j �

kX
jD1
k fkK � jNj k fkK ; f 2 A:



18.1 The Cone of Truncated Moment Functionals 447

Hence L1.A;K/ is bounded in A�. Since the linear functional e 7! L.e/
is continuous on A�, L1.A;K/ is obviously closed in A�. Thus, L1.A;K/ is
compact. ut

Example 9.30 shows that for noncompact closed subsets K the cone S.A;K/ is
not closed in general.

Proposition 18.3 Let .
P

A2/^ denote the cone of positive functionals on A2.

(i) The cone .
P

A2/^ is pointed, that is, .
P

A2/^ \ .�.P A2/^/ D f0g:
(ii) For each x 2 Rd, the point evaluation lx at x spans an extreme ray of .

P
A2/^:

Proof

(i) Let L 2 .PA2/^ \ .�.PA2/^/. Then L. f 2/ � 0 and �L. f 2/ � 0, hence
L. f 2/ D 0, for all f 2 A. Therefore, it follows at once from the Cauchy–
Schwarz inequality (2.7) that L. fg/ D 0 for f ; g 2 A. Hence L D 0 on A2.

(ii) Let L1;L2 2 .P A2/^. Assume that there are numbers c1 > 0; c2 > 0 such that
lx D c1L1 C c2L2. Set q WD e.x/�1e. Then lx.q/ D 1.

Fix j 2 f1; 2g. Let f ; g; h 2 A. Since Lj is a positive functional on A2, the
Cauchy–Schwarz inequality (2.7) holds. Using this inequality we derive

0 � cjLj.. f � f .x/q/h/2 � Lj.h
2/cjLj. f � f .x/q/2

� Lj.h
2/Œc1L1. f � f .x/q/2 C c2L2. f � f .x/q/2� D Lj.h

2/lx. f � f .x/q/2 D 0:

Here the last two equalities hold by the relations lx D c1L1Cc2L2 and lx.q/ D 1
and by the definition of the evaluation functional lx. Hence, since cj > 0, we
have Lj.. f � f .x/q/h/ D 0, so that

Lj.fh/ D f .x/Lj.qh/ for f ; h 2 A: (18.4)

Put aj WD Lj.q2/: Setting h D g � g.x/q in (18.4) we obtain

Lj.fg/� g.x/Lj.fq/ D f .x/Lj.gq/� f .x/g.x/aj: (18.5)

For h D q, (18.4) yields Lj.fq/ D f .x/aj. Replacing f by g, we get Lj.gq/ D
g.x/aj. Inserting these two facts into (18.5) it follows that Lj.fg/ D f .x/g.x/aj D
ajlx.fg/ for arbitrary f ; g 2 A. Therefore, Lj D ajlx on A2, that is, Lj belongs to
the ray spanned by lx. This proves that lx spans an extreme ray. ut

Example 18.4 (An extreme ray of .
P

A2/^ which is not spanned by a point
evaluation) Let A2 D R2Œ x �6 be the polynomials in two variables of degree at
most 6.

We denote by Exr the set of elements of all extreme rays of the cone .
P

A2/^.
By Lemma 18.3(i), .

P
A2/^ is pointed. The cone .

P
A2/^ is obviously closed in

the norm topology of the dual of R2Œ x �6. Thus, Proposition A.37 applies and shows
that each element of .

P
A2/^ is a finite sum of elements of Exr.
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On the other hand, by Proposition 13.5, there exists a positive linear functional
L2 on R2Œ x � such that L2. pc/ < 0 for the Motzkin polynomial pc. The restriction
L D L2dR2Œ x �6 is in .

P
A2/^, but L is not a truncated moment functional, since

pc � 0 on R2. Hence L is not a positive combination of point evaluations. Since
L 2 .PA2/^ is a sum of elements of Exr, we conclude that there exists an extreme
ray of .

P
A2/^ that is not spanned by a point evaluation. As shown in [Bl1, Theorem

1.6], the Hankel matrix of each nonzero functional contained in such an extreme ray
has rank 7. ı

Example 18.4 shows that extreme rays of the cone .
P

A2/^ are not necessarily
spanned by point evaluations. But all extreme rays of the smaller cone of truncated
K-moment functionals do, as shown in the next proposition.

Proposition 18.5 For a truncated K-moment functional L ¤ 0 on A2 the following
statements are equivalent:

(i) L spans an extreme ray of the cone L.A2;K/.
(ii) L has a 1-atomic representing measure.

(iii) There are a point x 2 K and a number c > 0 such that L D clx.
(iv) rankH.L/ D 1.
Proof

(i)!(ii) Let � D Pk
jD1mjıxj 2 ML with the smallest number k of atoms.

Thus, L D Pk
jD1mjlxj . Assume to the contrary that (ii) is not true. Then we have

k � 2 and L D m1L1 C L2, where L1 WD lx1 and L2 WDPk
jD2mjlxj . Clearly, m1 > 0

and L2 ¤ 0. Since L spans an extreme ray, Lj D ajL for some aj > 0; j D 1; 2. Thus,
lx1 D L1 D a1a�1

2 L2. Hence � has less than k atoms, which is a contradiction.
(ii)$(iii) is obvious.
(iii)!(i) By Proposition 18.3, lx generates an extreme ray of the cone of positive

functionals and hence also of the subcone L.A;K/.
(ii)!(iv) Let � D cıx 2 ML. Recall that s.x/ � sN.x/ denotes the vector

.x˛/˛2N 2 RjNj. By formula (19.29), we have H.L/ D c s.x/s.x/T , which implies
that rankH.L/ � 1. Since L ¤ 0, H.L/ ¤ 0: Hence rankH.L/ D 1.

(iv)!(iii) Since H.L/ � 0 has rank one, there is a nonzero vector � 2 RjNj such
that H.L/ D ��T . Let� DPk

jD1mjıxj be a representing measure of L, where mj > 0

for all j. Then, H.L/ DPk
jD1mj s.xj/s.xj/T by (19.29). For 
 2 RjNj we obtain


TH.L/
 D
kX

jD1
mjjh
; s.xj/ij2 D jh
; �ij2; (18.6)

where h�; �i is the canonical scalar product of RjNj: From (18.6) and mj > 0 it follows
that 
 ? � implies 
 ? s.xj/: Hence all vectors s.xj/ are multiples of �: Therefore,
since � ¤ 0, there exists an i such that �, hence all s.xj/ are multiplies of s.xi/. Then
H.L/ D c s.xi/s.xi/T with c > 0.
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We prove that L D clxi : Let f DP˛2N f˛x
˛ 2 A and set Ef D . f˛/T 2 RjNj: Then

hEf ; sxii D
P

˛ f˛.xi/
˛ D f .xi/: Therefore, using (17.33) for f ; g 2 A we obtain

L. fg/ D Ef TH.L/Eg D c hEf ; s.xi/i hEg; s.xi/i D cf .xi/g.xi/ D clxi.fg/:

Since A2 is spanned by products fg with f ; g 2 A, we get L D clxi : ut
For general vector spaces not of the form A2, point evaluations do not necessarily

span extreme rays, as shown by the following simple example.

Example 18.6 (A point evaluation on A which does not span an extreme ray) Let
d D 1;N D f0; 1g, so that A D Lin f1; xg. Then l0 D 1

2
.l1 C l�1/ on A, but l1 ¤ al0

on A for all a � 0. Hence l0 does not span an extreme ray of the cone L.A;R/. ı
The next definition contains two other important notions.

Definition 18.7 Let s 2 S.A;K/ and L 2 L.A;K/. The Carathéodory number
C.s/ resp. C.L/ is the smallest number k 2 N0 such that s resp. L has a k-atomic
representing measure � 2 MC.K/.

The Carathéodory number C.A;K/ is the largest C.s/, where s 2 S.A;K/.

Thus, C.A;K/ the smallest number n 2 N such that each sequence s 2 S.A;K/
has a k-atomic representing measure, where k � n. Obviously, C.s/ D C.Ls/. By
definition we have C.L/ D 0 for L D 0.

Recall from Corollary 1.25 that each moment sequence s 2 S.A;K/ has a k-
atomic representing measure, where k � jNj. Therefore, the Carathéodory numbers
C.s/, C.L/; and C.A;K/ are well-defined and satisfy

C.A;K/ D sup fC.s/ W s 2 S.A;K/ g D sup fC.L/ W L 2 L.A;K/ g � jNj D dim A:

Remark 18.8 Let P be a cone in a finite-dimensional real vector space E ¤ f0g:
Let Exr.P/ denote the set of elements of extreme rays of P. We assume that each
element of P is a finite sum of elements of Exr.P/. (By Proposition A.37, this holds
if P is pointed and closed. It is also true for the cones S.A2;K/ and L.A2;K/ by
Theorem 17.2 and Proposition 18.5, even though these cones are not necessarily
closed.)

For c 2 P, let C.c/ denote the smallest number k such that c is a sum of k elements
from Exr.P/. By Carathéodory’s theorem, C.c/ � dim E. The largest number C.c/
for c 2 P is called the Carathéodory number C.P/ of the cone P.

Now let P D S.A2;K/ and let E be the vector space spanned by S.A2;K/. Then
Exr.P/ D f�lx W � � 0; x 2 Kg by Proposition 18.5. Thus, in this case the
Carathéodory number C.P/ of the cone P is just the Carathéodory number C.A;K/
according to Definition 18.7. ı
Example 18.9 (Moment cone and Carathéodory number in dimension one onRŒx�m)
Let d D 1;m 2 N; N D f0; 1; : : : ;mg, and K WD Œa; b�; where a; b 2 R; a < b:
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Then A D RŒx�m and S.A;K/ is just the moment cone SmC1 from Definition 10.4.
For the Carathéodory number we have

C.A;K/ D nC 1 if m D 2n or m D 2nC 1; n 2 N:

That is, if bm
2
c denotes the largest integer k satisfying k � m

2
, we can write

C.A;K/ D
jm
2

k
C 1: (18.7)

We prove formula (18.7) in the even case m D 2n; the odd case is similar. For this
we use some notions and facts from Sects. 10.2 and 10.3. Let s ¤ 0 be a sequence
of the moment cone SmC1 and choose a representing measure � D Pk

jD1mjıxj of
s such that ind .�/ D ind .s/. Recall that for the definition of ind .�/ atoms in
.a; b/ are counted twice, while possible atoms a or b are counted only once. If s is
a boundary point of SmC1, then ind .�/ � m by Theorem 10.7. Hence � has at
most n C 1 atoms. If s is an interior point of SmC1, it has a principal representing
measure �C with nC 1 atoms by (10.14). Since ind .s/ � mC 1 D 2nC 1 (again
by Theorem 10.7), s has no representing measure with fewer atoms than nC1. This
proves that C.A;K/ D nC 1 D bm

2
c C 1: ı

Determining the Carathéodory number in the multivariate case is a difficult
problem and only a few results are known, see Theorem 18.43(ii) and Sect. 19.1
below.

Our next result characterizes the extreme points of the set ML;K.

Proposition 18.10 Suppose that L ¤ 0 is a truncated K-moment functional on A
and � 2 ML;K. Let J� denote the canonical embedding of A into L1R.R

d; �/. The
following statements are equivalent:

(i) � is an extreme point of the set ML;K.
(ii) J�.A/ D L1R.R

d; �/.
(iii) � is k-atomic with atoms t1; : : : ; tk 2 K and there exist elements p1; : : : ; pk 2 A

such that pj.ti/ D ıij for i; j D 1; : : : ; k.
Proof

(i)$(ii) By Proposition 1.21,� is an extreme point of the set ML;K if and only if
the image of A is dense in L1R.R

d; �/. Since A is finite-dimensional, the latter holds
if and only if J�.A/ D L1R.R

d; �/. Thus (i) and (ii) are equivalent.
(iii)!(ii) is obvious.
(ii)!(iii) Because N is finite, J�.A/ D L1R.R

d; �/ (by (ii)) is finite-dimensional.
Hence the measure � is k-atomic, where k D dim L1R.R

d; �/: Let � DPk
lD1 mlıtl

with t1; : : : ; tk 2 K. Since J�.A/ D L1R.R
d; �/, the characteristic function �tj of

each singleton ftjg, j D 1; : : : ; k, is in the image J�.A/. Thus �tj D J�. pj/ for some
polynomial pj 2 A: Then pj.ti/ D ıij for i; j D 1; : : : ; k. ut



18.2 Inner Moment Functionals and Boundary Moment Functionals 451

Condition (iii) in Proposition 18.10 suggests the following definition.

Definition 18.11 We say that points t1; : : : ; tk of K satisfy the separation property
.SP/A if there exist elements p1; : : : ; pk 2 A such that pj.ti/ D ıij; i; j D 1; : : : ; k.

Proposition 18.10 (i)$(iii) says for each truncated K-moment functional L ¤ 0
the extreme points of ML;K are precisely those k-atomic measures in ML;K for
which all atoms are in K and satisfy property .SP/A.

We close this section with simple but useful determinacy criterion.

Proposition 18.12 Let p 2 Pos.A;K/. Suppose that Z. p/ \ K D ft1; : : : ; tkg and
t1; : : : ; tk 2 K satisfy .SP/A. Let � D Pk

jD1mjıtj ; where mj � 0 for all j. If L is a
truncated K-moment functional and � 2ML;K, then the set ML;K D f�g, that is,
L is a determinate truncated K-moment functional.

Proof Let � be another measure from ML;K. Since p 2 Pos.A;K/ and
Z
K
p d� D L. p/ D

Z
p d� D

X
j
mjp.tj/ D 0;

Proposition 1.23 implies that supp � 	 Z. p/\ K D ft1; : : : ; tkg. Hence � is of the
form � DPk

jD1 njıtj for some numbers nj � 0:
Now fix i 2 f1; : : : ; kg. Since t1; : : : ; tk satisfy .SP/A, there exists a q 2 A such

that q.tj/ D ıij for j D 1; : : : ; k. Then L.q/ D R q d� D mi and L.q/ D R q d� D ni,
which implies that mi D ni. This proves that � D �, that is, L is determinate. ut

18.2 Inner Moment Functionals and Boundary Moment
Functionals

Throughout this section, L is a truncatedK-moment functional on A:

Definition 18.13

NC.L;K/ WD fp 2 Pos.A;K/ W L. p/ D 0 g;
VC.L;K/ WD fx 2 Rd W p.x/ D 0 for p 2 NC.L;K/g:

Clearly, NC.L;K/ is a subcone of the cone Pos.A;K/ and VC.L;K/ is a real
algebraic set in Rd. In the case K D Rd we write

NC.L/ WD NC.L;Rd/; VC.L/ WD VC.L;Rd/: (18.8)

Remark 18.14 We compare NC.L;K/ and VC.L;K/ with their counterparts NL

and VL from Definition 17.16. For this we suppose that the linear functional L is
defined on A2. Then the definition of NC.L;K/ refers to elements from A2, while
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NL contains only polynomials from A by (17.29). Obviously, if p 2 NL, then
p2 2 NC.L;K/. Therefore, for any closed set K we have

VC.L;K/ 	 VL; (18.9)

but in general VC.L;K/ ¤ VL. In Sect. 19.6 we develop examples for which VL ¤
VC.L/. ı

The next proposition is the counterpart of Proposition 17.18 in the present setting.

Proposition 18.15

(i) For each representing measure � 2ML;K we have supp� 	 VC.L;K/ \K.
(ii) Let p 2 NC.L;K/ and q 2 A be such that p q 2 A. Then L. p q/ D 0. If in

addition q 2 Pos.A;K/, then p q 2 NC.L;K/.

Proof

(i) follows at once from Proposition 1.23.
(ii) The proof is almost verbatim the same as the proof of Proposition 17.18. Take

a measure � 2ML;K: Using that supp� 	 VC.L;K/ \K by (i) and p.x/ D 0
on VC.L;K/ by definition, we obtain

L. p q/ D
Z
K
. p q/.x/ d�.x/ D

Z
VC.L;K/\K

p.x/q.x/ d�.x/ D 0: (18.10)

If q is in Pos.A;K/, so is p q and therefore p q 2 NC.L;K/. ut
The set NC.L;K/ is closely related to the set NC.L/ from Definition 1.39. Since

L is a truncated K-moment functional, there is a moment functional QL on E WD AdK
defined by QL. f dK/ WD L. f /; f 2 A: Clearly, we have f 2 NC.L;K/ if and only if
f dK 2 NC. QL/, that is, NC. QL/ D NC.L;K/dK: Therefore, Proposition 1.42 may be
restated as the following.

Proposition 18.16

(i) Let p 2 NC.L;K/; pdK ¤ 0. Then 'p.L0/ D L0. p/; L0 2 A�, defines a
supporting functional 'p of the coneL.A;K/ at L. Each supporting functional
of L.A;K/ at L is of this form.

(ii) L is a boundary point of the cone L.A;K/ if and only if NC.L;K/dK ¤ f0g:
(iii) L is an inner point of the cone L.A;K/ if and only if NC.L;K/dK D f0g:

Note that if p 2 A vanishes on K, then obviously p 2 NC.L;K/, but 'p � 0, so
'p is not a supporting hyperplane of L.A;K/ at L. That is, the requirement pdK ¤ 0
cannot be omitted in Proposition 18.16(i).

Since L 2 Pos.A;K/^, NC.L;K/ is an exposed face of the cone Pos.A;K/. The
nonempty exposed faces of the cone L.A;K/ are exactly the sets

Fp WD fL0 2 L.A;K/ W 'p.L0/ � L0. p/ D 0g; where p 2 Pos.A;K/:
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Example 18.17 (Finitely atomic representing measure) Let � D Pk
jD1 cjıxj be a

representing measure of L, where xj 2 K and cj > 0 for all j. Clearly, then we have

NC.L;K/ D fp 2 Pos.A;K/ W p.x1/ D � � � D p.xk/ D 0 g: (18.11)

Whether or not VC.L;K/ is “small” or “large” depends very sensitively on the size
of A and the number and the location of atoms xj. Roughly speaking, if sufficiently
many atoms are well distributed in a real algebraic set, this set is contained in
VC.L;K/. We illustrate this by the following very simple example. Similar results
for R2Œ x �4 and R2Œ x �6 will be given by Propositions 19.35 and 19.37 below. ı
Example 18.18 Let d D 2;N D f.n1; n2/ 2 N2

0 W n1 C n2 � 2g;K D R2. Then A is
the space of polynomials in two variables of degree at most 2. Let L be a truncated
moment functional and � DPk

jD1 cjıxj a k-atomic representing measure of L.
Clearly, each element of Pos.A;K/ is a sum of squares of linear polynomials. If

k D 1, then VC.L/ D fx1g. Suppose that k � 2. Then, if all points xj are on a line,
then VC.L/ is this line, and if the points xj are not on a line, then VC.L/ D R2. ı

18.3 The Core Variety of a Linear Functional

In this section, L is a linear functional on A and K D Rd, that is, we consider the
truncated moment problem on Rd. Our aim is to study the core variety V.L/ of L.

We define inductively linear subspaces Nk.L/, k 2 N; of A and real algebraic sets
Vj.L/, j 2 N0; by V0.L/ D Rd,

Nk.L/ WD fp 2 Pos.A;Vk�1.L// W L. p/ D 0 g; (18.12)

Vj.L/ WD ft 2 Rd W p.t/ D 0 for p 2 Nj.L/g: (18.13)

If Vk.L/ is empty for some k, we set Vj.L/ D Vk.L/ D ; for all j � k; j 2 N.
For k D 1 these notions coincide with those defined in Eq. (18.8), that is,

N1.L/ D NC.L/ � NC.L;Rd/ and V1.L/ D VC.L/ � VC.L;Rd/:

Definition 18.19 The core variety V.L/ of the linear functional L on A is

V.L/ WD
1\
jD0

Vj.L/: (18.14)

Since V.L/ is the zero set of real polynomials, V.L/ is a real algebraic set in Rd.
The preceding definitions resemble the corresponding definitions in Sect. 1.2.5.

More precisely, if we set X D Rd, E D A 	 C.RdIR/ and L is a moment functional
on E, then formulas (1.22), (1.23), (1.24) coincide with (18.12), (18.13), (18.14),
respectively, that is, we have Nk.L/ D Nk.L/, Vj.L/ D Vj.L/, V.L/ D V.L/.
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Note that L is now an arbitrary linear functional on A, while it was a moment
functional in Subsection 1.2.5.

Proposition 18.20

(i) Nk.L/ 	 NkC1.L/ and Vk.L/ 	 Vk�1.L/ for k 2 N.
(ii) If L is a truncated moment functional on A and � 2ML, then supp� 	 V.L/:

(iii) There exists a k 2 N0 such that Vk.L/ D VkC1.L/; for any such k we have

V.L/ D Vk.L/ D Vn.L/; n � k: (18.15)

Proof The proofs of (i) and (ii) are verbatim the same as the proofs of assertions (i)
and (ii) of Proposition 1.48.

(iii) Define an ideal Ij of RdŒ x � by Ij D fp 2 RdŒ x � W p.x/ D 0 for x 2 Vj.L/g
for j 2 N0: Since VjC1.L/ 	 Vj.L/ by (i), we have Ij 	 IjC1. Thus,

I0 	 I1 	 � � � 	 Ij 	 IjC1 	 � � �

is an ascending chain of ideals in RdŒ x �. Since RdŒ x � is a Noetherian ring
(see e.g. [CLO, p. 77]), there exists a k 2 N0 such that Ik D In for n � k: Let
Uj denote the real algebraic set defined by Ij. Since Ij is the vanishing ideal
of Vj.L/, it follows that Uj D Vj.L/. Clearly, Ik D In implies Uk D Un, so that
Vk.L/ D Vn.L/ for n � k.

Assume that Vk.L/ D VkC1.L/ for some k 2 N0. Then NkC1.L/ D
NkC2.L/ by (18.12) and hence VkC1.L/ D VkC2.L/ by (18.13). Proceeding
by induction we get Vn.L/ D VnC1.L/ for n � k, which implies (18.15). ut

For a truncated moment functional L on A we define the set of possible atoms:

W.L/ WD fx 2 Rd W �.fxg/ > 0 for some � 2MLg: (18.16)

The importance of the core variety stems from the following three theorems.
The main assertion of the first theorem is only a restatement of Theorem 1.49. It

says that the set W.L/ of atoms is equal to the real algebraic set V.L/; in particular,
W.L/ is a closed subset of Rd.

Theorem 18.21 Let L be a truncated moment functional on A. Then

W.L/ D V.L/: (18.17)

Each representing measure � of L is supported on V.L/. For each point x 2 V.L/
there is a finitely atomic representing measure � of L which has x as an atom.

Proof Theorem 1.49 applies with E D A; X D Rd and yields the equality (18.17),
since V.L/ D V.L/ and W.L/ D W.L/. The other assertions follow from
Proposition 18.20(ii) and Corollary 1.25. ut
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The next results provide existence and determinacy criteria in terms of the core
variety V.L/; they are based on Theorems 1.30 and 1.36.

Recall that by condition (18.1) there exists an e 2 A such that e.x/ � 1 on
K D Rd.

Theorem 18.22 A linear functional L ¤ 0 on A is a truncated moment functional
if and only if L.e/ � 0 and the core variety V.L/ is not empty.
Proof In this proof we abbreviate Nj D Nj.L/, Vj D Vj.L/, and V D V.L/.

First suppose L is a truncated moment functional. Since each representing
measure is supported on V by Theorem 18.21 and L ¤ 0, we have V ¤ ; and
L.e/ > 0.

Now we prove the converse implication. If L.e/ D 0, then e 2 N1, so V is empty,
which contradicts the assumption. Therefore, L.e/ > 0. By Proposition 18.20(iii),
there is a number k 2 N0 such that V D Vk D VkC1.

Let f 2 Pos.A;V/. We prove that L. f / � 0. Assume to the contrary that
L. f / < 0. Set q WD f � L.e/�1L. f /e 2 A. Since L.e/ > 0, L. f / < 0, and
e.x/ � 1 on Rd, we have q.x/ > 0 on V D Vk and L.q/ D 0. Hence q 2 NkC1 and
V D VkC1 	 Z.q/ D ;. This is a contradiction, since V is not empty. Thus we have
shown that L. f / � 0.

Therefore, by Lemma 17.4, condition (17.5) holds. Hence there exists a well-
defined linear functional QL on E D AdV given by QL. f d/ WD L. f /; f 2 A:

We prove that QL is strictly EC–positive. Let f 2 A be such that f dV 2 EC and
f dV ¤ 0. Then f 2 Pos.A;V/ and hence L. f / � 0 as shown in the paragraph before
last. Since f dV ¤ 0 and V is not empty, there exists an x0 2 V such that f .x0/ > 0.
If L. f / were zero, then f � 0 on Vk implies f 2 NkC1, so V D VkC1 	 Z. f /: This
is impossible, because x0 2 V and f .x0/ > 0: Thus QL is strictly EC–positive.

Therefore, by Theorem 1.30, QL is a moment functional on E and so is L on A. ut
Theorem 18.23 For any truncated moment functional L on A the following are
equivalent:

(i) L is not determinate.
(ii) jV.L/j > dim.AdV.L//:

(iii) There is a representing measure � of L such that jsupp�j > dim.AdV.L//:
In particular, L is not determinate if jV.L/j > dimA D jNj or if L has a
representing measure � such that jsupp�j > dimA D jNj.
Proof Since W.L/ D V.L/ by Theorem 18.21, the assertions are only restatements
of Theorem 1.36 and Corollary 1.37, applied with E D A and X D Rd. ut

Suppose that L is a truncated moment functional on A. Let k be the smallest
integer for which Vk.L/ D VkC1.L/. Then, by Proposition 18.20 and (18.17),

W.L/ D V.L/ D Vn.L/ D Vk.L/ ¤ Vj.L/ ¤ V1.L/ (18.18)
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for n � k; 1 < j < k: In general, it is difficult to determine the set V.L/ D W.L/.
It would be important to have useful criteria ensuring that V.L/ D V1.L/ � VC.L/;
see also Theorem 1.45.

We close this section with two illustrating examples.

Example 18.24 (V.L/ ¤ ; and L is not a truncated moment functional) Let d D 1
and N D f0; 2g. Then A D faC bx2 W a; b 2 Rg, so condition (18.1) is satisfied with
e.x/ D 1. Define a linear functional L on A by L.aC bx2/ D �a. Clearly, L is not a
truncated moment functional, because L.1/ D �1.

Then Pos.A;R/DfaCbx2 W a � 0; b � 0g, so N1.L/ D RC �x2 and V1.L/ D f0g.
Hence Pos.A;V1.L// D faCbx2 W a � 0; b 2 Rg, N2.L/ D R �x2, and V2.L/ D f0g.
Therefore, V.L/ D f0g ¤ ;: ı
Example 18.25 (A truncated moment functional with V.L/ D V2.L/ ¤ V1.L/) Let
d D 1 and N D f0; 2; 4; 5; 6; 7; 8g. Then A D Lin f1; x2; x4; x5; x6; x7; x8g. We fix a
real number ˛ > 1 and define � D ı�1 C ı1 C ı˛: For the corresponding moment
functional L � L� D l�1 C l1 C l˛ on A we shall show that

W.L/ D V.L/ D V2.L/ D f1;�1; ˛g 
 f1;�1; ˛;�˛g D V1.L/: (18.19)

Let us prove (18.19). Put p.x/ WD .x2 � 1/2.x2 � ˛2/2. Clearly, p 2 A, L. p/ D 0

and p 2 Pos.R/, so that p 2 N1.L/. Conversely, let f 2 N1.L/. Then L. f / D 0

implies that f .˙1/ D f .˛/ D 0. Since f 2 Pos.R/, the zeros 1;�1; ˛ have even
multiplicities. Hence f .x/ D .x�1/2.xC1/2.x�˛/2.ax2CbxCc/ with a; b; c 2 R.
The coefficients of x and x3 of f are ˛2b�2˛c and 4˛cC.1�2˛2/b�2˛a. Since x
and x3 are not in A, these coefficients have to be zero. This yields b D 2˛a; c D ˛2a.
Therefore, ax2 C bxC c D a.xC ˛/2. Clearly, a � 0; so that f D ap 2 RC�p. Thus
we have shown that N1.L/ D RC�p. Hence V1.L/ D Z. p/ D f1;�1; ˛;�˛g:

Now we set q.x/ D x4.x2 � 1/.˛ � x/. Then q 2 A. Since q.˙1/ D q.˛/ D 0

and q.�˛/ D ˛4.˛2 � 1/2˛ > 0; we have q 2 Pos.A;V1.L// and L.q/ D 0. Thus,
q 2 N2.L/ and hence V2.L/ 	 V1.L/ \ Z.q/ D f1;�1; ˛g:

Since 1;�1; ˛ are atoms of �, f1;�1; ˛g 	 W.L/. Now (18.19) follows from
(18.18) and the preceding. Note that the moment functional L is determinate. ı

18.4 Maximal Masses

In this section, we suppose that L ¤ 0 is a truncated K-moment functional on A.
The next definition contains the main notions that will be studied in this section.

Definition 18.26

	L.x/ WD sup f�.fxg/ W � 2ML;Kg ; x 2 K; (18.20)

W.L;K/ WD fx 2 K W �.fxg/ > 0 for some � 2ML;K g:
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That is, W.L;K/ is the set of atoms and 	L.x/ is the supremum of point masses
at x of all solutions of the truncated K-moment problem for L. Note that W.L;Rd/

coincides with the set W.L/ defined by (18.16).
Since L always has an atomic representing measure by Theorem 17.2 and L ¤ 0

by assumption, W.L;K/ is not empty. It is obvious that

W.L;K/ D fx 2 K W 	L.x/ > 0g:

By the inequality (18.25) below, 	L.x/ <1 for all x2K. From Proposition 18.15(i),

W.L;K/ 	 VC.L;K/ \K: (18.21)

In general, W.L;K/ ¤ VC.L;K/\K, as shown by Example 1.41 with K D R2.
It is an interesting problem to determine when we have equality in (18.21).

Further, we define another important nonnegative number 
L.x/ by


L.x/ D inff L. p/ W p 2 Pos.A;K/; p.x/ D 1g (18.22)

D inf

�
L. p/

p.x/
W p 2 Pos.A;K/

�
; (18.23)

where we set c
0
WD C1 for c � 0: The equality in (18.23) is obvious. The

polynomial px WD e.x/�1e is in Pos.A;K/ and satisfies px.x/ D 1; so the
corresponding set in (18.22) is not empty and 
L.x/ is well defined.

Note that both quantities 	L.x/ and 
L.x/ depend on the set K as well; for
simplicity we have suppressed this dependence.

The number 
L.x/ is defined by a conic optimization problem (A.25) for the
cone C D Pos.A;K/ in A and functionals L1 D L and L0 D lx, see Appendix A.6.
The corresponding dual problem (A.26) is


L.x/
� WD sup fc 2 R W .L � clx/ 2 Pos.A;K/^ g: (18.24)

A standard fact of the duality theory of conic optimization (see e.g. [BN]) states that
if L is an interior point of the dual cone C^, then the infimum in (A.25) is attained.
Proposition 18.28(iii) below is the corresponding result in the present context.

Proposition 18.27 Let x 2 K. Then

	L.x/ D cL.x/ WD sup fc 2 RC W .L � clx/ 2 L.A;K/ g � 
L.x/ < C1 (18.25)

and the functional L � 	L.x/lx belongs to the boundary of the cone L.A;K/:
If K is compact, then we have 
L.x/ D 	L.x/, the supremum in Eq. (18.20) is a

maximum, and L � 	L.x/lx is a truncated K-moment functional.
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Proof In this proof, we abbreviate L WD L.A;K/:
Let c 2 RC be such that QL WD .L�clx/ 2 L. Such c exists; for instance, c D 0. If
Q� is a representing measure of QL, then� D Q�Ccıx is a positive measure representing
L. Hence c � �.fxg/ � 	L.x/. Taking the supremum over c yields cL.x/ � 	L.x/.

Let us assume that cL.x/ < 	L.x/. By the definition of 	L.x/, there exist a number
c 2 .cL.x/; 	L.x// and a representing measure � of s such that �.fxg/ D c: Then
Q� WD � � c � ıx is a positive (!) Radon measure representing QL D L � clx. Hence
QL 2 L; so that c � cL.x/, which is a contradiction. This proves that cL.x/ � 	L.x/:

Combining the preceding two paragraphs, we have shown that cL.x/ D 	L.x/.
Let � 2ML;K. For any p 2 Pos.A;K/; p.x/ D 1; we have

L. p/ D
Z

p.y/ d�.y/ � �.fxg/p.x/ D �.fxg/:

Taking the infimum over such p and the supremum over � 2 ML;K we obtain

L.x/ � 	L.x/. This completes the proof of (18.25).

Set L0 WD L � 	L.x/lx D L � cL.x/lx: From the definition of cL.x/ in (18.25) it
follows at once that the functional L0 belongs to the boundary of L.A;K/:

For the rest of this proof we assume that K is compact.
Since K is compact, we have L.A;K/ D Pos.A;K/^ by Proposition 18.2(i).

Hence cL.x/ D 
L.x/� by (18.24). Lemma A.40 yields 
L.x/ D 
L.x/�. Therefore,

L.x/ D cL.x/ D 	L.x/: Further, L.A;K/ is closed in A� by Proposition 18.2(ii).
Therefore, the boundary functional L0 belongs to the cone L.A;K/.

By the definition of 	L.x/; there is a sequence .�n/n2N of ML;K such that
limn �n.fxg/ D 	L.x/. By Proposition 17.3(ii), ML;K is compact in the vague
topology. Hence there exists a subnet .�i/i2J of the sequence .�n/n2N which
converges vaguely to some measure � 2ML;K. Then

	L.x/ D lim
n
�n.fxg/ D lim

i
�i.fxg/ � �.fxg/;

where the last inequality holds by Proposition A.5, applied to K D fxg. By
definition, �.fxg/ � 	L.x/. Thus, 	L.x/ D �.fxg/. This shows that the supremum
in (18.20) is attained at �. ut
Proposition 18.28 Suppose that x 2 K.

(i) If 	L.x/ > 0, then x 2 VC.L;K/:
(ii) Suppose that K is compact and assume that the infimum in (18.23), or

equivalently in (18.22), is a minimum. Then x 2 VC.L;K/ implies that
	L.x/ > 0.

(iii) If L is a relatively interior point of the cone L.A;K/, or equivalently, L. f / > 0
for all f 2 Pos.A;K/, f dK ¤ 0, then the infimum in (18.23) is a minimum.

Proof

(i) Suppose that 	L.x/ > 0 and assume to the contrary that x … VC.L;K/. Then
there exists a p0 2 NC.L;K/ such that p0.x/ ¤ 0. Upon scaling we can assume
that p0.x/ D 1. Since L. p0/ D 0 by p0 2 NC.L;K/, then 
L.x/ D 0 by
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(18.22). Hence 	L.x/ D 0, because 
L.x/ � 	L.x/ � 0 by (18.25). This is a
contradiction.

(ii) Let x 2 VC.L;K/. Let us assume that the infimum in (18.22) is attained at
p0 2 Pos.A;K/, that is, L. p0/ D 
L.x/. If L. p0/were zero, then we would have
p0 2 NC.L;K/ and hence p0.x/ D 0, since x 2 VC.L;K/. This contradicts
p0.x/ D 1 by (18.22). Thus L. p0/ > 0. Since K is compact, 
L.x/ D 	L.x/ by
Proposition 18.27. Therefore, 	L.x/ D 
L.x/ D L. p0/ > 0.

(iii) We will derive the assertion from Theorem 1.30. Let E D AdK, X D K, Qf D
f dK: Recall that L 7! QL is a bijection of L.A;K/ onto the coneL of the moment
functional on E; where QL is defined by (17.6), that is, QL.Qf / D L. f /; f 2 A: The
second assumption on L means that QL is strictly EC-positive. By Lemma 1.29,
this holds if and only QL is an inner point of L, or equivalently, L is a relatively
interior point of L.A;K/: Then, by Theorem 1.30(iii), there exists Qf0 2 EC,
Qf0.x/ D 1; such that QL. Qf0/ D inf f QL.Qf / W Qf 2 EC; Qf .x/ D 1g: Since QL.Qf / D L. f /
and Qf 2 EC if and only if f 2 Pos.A;K/, we conclude that f0 2 A attains the
infimum in (18.23). ut

The following simple example shows that the supremum in (18.20) is not
necessarily attained if the set K is not compact.

Example 18.29 Let K D R and N D f0; 1; 2g. Define L. p/ D 1
2
. p.1/C p.�1// for

p 2 A D RŒx�2: For c 2 Œ0; 1/; we set �c WD cı0 C 1
2
.1 � c/.ıy.c/ C ı�y.c//, where

y.c/ D .1 � c/�1=2: Then �c is a representing measure of L and �c.f0g/ D c.
One verifies that 
L.0/ D cL.0/ D 	L.0/ D 1. While the infimum for 
L.0/

in (18.22) is attained at p D 1, the suprema for 	L.0/ in (18.20) and cL.0/ in (18.25)
are not attained. That is, there is no measure � 2 ML such that �.f0g/ D 1 and
L0 WD L�	L.0/l0 ¤ 0 is not a truncated moment functional on A, since L0.1/ D 0. ı
Definition 18.30 Let � D Pk

jD1 mjıxj be a measure in ML;K, where k 2 N and
xj 2 K for j D 1; : : : ; k, and let i 2 f1; : : : ; kg. We shall say that

� � has maximal mass at xi if mi D 	L.xi/;
� � is a maximal mass measure for the functional L, or briefly, � is maximal mass,

if mj D 	L.xj/ for all j D 1; : : : ; k.

Recall that a measure � D Pk
jD1 mjıxj is called k-atomic if mj > 0 for all j and

xi ¤ xj for all i ¤ j.
The following proposition and Theorem 18.33 below deal with the question of

when masses of atoms of atomic representing measures are maximal masses.

Proposition 18.31 Suppose that � D Pk
jD1 mjıxj is a representing measure of L,

where k 2 N and mj > 0 and xj 2 K for all j. Let i 2 f1; : : : ; kg. Then:
(i) If mi D 
L.xi/, then mi D 	L.xi/, that is, � has maximal mass at xi.

(ii) mi D 
L.xi/ if and only there exists a sequence . pn/n2N with pn 2 Pos.A;K/
such that pn.xi/ D 1 and limn pn.xj/ D 0 for all j ¤ i.

(iii) If there exists a p 2 Pos.A;K/ such that p.xi/ D 1 and p.xj/ D 0 for j ¤ i,
then mi D 
L.xi/ D 	L.xi/.
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(iv) Assume that the infimum (18.22) for x D xi is a minimum. If mi D 
L.xi/; then
there exists a p 2 Pos.A;K/ such that p.xi/ D 1 and p.xj/ D 0 for j ¤ i.

(v) If mj D 
L.xj/ for all j D 1; : : : ; k, then k � dimA and � is k-atomic.

Proof By the definition of 	L.xi/ and (18.25) we always have

mi � 	L.xi/ � 
L.xi/: (18.26)

(i) follows at once from (18.26).
(ii) First suppose that there exists a sequence . pn/n2N as stated above. Since

pn.xi/ D 1, we have mi � 
L.xi/ � L. pn/ by (18.23). Combined with the
equality

lim
n

L. pn/ D
kX

jD1
mj
�

lim
n

pn.xj/
� D

kX
jD1

mjıji D mi

we conclude that mi D 
L.xi/.
Conversely, suppose that mi D 
L.xi/. By the definition of 
L.xi/, there

exists a sequence . pn/n2N of elements pn 2 Pos.A;K/ such that pn.xi/ D 1

and 
L.xi/ D limn L. pn/. Clearly, 0 � pn.xj/ � m�1
j L. pn/ for all j D

1; : : : ; k. Since the sequence .L. pn//n2N converges, each sequence . pn.xj//n2N
is bounded. By passing to a subsequence if necessary, we can assume that
aj WD limn pn.xj/ exists for all j. From pn 2 Pos.A;K/ we get aj � 0. Then

mi D 
L.xi/ D lim
n

L. pn/ D mi C
kX

jD1;j¤i

mjaj: (18.27)

Since mj > 0 for all j by assumption, this implies that aj D limn pn.xj/ D 0 for
all j D 1; : : : ; k; j ¤ i. Thus the sequence . pn/n2N has the desired properties.

(iii) From (ii), with pn D p; we get mi D 
L.xi/: Hence mi D 	L.xi/ by (i).
(iv) Suppose that for x D xi the infimum in (18.23) is attained at p 2 A; that is,

L. p/ D 
L.xi/ and p.xi/ D 1. Thus we can set pn D p for n 2 N in the second
half of the proof of (ii). From (18.27) we conclude that aj D p.xj/ D 0 for all
j ¤ i.

(v) Fix j 2 f1; : : : ; kg. Since mj D 
L.xj/, there is a sequence . pjn/n2N of elements
as stated in (i). To prove that k � dimA it suffices to show that the linear
functionals lt1 ; : : : ; ltk on A are linearly independent. Assume that there are
numbers �1; : : : ; �k 2 R such that 0 D Pk

iD1 �ilxi. f / for all f 2 A. Setting
f D pjn and passing to the limit n!1, we obtain

0 D lim
n

kX
iD1

�ilxi. pjn/ D
kX

iD1
�i
�

lim
n

pjn.xi/
� D

kX
iD1

�iıij D �j:

Thus, �j D 0 for all j, so the functionals lt1 ; : : : ; ltk are linearly independent. In
particular, the points xj are pairwise distinct. Hence � is k-atomic. ut
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The following definition is suggested by Proposition 18.31 (iii) and (iv).

Definition 18.32 We shall say that points x1; : : : ; xk 2 K have the positive
separation property .PSP/A;K if the following holds:

There are elements q1; : : : ; qk 2 Pos.A;K/ such that qj.xi/ D ıij; i; j D 1; : : : ; k.

We summarize some of the preceding results in the following theorem.

Theorem 18.33 Let L be a truncated K-moment functional on A and let
� D Pk

jD1 mjıxj be a k-atomic representing measure of L, where k 2 N and
x1; : : : ; xk 2 K.

(i) If the points x1; : : : ; xk satisfy the positive separation property .PSP/A;K, then
mj D 	L.xj/ D 
L.xj/ for all j D 1; : : : ; k and the measure � is maximal mass.

(ii) Suppose that K is compact and the infimum (18.23) is attained at each point
x D xj; j D 1; : : : ; k: If � is maximal mass, then the points x1; : : : ; xk have
property .PSP/A;K.

(iii) Suppose thatK is compact and L is a relatively inner point of the cone L.A;K/.
Then � is maximal mass if and only if the points x1; : : : ; xk obey the positive
separation property .PSP/A;K.

Proof

(i) Fix j D 1; : : : ; k: Let qj be as in Definition 18.32. Setting p D qj in Proposition
18.31(iii) we obtain mj D 
L.xj/ D 	L.xj/.

(ii) Since K is compact, 	L.xj/ D 
L.xj/ for all j by Proposition 18.27. Hence
mj D 
L.xj/, because � is maximal mass. Therefore, Proposition 18.31(iv)
implies that the points x1; : : : ; xk have property .PSP/A;K.

(iii) Since L is a relatively inner point of L.A;K/, it follows from Proposi-
tion 18.28(iii) that the infimum in (18.23) is attained at each point x D xj.
Now the assertion follows from (i) and (ii). ut

The next example gives a simple recipe for constructing maximal mass measures.

Example 18.34 (Squares of polynomials of degree one) Let x1; : : : ; xdC1 2 Rd.
Assume that these points are not contained in a .d�1/-dimensional affine subspace,
or equivalently, for any i 2 f1; : : : ; dC1g the d vectors xk � xi, k ¤ i, do not lie in a
.d�1/-dimensional linear subspace of Rd.

Fix j 2 f1; : : : ; d C 1g and take an index i 2 f1; : : : ; d C 1g such that i ¤ j. We
choose a vector aj 2 Rd, aj ¤ 0, which is orthogonal to the d � 1 vectors xk � xi,
where k D 1; : : : ; dC 1, k ¤ j; i. Then aj � xk D aj � xi for k D 1; : : : ; dC 1, k ¤ j; i,
where � is the scalar product of Rd. Further, aj is not orthogonal to xj � xi, since
otherwise the vectors xk � xi; k ¤ i; would be contained in a .d � 1/-dimensional
linear subspace. Upon scaling aj we can assume that aj � .xj � xi/ D 1. Putting

qj.x/ WD .aj � x � aj � xi/2; (18.28)

we have qj.xi/ D ıij for i; j D 1; : : : ; d C 1 by construction.
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Suppose that x1; : : : ; xdC1 2 K and RdŒ x �2 	 A. We define � D PdC1
jD1 mjıxj

and L DPdC1
jD1 mjlxj , where mj > 0. Since x1; : : : ; xdC1 obey the positive separation

property .PSP/A;K, the measure � 2ML;K is maximal mass by Theorem 18.33(i).
ı
Example 18.35 Let tj D .tj1; : : : ; tjd/, j D 1; : : : ; k; be k � 2 pairwise different
points of Rd. Since ti ¤ tj for i ¤ j, there is a number nij 2 f1; : : : ; dg such that
ti;nij ¤ tj;nij . Then the Langrange interpolation polynomials

pj.x/ D
kY

iD1;i¤j

xnij � ti;nij
tj;nij � ti;nij

; j D 0; : : : ; k; (18.29)

satisfy pj 2 RdŒ x �k�1 and pj.ti/ D ıij; i; j D 1; : : : ; k.
Suppose that K contains t1; : : : ; tk. Define � DPk

jD1 mjıtj and L DPk
jD1 mjltj ;

where mj > 0 for j D 1; : : : ; k. Obviously, � 2ML;K:
If RdŒ x �k�1 	 A, then � is an extreme point of ML;K by Proposition 18.10.
Suppose that RdŒ x �2k�2 	 A. Then, since p2j 2 Pos.A;K/ and p2j .xi/ D ıij for

i; j D 1; : : : ; k, the atoms t1; : : : ; tk has the positive separation property .PSP/A;K.
Therefore, � is maximal mass by Theorem 18.33(i). ı

18.5 Constructing Ordered Maximal Mass Measures

In this section, L is a truncatedK-moment functional on A such that L ¤ 0.
Finding maximal mass representing measures is a difficult task even in the case

when K is compact. But there is a weaker notion of ordered maximal mass measures
for which a simple general construction method exists.

Definition 18.36 A k-atomic measure � D Pk
iD1 miıti 2ML;K with all atoms ti

in K is called ordered maximal mass for L if

mj D 	Lj�1 .tj/ for j D 1; : : : ; k;

where Lj�1 is the functional on A defined by Lj�1 DPk
iDj milti and L0 D L.

Obviously, each maximal mass measure is ordered maximal mass. The converse
is not true; the measure � in Proposition 19.25 below is ordered maximal mass, but
not maximal mass.

From now on suppose thatK is compact. Then, from Proposition 18.27 we recall
that for each functional L0 2 L.A;K/ and t 2 K we have 	L0 .t/ D 
L0.t/ D cL0.t/
and this number is the largest c 2 RC such that .L0 � clx/ 2 L.A;K/:

Since L ¤ 0 and there is an atomic measure in ML;K by Theorem 17.2, we
have 	L.t/ > 0 for some t 2 K. Set L0 WD L. We choose a point t1 2 K such that
	L0 .t1/ > 0 and define L1 D L � 	L0 .t1/lx1 . Then L1 2 L.A;K/ and 	L1 .x1/ D 0.
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(Indeed, if 	L1 .x1/ > 0, there would exist a c > 	L0 .t1/ D cL0 .t1/ such that .L0 �
clx/ 2 L.A;K/; a contradiction.) If L1 D 0, we set Lj D 0 for all j 2 N; j � 2, and
we are done. If L1 ¤ 0, we apply the preceding construction with L replaced by L1.
Continuing this procedure, we obtain functionals Ln 2 L.A;K/ such that Ln D 0 or
there are points tj 2 K satisfying 	Lj�1 .tj/ > 0, 	Lj.tj/ D 0 for j D 1; : : : ; n, and

Ln D L �
nX

jD1
	Lj�1 .tj/ltj : (18.30)

Let j � i � n. By construction, we have Li. f / � Lj. f / for f 2 Pos.A;K/. Hence
0 � 
Li.tj/ � 
Lj.tj/ D 	Lj.tj/ D 0 by (18.22), so that 
Li.tj/ D 	Li.tj/ D 0.
Therefore, if j < i, then j � i � 1 and hence 	Li�1 .tj/ D 0, but 	Li�1 .ti/ > 0, so that
ti ¤ tj: In particular, this shows that the points t1; : : : ; tn are pairwise distinct.

Lemma 18.37 Lk D 0 for all k 2 N; k � jNj:
Proof Assume to the contrary that Lk ¤ 0 for some k � jNj. Then LjNj ¤ 0: Set
m WD jNj C 1. Since m > jNj D dimA, the point evaluations ltj , j D 1; : : : ;m; on A
are linearly dependent. Hence there are reals �1; : : : ; �m, not all zero, such that

mX
jD1

�jltj . f / D 0; f 2 A: (18.31)

Let r be the smallest index for which �r ¤ 0: Since LjNj ¤ 0 and r � 1 � jNj, we
have Lr�1 ¤ 0 and 	Li�1 .ti/ > 0 for i D 1; : : : ;m by construction. From (18.30)
it follows that Lr�1 D Lm C Pm

iDr 	Li�1 .ti/lti . Then, if �m is a finitely atomic
representing measure for Lm, so is �r�1 WD �m CPm

iDr 	Li�1 .ti/ıti for Lr�1 and
�r�1.ftrg/ � 	Lr�1 .tr/. Hence �r�1.ftrg/ D 	Lr�1 .tr/ D 
Lr�1 .tr/ > 0: Thus,
Proposition 18.31(ii) applies to �r�1, Lr�1, xi WD tr, so there exists a sequence
. pn/n2N from Pos.A;K/ such that pn.tr/ D 1 and limn pn.t/ D 0 for all atoms t ¤ tr
of �r�1: Since 	Li�1 .ti/ > 0 for i D 1; : : : ;m; the points tj, r < j � m; are atoms of
�r�1 and they are different from tr, as noted above. Setting f D pn in (18.31) and
passing to the limit we obtain

0 D lim
n!1

mX
jD1

�j ltj. pn/ D
mX
jDr

�j
�

lim
n!1 pn.tj/

� D
mX
jDr

�jıjr D �r:

This contradicts the choice of r and proves the assertion. ut
By Lemma 18.37, the above construction terminates. Let k 2 N be the smallest
number such that Lk�1 ¤ 0 and Lk D 0. By (18.30) we have for j D 1; : : : ; k,

L D
kX

iD1
	Li�1 .ti/lti ; (18.32)

Lj�1 D
kX
iDj

	Li�1 .ti/lti : (18.33)
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Note that k � jNj by Lemma 18.37. From (18.32) it follows that the measure

� WD
kX

jD1
mjıtj ; where mj WD 	Lj�1 .tj/; j D 1; : : : ; k;

belongs to ML;K. Since the points t1; : : : ; tk are pairwise distinct, as shown above,
and 	Lj�1 .tj/ > 0 for all j by construction, � is k-atomic. The functionals
Lj�1 in (18.33) are precisely the linear functionals Lj�1 associated with � in
Definition 18.36. Therefore, � is an ordered maximal mass representing measure
for L according to Definition 18.36. Moreover, � can be chosen so that an arbitrary
point t1 2 K satisfying 	L.t1/ > 0 is an atom of �. Then t1 2 VC.L;K/ by
Proposition 18.28(i). We summarize the preceding in the following theorem.

Theorem 18.38 Suppose that K is compact and L ¤ 0 is a truncated K-moment
functional on A. Let t1 2 K be such that 	L.t1/ > 0: Then the above construction
gives a k-atomic measure � DPk

jD1mjıxj 2ML;K, k � jNj, such that all atoms of
� are in K and � is ordered maximal mass.

Illustrative examples for this theorem are given in Sect. 19.4 and in Exercise
19.11.

18.6 Evaluation Polynomials

Throughout this section, we assume that L is a fixed positive functional on A2, that
is, L is a real linear functional on A2 such that L. f 2/ � 0 for f 2 A:

From Proposition 17.17(v) and formula (17.30) we recall

NL D ff 2 A W L. f 2/ D 0 g; VL D fx 2 Rd W f .x/ D 0 for all f 2 NLg:

For f 2 A we denote by Qf D f CNL the equivalence class of f 2 A in DL D A=NL.
Recall from Section 17.3 that there is a scalar product h�; �i on the vector space DL

defined by L. fg/ D hQf ; Qgi; f ; g 2 A:
Let t 2 VL: Since f .t/ D 0 for f 2 NL, there is a well-defined linear functional

Ft on DL D A=NL given by Ft. Qf / WD f .t/; f 2 A: Each linear functional on the
finite-dimensional real Hilbert space .DL; h�; �i/ is continuous, so by Riesz’ theorem
there is a unique element eEt 2 DL, Et 2 A, such that

f .t/ � Ft. Qf / D hQf ; eEti D L. f Et/; f 2 A: (18.34)

Definition 18.39 Et 2 A is called an evaluation polynomial at the point t 2 VL:

Note that the polynomial Et is not uniquely determined by t. In fact, it is only
determined up to a summand from the vector space NL, but the values of Et.�/ on
the set VL do not depend on the particular choice of the element of the equivalence
class eEt. In what follows we will fix a choice of the polynomial Et.
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Let fQfi W i D 1; : : : ; kg be an orthonormal basis of the Hilbert space DL.
Using (18.34) we develop eEt with respect to this basis and obtain

eEt D
kX

iD1
heEt; Qfii Qfi D

kX
iD1

fi.t/Qfi: (18.35)

As noted above, Qf .x/ D f .x/ for x 2 VL and f 2 A. Therefore,

Et.x/ D
kX

iD1
fi.t/fi.x/ for t; x 2 VL: (18.36)

Since the fi are polynomials, it follows from (18.36) that Et.x/ is jointly continuous
in .t; x/ for t; x 2 VL: Using (18.34) we derive

Et.t/ D L.EtEt/ D h QEt; QEti D k QEtk2 for t 2 VL; (18.37)

where k � k denotes the norm of the Hilbert space DL. In particular, eEt ¤ 0 in DL

and hence Et.t/ ¤ 0, since he; eEti D e.t/ > 0 by (18.34) and (18.1).
For t 2 Rd we now define another quantity �L.t/ by a variational problem:

�L.t/ D inf fL.p2/ W p 2 A; p.t/ D 1g D inf

�
L. p2/

p.x/2
W p 2 A

�
; (18.38)

where we set c
0
WD C1 for c � 0. The following result is similar to Proposi-

tion 9.12.

Proposition 18.40 For t 2 VL the infimum in (18.38) is a minimum and equal to
keEtk�2. Further, keEtk�2eEt is the unique element Qp 2 DL such that the infimum in
(18.38) is attained at p 2 A.

Proof The proof is almost verbatim the same as the proof of Proposition 9.12.
Let p 2 A: We develop Qp with respect to the orthonormal basis fef1; : : : ;efkg:

Qp D
X

i
ciefi; where ci D hQp;efii; and L. p2/ D kQpk2 D

X
i
c2i :

Hence p.t/ DPi cifi.t/. Therefore, the problem in (18.38) is to minimize
P

i c
2
i for

.c1; : : : ; ck/T 2 Rk under the constraint
P

i cifi.t/ D 1. This problem is solved by
Lemma 9.13, now applied to Rk with g D .c1; : : : ; ck/T and f D . f1.t/; : : : ; fk.t//T .
Since fef1; : : : ;efkg is an orthonormal basis, (18.35) yields keEtk2 D P

i fi.t/
2. Then,

by Lemma 9.13, the infimum is attained at p if and only if ci D fi.t/keEtk�2, that is,

Qp D
X

i
fi.t/keEtk�2efi D keEtk�2eEt;

and the minimum is
�P

i fi.t/
2
��1 D keEtk�2. ut
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Note that if L is a truncated K-moment functional, then we have

�L.t/ � 
L.t/ � 	L.t/ for t 2 VL \K: (18.39)

Indeed, the first inequality follows at once by comparing the corresponding defini-
tions (18.22) and (18.38), while the second inquality holds by (18.25).

Definition 18.41 A family fExj W j D 1; : : : ; kg of evaluation polynomials Exj , xj 2
VL, is called orthogonal if hfExi ;fExji D 0 for i; j D 1; : : : k; i ¤ j.

As noted above, fExi ¤ 0. Hence a set fExj W j D 1; : : : ; kg of evaluation
polynomials is orthogonal if and only if there are numbers ci > 0, i D 1; : : : ; k;
such that

hfExi ;
fExji D c�1

i ıij; i; j D 1; : : : ; k: (18.40)

Here the inverse c�1
i is taken in order to obtain formula (18.41) below. Note that

combining (18.34) and (18.40) yields Exi.xj/ D c�1
i ıij.

The remaining results of this section deal with truncated moment functionals L
that have .rankL/-atomic representing measures. The next theorem characterizes
such functionals in terms of evaluation polynomials.

Theorem 18.42 Let L be a positive functional on A2. Set k WD rankL. There is
a one-to-one correspondence between orthogonal families fExj W j D 1; : : : ; kg of
evaluation polynomials Exj , xj 2 VL; and k-atomic representing measures � of L. It

is given by � DPk
jD1 cjıxj , where cj are the numbers from (18.40). In this case,

�L.xj/ D cj ; j D 1; : : : ; k: (18.41)

Proof Let fExj W j D 1; : : : ; kg be an orthogonal family of evaluation polynomials.

Put � D Pk
jD1 cjıxj . Since k D rankL D dim DL by Proposition 17.17(iii), it

follows from (18.40) that fc1=2j
eExj W j D 1; : : : ; kg is an orthonormal basis of the

Hilbert space DL. Therefore, using Parseval’s identity and (18.35) we derive

L. pq/ D h Qp; Qqi D
X

j
h Qp; c1=2j

eExj ihQq; c1=2j
eExji

D
X

j
cjh Qp;eExji hQq;eExji D

X
j
cjp.xj/q.xj/ D

Z
. pq/.x/ d�.x/

for p; q 2 A. Since A2 is the span of products pq with p; q 2 A, the preceding implies
that L. f / D R f d� for all f 2 A2, that is, � 2ML.

Conversely, suppose that � D Pk
iD1miıxi is a k-atomic measure of ML. By

Proposition 17.17(vi), each atom xj is in VL. Let J denote the embedding of A into
L2.Rd; �/ and h�; �i� the scalar product of L2.Rd; �/. Then

h Qp; Qqi D L. pq/ D
Z

pq d� D hJ. p/; J.q/i� ; p; q 2 A: (18.42)
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Hence Qp 7! J. p/ is a well-defined isometric linear map of DL into L2.Rd; �/. Since
� is k-atomic and hence dimL2.Rd; �/ D k D dim DL, J is bijective. Hence for
any j D 1; : : : ; k there is a pj 2 A such that J. pj/ is the characteristic function of the
point xj, that is, J. pj/.xi/ D pj.xi/ D ıji for i; j D 1; : : : ; k: By (18.42),

hQf ;m�1
j epji D m�1

j L. fpj/ D m�1
j

Z
fpj d� D m�1

j

X
i
mif .xi/pj.xi/ D f .xj/

for f 2 A, that is, Exj WD m�1
j pj is an evaluation polynomial at xj. Further,

hm�1
i epi;m�1

j epjiDm�1
i m�1

j

Z
pipj d� D m�1

i m�1
j

X
n
mnpi.xn/pj.xn/ D m�1

i ıij:

This shows that fExj W j D 1; : : : ; kg is an orthogonal family of evaluation
polynomials for L with constants cj D mj in (18.40). The corresponding measure isP

j mjıxj D �. This proves the asserted one-to-one correspondence.
We verify (18.41). Take p 2 A such that p.xj/ D 1. Since k D dim DL, the set

feExj W j D 1; : : : ; kg is an orthogonal basis of DL; so Qp D Pk
iD1 ˛ieExi with ˛i 2 R.

By (18.40), we have keExi k2 D Exi.xi/ D c�1
i for each i. Using this formula we

derive 1 D p.xj/ DPk
iD1 ˛iExi.xj/ D ˛jc�1

j , so that ˛j D cj for all j. Therefore,

L. p2/ D k Qp k2 D
X

i
˛2i keExi k2 D

X
i
˛2i c

�1
i :

Hence the infimum in Eq. (18.38) is obviously obtained when we set ˛i D 0 for all
i ¤ j. Thus, �L.xj/ D ˛2j c�1

j D cj. ut
The next theorem deals with the “nice” but rare case when Pos.A2;K/ DPA2; see
e.g. Exercise 18.9 for a very simple example.

Theorem 18.43 Suppose that the set K is compact and

Pos.A2;K/ D
X

A2 WD ˚ X
i
f 2i W fi 2 A

�
:

(i) If L is a positive linear functional on A2, then L has a .rankL/-atomic maximal
mass representing measure � with all atoms contained in VL \K. Moreover,

	L.x/ D �L.x/ for x 2 VL \K: (18.43)

(ii) Assume that f dK D 0 for f 2 A implies f D 0. Then C.A2;K/ D jNj:
Proof

(i) First we note that L is a truncated K-moment functional by Theorem 17.10,
since Pos.A2;K/ DPA2 and K is compact.
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We verify (18.43). Define L1 WD L � �L.x/lx: By the second equality
in (18.38), we have L1. f 2/ D L. f 2/ � �L.x/f .x/2 � 0 for f 2 A; that
is, L1 is a positive functional on A2. Thus, again by Theorem 17.10, L1 is a
truncated K-moment functional. If �1 2ML1;K; then � WD �1 C �L.x/ıx is a
representing measure of L D L1 C �L.x/lx: Hence 	L.x/ � �.fxg/ � �L.x/.
Since 	L.x/ � �L.x/ by (18.39), (18.43) is proved.

Next we prove the following assertion: If �L.x/ > 0, then

rankL D 1C rankL1: (18.44)

Indeed, since L. f 2/ � L1. f 2/ � 0 for f 2 A, we have Hn.L/ � Hn.L1/�0 and
hence rankL � rankL1. By Proposition 18.40 there is a uniqueep 2 DL such
that the infimum in (18.38) is attained at p, that is, p.x/ D 1 and �L.x/ D L. p2/.
Then L1. p2/ D 0 and L. p2/ ¤ 0. From the uniqueness of Qp and (17.29) we
conclude that NL is a subspace of NL1 of codimension 1. Hence (18.44) follows
from Proposition 17.17.

To prove the remaining assertions on L we shall proceed by induction.
First assume that �L.x/ D 0 for all x 2 VL \ K. Then 	L.x/ D 0 on VL \ K

by (18.43). Since each� 2ML;K is supported on VL\K, Theorem 17.2 implies
that L D 0, so the assertions on L hold trivially.

Now we assume that �L.x1/ > 0 for some x1 2 VL \ K. Then, as
shown above, L1 WD L � �L.x1/lx1 is a truncated K-moment functional satis-
fying (18.44). We replace L by L1 and proceed by induction. After k WD rankL
steps we obtain a positive functional Lk such that rankLk D 0. Then Lk D 0 and

L D Lk C
kX

jD1
�Lj�1 .xj/lxj D

kX
jD1

�Lj�1 .xj/lxj ; where L0 WD L:

Hence � WDPk
jD1 �Lj�1 .xj/ıxj is a representing measure of L such that

jsupp�j � k D rankL D rankH.L/:

By (17.38), rankH.L/ � jsupp�j: Thus rankL D jsupp�j; so � is
.rankL/-atomic. Therefore Theorem 18.42 applies and formula (18.41) yields
�Lj�1 .xj/ D �L.xj/ for j D 1; : : : ; k. Since �L.xj/ D 	L.xj/ by (18.43), we have
�Lj�1 .xj/ D 	L.xj/, that is, � has maximal mass at each atom xj. Thus, � is
maximal mass.

(ii) By (i), each L 2 L.A2;K/ has a .rankL/-atomic representing measure. Hence
C.A2;K/ � jNj; since rankL � jNj. From the assumption of (ii) it follows
that there are points x1; : : : ; xjNj 2 K such that the functionals lx1 ; : : : ; lxjNj

are

linearly independent on A. Define L D PjNj
jD1 lxj and � D PjNj

jD1 ıxj : Then
L 2 L.A2;K/ and � 2ML;K: From Proposition 17.21, rankL D rankH.L/ D
jNj. By (17.38), L has no representing measure with fewer atoms. Hence jNj �
C.A2;K/. Thus, C.A2;K/ D jNj: ut
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Remark 18.44 In condition (18.1) we assumed that A contains an element e such
that e.x/ � 1 on K. If L is a truncated K-moment functional on A2, all results of
this section hold if e 2 A2 rather than e 2 A: Indeed, the proof of Theorem 18.43
remains valid, since Theorem 17.10 was applied to A2. Since e 2 A2, for each x 2 K
there is an fx 2 A such that fx.x/ ¤ 0; so hfx; eExi D fx.x/ ¤ 0, and hence eEx ¤ 0: ı

There is a similar result about positive functionals of “small rank”. It is based on
the following theorem due to G. Blekherman [Bl2, Theorem 2.3].

Theorem 18.45 If L is a positive linear functional on RdŒ x �2n such that

rank L � 3n � 3 if n � 3; rank L � 6 if n D 2; (18.45)

then L is a truncated moment functional.

The proof in [Bl2] is based on tools from algebraic geometry (Cayley–Bacharach
duality, see e.g. [EGH]) which are beyond the scope of this book. Taking Theo-
rem 18.45 for granted we obtain the following result.

Theorem 18.46 Let d; n 2 N and let L be a positive linear functional on RdŒ x �2n;
that is, L. f 2/ � 0 for f 2 RdŒ x �n. Suppose that condition (18.45) is satisfied. Then
L is a truncated moment functional with .rankL/-atomic representing measure and
the equality (18.43) holds with K D Rd.

The proof of Theorem 18.46 follows the same lines as the proof of Theo-
rem 18.43 with Theorem 17.10 replaced by Theorem 18.45. We omit the details.

18.7 Exercises

1. Suppose that K is compact and let f 2 A. Prove the following:

a. f is an interior point of Pos.A;K/ if and only if f .x/ > 0 for all x 2 K:
b. f is a boundary point of Pos.A;K/ if and only if f .x0/ D 0 for some x0 2 K:
c. The assertion of a. is no longer valid in general if K is not compact.

Hint: f .x/ D 1C x2;K D R;A D RŒx�n with n � 3:
2. Let A D RdŒ x �2n and let K be a closed subset of Rd. Discuss whether or not

(depending on K) the following statements are true:

a. Each boundary point of S.A;K/ is determinate.
b. Each interior point of S.A;K/ is indeterminate.

3. ( NC.Ls;K/ and VC.Ls;K/ for one-dimensional bounded intervals)
Let d D 1;K D Œ0; 1�; m 2 N; and s 2 SmC1; s ¤ 0. Suppose that ind.s/ �

m, see Definitions 10.4 and 10.6. Use Theorem 10.7 to determine NC.Ls;K/ and
VC.Ls;K/.
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4. Let d D 1;K D Œ0; 1�;A D RŒx�2; and x1 D 0; x2 D 1
2
; x3 D 1. Define L DP3

jD1 lxj . Show that 	L.0/ D 6
5
.

5. Let d D 1;K D Œ0; 1�;A D RŒx�n. Consider a k-atomic measure � DPk
jD1mjıxj

and L DPk
jD1mjlxj :

a. Decide when mj D 	L.xj/ for one j.
b. Decide when � is maximal mass.
c. Give an example such that m1 D 	L.x1/, but m2 ¤ 	L.x2/.
d. Discuss these problems in the case K D R.

6. Let d D 2, x1 D .0; 0/; x2 D .1; 0/; x3 D .0; 1/; x4 D .1; 1/. Set � WDP4
jD1mjıxj and L WD P4

jD1mjıxj , where mj > 0; j D 1; 2; 3; 4: Suppose that
x1; x2; x3; x4 2 K.

a. Suppose that R2Œ x �2 	 A. Show that � is an extreme point of ML;K:
b. Let K be a rectangle and A D R2Œ x �2. Find a 3-atomic measure � 2ML;K:
c. Suppose that R2Œ x �4 	 A. Show that � is determinate.

7. Suppose that K is compact. Show that C.A;K/ � 1C sups2@S.A;K/C.s/:
Hint: Use Proposition 1.43. Write s 2 S.A;K/ as s D s0 C cLs.x/s.x/, s0 2
@S.A;K/:

8. Extend the construction of maximal mass measures in Example 18.34 by taking
products of squares of linear polynomials in (18.28).

9. Let d � 2, N D f.1; 0; : : : ; 0/; : : : ; .0; : : : ; 0; 1/g: Let K be a compact subset of
Rd such that Sd�1 	 K. Then A2 are the homogeneous polynomials in RdŒ x � of
degree 2. Show that Pos.A2;K/ DP A2 and C.A2;K/ D d.

18.8 Notes

The real algebraic set VC.L/ first appeared in the Thesis of J. Matzke [Mt], while
the core variety V.L/ was invented by L. Fialkow [F2]. Theorem 18.22 is due to G.
Blekherman and L. Fialkow (personal communication from L. Fialkow, June 2016).
Theorems 18.21 and 18.23 were proved in [DSm1]. Most of the results on maximal
masses in Sects. 18.4 and 18.5 are taken from [Sm10]. A number of results of this
chapter (for instance, Theorems 18.42 and 18.43) are new.



Chapter 19
The Truncated Moment Problem
for Homogeneous Polynomials

Let Hd;m denote the real homogeneous polynomials in d variables of degreem. In the
final chapter of the book we deal with the truncated moment problem for Hd;2n on
Rd, on the unit sphere Sd�1, and on Sd�1C . Since Sd�1C is a realization of the projective
space Pd�1.R/, the latter is in fact the truncated projective moment problem. The
existence problem in this case was considered in Sect. 17.2.

In Sects. 19.1 and 19.2, we treat the apolar scalar product on the vector space
Hd;m and its relations to the actions of differential operators. These are powerful
technical tools for the study of homogeneous polynomials. They are applied
in Sect. 19.3 to the truncated projective moment problem and to Carathéodory
numbers. In Sect. 19.4, we develop some properties of the Robinson polynomial
and use them to construct interesting examples on the truncated moment problem.
In Sect. 19.5, some results on zeros of positive polynomials (Theorem 19.32) are
derived. Section19.6 contains some applications to the truncated moment problem
on R2.

In this chapter, N is the set

Nd;m WD f˛ 2 Nd
0 W ˛1 C � � � C ˛d D mg; where m 2 N;

and the corresponding span A D Lin fx˛ W ˛ 2 Nd;m g is the vector space Hd;m. The
elements of Hd;m are also called d-forms of degree m, or briefly, forms.

19.1 The Apolar Scalar Product

First we note that the vector space Hd;m has the dimension

dimHd;m D jNd;mj D
 
mC d � 1
d � 1

!
: (19.1)
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Our first aim is to define the apolar scalar product Œ�; �� on Hd;m. We abbreviate

 
m

˛

!
D mŠ

˛1Š : : : ˛dŠ
for ˛ D .˛1; : : : ; ˛d/ 2 Nd;m:

Let us consider homogeneous polynomials

p.x/ D
X
˛2Nd;m

 
m

˛

!
a˛x

˛ and q.x/ D
X
˛2Nd;m

 
m

˛

!
b˛x

˛ (19.2)

of Hd;m and define

Œ p; q� WD
X
˛2Nd;m

 
m

˛

!
a˛b˛: (19.3)

(The reason for including the multinomial coefficients
�m
˛

�
in (19.2) and (19.3) will

be seen below when we derive a number of nice formulas.)

Definition 19.1 Œ�; �� is called the apolar scalar product on Hd;m.

It is obvious that Œ�; �� is a scalar product on Hd;m. Thus, .Hd;m; Œ�; ��/ is a finite-
dimensional real Hilbert space. Note that the coefficient a˛ of p 2 Hd;m in (19.2)
can be recovered from the apolar scalar product by

Œ p; x˛� D a˛; ˛ 2 Nd;m:

As usual, a � b D a1b1 C � � � C adbd denotes the standard scalar product of Rd.
Let y D .y1; : : : ; yd/ 2 Rd. We denote by .y�/m the element of Hd;m defined by

.y �/m.x/ WD .y � x/m �
� dX

jD1
yjxj

�m

D
X
˛2Nd;m

 
m

˛

!
y˛x˛; (19.4)

where the last equality holds by the multimonomial theorem. The map y 7! .y � x/2n,
called the 2n-th Veronese embedding, plays an important role in algebraic geometry.

Now suppose that f .x/ D Pk
jD1 cj.yj � x/m 2 Hd;m, where yj 2 Rd and cj 2 R,

and let p.x/ 2 Hd;m be as in (19.2). From (19.4) it follows that

Œ p; f � D
kX

jD1

 
m

˛

!
a˛cjy

˛
j D

kX
jD1

cjp.yj/ D
kX

jD1
cjlyj. p/; p 2 Hd;m: (19.5)

Thus, the scalar product with f is just the corresponding linear combination of point
evaluations lyj at yj. This gives the link to the truncated moment problem. Further,
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Eq. (19.5) shows the reproducing kernel property of the apolar scalar product:

Œ p; .y � x/m� D ly. p/ D p.y/; y 2 Rd; p 2 Hd;m: (19.6)

That is, the point evaluation at y is the linear functional given by .y�/m.
In particular, setting p D .a�/m and y D b in (19.6), we obtain

Œ.a �/m; .b �/m� D .a � b/m; a; b 2 Rd; (19.7)

where a � b means the usual scalar product in Rd. Therefore, if a?b in Rd, then
.a �/m?.b �/m in the Hilbert space .Hd;m; Œ�; ��/. Further, if the set fy1; : : : ; yrg is
orthonormal in Rd, so is f.y1 �/m; : : : ; .yr �/mg in .Hd;m; Œ�; ��/.

Next we derive some useful facts on bases and spanning sets of Hd;m.

Lemma 19.2 For each open subset U ofRd, the polynomials .y �/m.x/; y 2 U; span
the vector spaceHd;m:

Proof Let p 2 Hd;m: Since .Hd;m; Œ�; ��/ is a Hilbert space, it suffices to show that
Œ p; .y � x/m� D 0 for all y 2 U implies p D 0. By (19.6), Œ p; .y � x/m� D p.y/ D 0

on the open set U. Therefore, p D 0: ut
The following is a classical result of O. Biermann (1903).

Proposition 19.3 The set f.˛�/m.x/ W ˛ 2 Nd;mg is a basis of the vector spaceHd;m:

Proof For ˇ 2 Nd;m we define

fˇ.x/ D
dY

jD1

ˇj�1Y
iD0

.mxj � i.x1 C � � � C xd//: (19.8)

Since fˇ is a product of jˇj D m homogeneous linear polynomials, fˇ 2 Hd;m:

Let ˛ 2 Nd;m: First suppose that ˛ ¤ ˇ. There is an index j such that ˛j < ˇj.
Then there is a factor with indices j; i D ˛j in (19.8). Evaluated at the point x D ˛

this factor is m˛j � ˛j.˛1 C � � � C ˛d/ D 0. Hence fˇ.˛/ D 0. If ˇ D ˛, then

fˇ.ˇ/ D
dY

jD1

ˇj�1Y
iD0

.mˇj � i m/ D mm
dY

jD1
ˇjŠ ¤ 0:

Thus, Œ fˇ; .˛ � x/m� D fˇ.˛/ D 0 for ˛ ¤ ˇ and Œ fˇ; .ˇ � x/m� D fˇ.ˇ/ ¤ 0.
This in turn implies that the polynomials .˛�/m.x/, where ˛ 2 Nd;m; are linearly
independent. Since the vector space Hd;m D Lin fx˛ W ˛ 2 Nd;mg has dimension
jNd;mj, they form a vector space basis of Hd;m. ut
Definition 19.4 A subset fy1; : : : ; yrg of Rd is called a basic set of nodes if the
polynomials f.y1 �/m; : : : ; .yr �/mg form a basis of the vector space Hd;m.
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Obviously, if fy1; : : : ; yrg is a basic set of nodes, then r D jNd;mj D dimHs;m.
Proposition 19.3 says that the set Nd;m is a basic set of nodes.

Remark 19.5 By Lemma 19.2, each polynomial f 2 Hd;m can be written in the form
f .x/ D Pk

jD1 cj.yj � x/m, where cj 2 R and yj 2 Rd. The smallest number k among
all such representations of f is called the real Waring rank of f . Note that here the
numbers cj are real, while for the width w. f / of f 2 Qd;2n (see Definition 19.17
below) the numbers cj are positive. ı

Let f fi W i 2 Ig and fgi W i 2 Ig be subsets of Hd;m, where I is an index set such
that jIj D dimHd;m D

�mCd�1
d�1

�
: We say that the sets are dual bases of Hd;m if

Œ fi; gj� D ıi;j for i; j 2 I: (19.9)

It is well-known from linear algebra and it is easy to verify that in this case the sets
f fi W i 2 Ig and fgi W i 2 Ig are indeed vector space bases of Hd;m and

f D
X

i2I Œ fi; f � gi D
X

i2I Œgi; f � fi for f 2 Hd;m: (19.10)

Proposition 19.6 Two subsets f fi W i 2 Ig and fgi W i 2 Ig, jIj D �mCd�1
d�1

�
, of Hd;m

form dual bases ofHd;m if and only if the following Marsden identity holds:

.y � x/m D
X

i2I fi.y/gi.x/; x; y 2 Rd: (19.11)

Proof Suppose that these sets are dual bases. Setting f D .y �/m in (19.10) and using
that Œ fi; .y �/m� D fi.y/ by (19.6) we obtain

.y �/m D
X
i

fi.y/gi: (19.12)

Evaluating both sides of this equation at x yields (19.11).
Conversely, assume that (19.11) holds. Then (19.12) holds for y 2 Rd. Since

Hd;m is spanned by the functions .y�/m, y 2 Rd; (19.12) implies that the functions
gi; i 2 I; span the whole vector space Hd;m: Therefore, since jIj D �mCd�1

d�1
� D

dimHd;m, it follows that fgi W i 2 Ig is a basis of Hd;m. Now we take y as a variable
and apply the apolar scalar product with gj.y/ in (19.11). Then we obtain

gj.x/ D Œgj.y/; .y � x/m� D
X

i2I Œ fi; gj�gi.x/; x 2 Rd:

Since fgi W i 2 Ig is a basis, we conclude that Œ fi; gj� D ıij for i; j 2 I. This means
that the corresponding sets are dual bases. ut
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19.2 The Apolar Scalar Product and Differential Operators

The apolar scalar product is a valuable tool for the study of forms and truncated
moment problems. One reason for this is its nice interplay with differential
operators.

Let i 2 f1; : : : ; dg and ˛ D .˛1; : : : ; ˛d/ 2 Nd
0: Then we abbreviate @i D @

@xi
and

@˛ D .@1/˛1 � � � .@d/˛d . Further, we define

p.@/ WD
X

˛
a˛@

˛ for p.x/ D
X

˛
a˛x

˛ 2 RdŒ x �

and consider p.@/ as a differential operator acting on polynomials. Since the
operators @

@xi
and @

@xj
commute on polynomials, we have

.pg/.@/f D p.@/q.@/f D q.@/p.@/f for p; q; f 2 RdŒ x �: (19.13)

Lemma 19.7 Let y1; : : : ; yk 2 Rd, c1; : : : ; ck 2 R, and define

f .x/ D
kX

jD1
cj.yj � x/m 2 Hd;m:

If p 2 Hn;d and n � m, then

. p.@/f /.x/ D m.m � 1/ : : : .mC 1 � n/
kX

jD1
cjp.yj/.yj � x/m�n: (19.14)

Let y 2 Rd and p 2 Hd;m. Then

p.@/.y � x/m D mŠ p.y/: (19.15)

In particular, if p.y/ D 0, then p.@/.y � x/m D 0:
Proof For ˛ 2 Nd;n we derive

@˛.y � x/m D
�
@

@x1

�˛1
� � �
�
@

@xd

�˛d
.y � x/m

D m.m � 1/ : : : .mC 1 � n/ y˛11 � � � y˛dd .y � x/m�n

D m.m � 1/ : : : .mC 1 � n/ y˛.y � x/m�n:

By linearity this implies (19.14). Formula (19.15) follows from (19.14) by setting
f .x/ D .y � x/m. ut
Lemma 19.8 If p; q 2 Hd;m; then Œ p; q� D 1

mŠp.@/q D 1
mŠq.@/p:
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Proof By the symmetry of the scalar product it suffices to prove the first formula.
By linearity we can restrict ourselves to p D �m

˛

�
x˛ and q D xˇ , where ˛; ˇ 2 Nd;m.

First suppose that ˛ ¤ ˇ. Then Œx˛; xˇ� D 0 by (19.3). Since ˛; ˇ 2 Nd;m and

˛ ¤ ˇ, there is an index j 2 f1; : : : ; dg such that ˛j > ˇj. Then . @
@xj
/˛j x

ˇj
j D 0 and

hence @˛xˇ D 0. That is, Œ
�m
˛

�
x˛; xˇ� D 1

mŠ

�m
˛

�
@˛xˇ D 0 for ˛ ¤ ˇ.

Now assume that ˛ D ˇ. Then we have ˛j D ˇj and hence . @
@xj
/˛j x

ˇj
j D ˛jŠ for

all j D 1; : : : ; d. This yields @˛xˇ D ˛1Š : : : ˛dŠ and

1

mŠ

 
m

˛

!
@˛xˇ D 1

mŠ

mŠ

˛1Š : : : ˛dŠ
˛1Š : : : ˛dŠ D 1 D

� m
˛

!
x˛; xˇ

�
:

This completes the proof. ut
Combining formula (19.15) with Lemma 19.8 we obtain the following

Corollary 19.9 If f .x/ DPk
jD1 cj.yj � x/m 2 Hd;m with yj 2 Rd, cj 2 R, then

1

mŠ
f .@/p D Œ p; f � D

kX
jD1

cjp.yj/ D
kX

jD1
cjlyj. p/ for p 2 Hd;m: (19.16)

Formula (19.16) expresses the apolar scalar product in terms of differential
operators. In Theorems 19.14 and 19.16 below we apply this to the moment
problem.

Lemma 19.10 Let n 2 N; n < m. If p 2 Hd;m, q 2 Hd;n and f 2 Hd;m�n, then

mŠŒ p; fq�m D .m � n/ŠŒ f ; q.@/p�m�n;

where Œ�; ��m and Œ�; ��m�n are the apolar scalar products of Hd;m and Hd;m�n,
respectively.

Proof Using Lemma 19.8 and Eq. (19.13) we derive

mŠŒ p; fq�m D .fq/.@/p D f .@/.q.@/p/ D .m � n/ŠŒ f ; q.@/p�m�n: ut

Remark 19.11 Let n;m 2 N; n � m. From formula (19.14) it follows that

Œ p; f �n;m WD .m.m � 1/ : : : .mC 1 � n//�1p.@/f ; p 2 Hd;n; f 2 Hd;m; (19.17)

defines a bilinear mapping, called the apolar pairing, of Hd;n �Hd;m to Hd;m�n. In
the special case m D n the right-hand side of (19.17) becomes the scalar mŠp.@/f
and we obtain the apolar scalar product Œ�; �� on Hd;m. ı

We close this section by deriving the following version of Sylvester’s apolarity
lemma. It illustrates nicely the usefulness of the apolar scalar product, but will not
be needed later for the study of moment problems.
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Proposition 19.12 Let k;m 2 N; k � m; and .aj; bj/ 2 R2, j D 1; : : : ; k: Suppose
that ajbi ¤ aibj for i ¤ j. Set q D .b1x1 � a1x2/ : : : .bkx1 � akx2/: Let f 2 H2;m:

Then we have q.@/f D 0 if and only if f is of the form

f D
kX

jD1
cj.ajx1 C bjx2/

m with c1; : : : ; cm 2 R: (19.18)

Proof Let E be the subspace of H2;m spanned by hj WD .ajx1C bjx2/m, j D 1; : : : ; k.
We describe the orthogonal compliment E? of E with respect to the apolar scalar

product. Let g 2 H2;m. Then g 2 E? if and only if Œhj; g� D g.aj; bj/ D 0 for
j D 1; : : : ; k. Thus, E? is the set of g 2 H2;m vanishing at all .aj; bj/. Therefore,
since g is a homogeneous polynomial in 2 variables, each polynomial bjx1 � ajx2
divides g. The assumption ajbi ¤ aibj for i ¤ j implies that bix1�aix2 and bjx1�ajx2
are relatively prime for i ¤ j. Hence the product q of all factors bjx1 � ajx2 divides
g. That is, g D hq for some h 2 H2;m�k. Conversely, each g of the form g D hq
vanishes at all points .aj; bj/, so it is in E?. Summarizing, we have shown that

E? D fhq W h 2 H2;m�k g: (19.19)

First let q.@/f D 0. Then mŠŒg; f � D g.@/f D h.@/q.@/f D 0 for g D hq 2 E?
by (19.19), so that f 2 E?? D E. This means that f is of the form (19.18).

Conversely, assume that f has a representation (19.18). Then f 2 E. By (19.19),
mŠŒhq; f � D .hq/.@/f D h.@/q.@/f D 0 for all h 2 H2;m�k. If k D m, then
q.@/f D 0 and we are finished. Now suppose k < m: Note that q.@/f 2 H2;m�k:

If Œ�; ��0 denotes the apolar scalar product of H2;m�k, we have .m � k/ŠŒh; q.@/f �0 D
h.@/q.@/f D 0 for all h 2 H2;m�k, that is, q.@/f 2 .H2;m�k/

? D f0g. Thus,
q.@/f D 0. ut

19.3 The Apolar Scalar Product and the Truncated Moment
Problem

Let us begin by defining three cones in the vector space Hd;m resp. Hd;2n:

Qd;m WD
˚
f 2 Hd;m W f D

kX
jD1
.yj�/m; where y1; : : : ; yk 2 Rd; k 2 N

�
; (19.20)

X2

d;2n
WD ˚ f 2 Hd;2n W f D

kX
jD1

f 2j ; where f1; : : : ; fk 2 Hd;n; k 2 N
�
; (19.21)

Pd;2n WD Pos.Hd;2n;R
d/ � ˚f 2 Hd;2n W f .x/ � 0 for x 2 Rd

�
: (19.22)
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Since �.y � x/m D . m
p
�y � x/m for � � 0, Qd;m is a cone in Hd;m. Obviously, Pd;2n andP2

d;2n are cones in Hd;2n. Clearly,

Qd;2n 	
X2

d;2n
	 Pd;2n: (19.23)

In general, we have Qd;2n ¤ Pd;2n. Exercise 19.6 contains an example of a
polynomial p 2 P2

2;4 such that p.x/ > 0 for all x 2 R2nf0g, but p … Q2;4: At

the end of this section we discuss briefly when the equality
P2

d;2n D Pd;2n holds.
Recall from Lemma 19.2 that the polynomials .y�/m 2 Qd;m; y 2 Rd, span Hd;m.

Thus Qd;m, hence
P2

d;2n and Pd;2n by (19.23), span Hd;m resp. Hd;2n. Therefore, all
three cones have nonempty interiors in Hd;m resp. Hd;2n by Proposition A.33(i).

Proposition 19.13 Qd;2n and Pd;2n are closed in the norm topology of Hd;2n and
they are dual cones to each other with respect to the apolar scalar product, that is,

Qd;2n D f f 2 Hd;2n W Œ p; f � � 0 for p 2 Pd;2n g; (19.24)

Pd;2n D f p 2 Hd;2n W Œ p; f � � 0 for f 2 Qd;2n g: (19.25)

Proof Obviously, Pd;2n is closed. We prove that Qd;2n is closed. Set r WD dimHd;2n.
Let . fk/k2N be a sequence from Qd;2n converging to f 2 Hd;2n. From Carathéodory’s
theorem (Proposition A.35) and the definition of Qd;2n it follows that each fk is of
the form

fk.x/ D
rX

jD1
.y.k/j � x/2n; where y.k/j D .ykj1; : : : ; ; ykjd/T 2 Rd: (19.26)

Fix i 2 f1; : : : ; dg. The coefficient of x2ni in fk is
Pr

jD1.ykji/2n. Clearly, as k ! 1,
these numbers converge to the coefficient of x2ni in f . In particular, these sequences
are bounded, so there exists a C > 0 such that jykjij � 1CPr

lD1.ykli/2n � C for all
k; j; i. Hence we can choose a subsequence .km/m2N such that yji WD limm!1 ykmji
exists. Setting yj D .yj1; : : : ; yjd/T and passing to the limit k!1 in (19.26) we get
f .x/ DPr

jD1.yj�/2n, so that f 2 Qd;2n. This proves that Qd;2n is closed.
We verify (19.24) and (19.25). We identify the dual of Hd;2n with the functionals

Œ�; f � and Œ p; ��, respectively; then the sets on the right-hand sides of (19.24)
and (19.25) are the dual cones .Pd;2n/

^ and .Qd;2n/
^, respectively. Let f DPr

jD1.yj�/2n and p 2 Pd;2n: Then, by (19.5), Œ p; f � D Pr
jD1 p.yj/ � 0. Therefore,

Qd;2n 	 .Pd;2n/
^ and Pd;2n 	 .Qd;2n/

^; so that .Qd;2n/
^ � .Pd;2n/

^^ and .Pd;2n/
^ �

.Qd;2n/
^^:

On the other hand, since Pd;2n and Qd;2n are closed, .Pd;2n/
^^ D Pd;2n and

.Qd;2n/
^^ D Qd;2n by the bipolar theorem (Proposition A.32). By the preceding we

have proved that Qd;2n D .Pd;2n/
^ and Pd;2n D .Qd;2n/

^; or equivalently, that (19.24)
and (19.25) are satisfied. ut
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Let us call a truncated Rd-moment functional on Hd;m (as defined in Defini-
tion 17.1) simply a moment functional. Our first main result in this section is the
following.

Theorem 19.14 Let f 2 Qd;m and

f .x/ D
kX

jD1
cj.yj � x/m with y1; : : : ; yk 2 Rd; c1 > 0; : : : ; ck > 0; k 2 N:

(19.27)
Then there is a moment functional Lf onHd;m defined by

Lf . p/ WD 1

mŠ
f .@/p D Œ p; f � D

kX
jD1

cjlyj. p/; p 2 Hd;m; (19.28)

with representing measure � D Pk
jD1 cjıyj : Each moment functional on Hd;m is of

the form Lf with f 2 Qd;m uniquely determined.

Proof Equation (19.16) gives (19.28). The latter means that Lf is a moment
functional and � is a representing measure of Lf .

Conversely, let L be a moment functional on Hd;m. If L D 0, then L D Lf for
f .x/ WD .0�x/m D 0. Now let L ¤ 0. By Theorem 17.2, L has a k-atomic representing
measure � D Pk

jD1 cjıyj , where cj > 0 and k 2 N. Then f .x/ WD Pk
jD1 cj.yj � x/m

belongs to Qd;m and formula (19.16) implies that L D Lf .
Suppose that Lf D Lg for f ; g 2 Qd;m. Then Œ p; f � D Œ p; g� by (19.28) and hence

Œ p; f�g� D 0 for all p 2 Hd;m. Because Œ�; �� is a scalar product on Hd;m, we conclude
that f D g. ut

Obviously, c.y�x/m D .. m
p
c y/�x/m for c � 0. Therefore, since the polynomials in

Hd;m are homogeneous, the representation (19.27) of f 2 Qd;m in Theorem 19.14 and
the representing measure � of the truncated moment functional Lf are not unique.

There are several natural ways of normalizing these representations. Without loss
of generality let us assume that f ¤ 0 and yj ¤ 0 for all j.

First, upon replacing yj by m
p
cj yj and allowing points of Rd, we can always

assume that cj D 1 for all j: Secondly, replacing yj by kyjk�1yj and cj by kyjkmcj
and allowing coefficients cj > 0, we can assume that all points yj belong to the unit
sphere Sd�1 of Rd. Further, thirdly, upon replacing yj by �yj if necessary, we can
assume that all yj are in Sd�1C . Recall that Sd�1C denotes the set of all t D .t1; : : : ; td/
of the unit sphere Sd�1 for which the first nonzero coordinate tj is positive. These
three normalizations mean to study the truncated moment problem for the vector
space Hd;m on Rd, Sd�1; and Sd�1C ; respectively.

Since Sd�1C is a realization of the projective space Pd�1.R/ (see Sect. 17.2), the
normalization by Sd�1C refers to the truncated moment problem forHd;m onPd�1.R/.
Hence the third normalization is most important among the three.
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Let us retain the notation of Theorem 19.14. Then the Hankel matrix H.Lf / of
the moment functional Lf has the entries h˛;ˇ; ˛; ˇ 2 N.d; n/; given by

h˛;ˇ D Lf .x
˛Cˇ/ D Œx˛Cˇ; f � D

kX
jD1

cj x
˛Cˇ.yj/ D

kX
jD1

cj y
˛1Cˇ1
j1 � � � y˛dCˇd

jd :

If s.y/ is the column vector .y˛/˛2N.d;n/ for y 2 Rd, then by Proposition 17.21,

H.Lf / D
kX

jD1
cj s.yj/ s.yj/

T : (19.29)

Our next theorem is a classical result of D. Hilbert (1909).

Theorem 19.15 Let d 2 N and n 2 N. Then the polynomial

hd;2n.x/ WD kxk2n � .x21 C � � � C x2d/
n

is in Qd;2n, that is, there exist k 2 N and vectors y1; : : : ; yk 2 Rdnf0g such that

hd;2n.x/ D
kX

jD1
.yj � x/2n: (19.30)

The points yj can be chosen such that y1 D ky1ku, where u 2 Sd�1 is arbitrary.

Proof Let � denote the surface measure of the unit sphere Sd�1 and define

h.x/ WD
Z
Sd�1

.y � x/2nd�.y/; x 2 Rd:

We expand .y � x/2n by the multinomial theorem and conclude that h.x/ is a
homogeneous polynomial of degree 2n, that is, h 2 Hd;2n: Fix x 2 Rd. For y 2 Sd�1
we abbreviate z1.y/ WD kxk�1.y � x/: Since jz1.y/j � 1, there is an orthogonal
transformation of variables y 7! z.y/ D .z1.y/; : : : ; zd.y// on Sd�1. Using the
invariance of � under an orthogonal change of variables and the relation y�x D z1kxk
we derive

h.x/ D
Z
Sd�1

.z1kxk/2nd�.z/ D kxk2n
Z
Sd�1

z2n1 d�.z/ D kxk2nc (19.31)

for some c > 0 depending on d; n. (For the explicit value of c, see Sect. 14.5.)
On the other hand, we define a truncated Sd�1-moment functional on Hd;2n by

L. f / D
Z
Sd�1

f .y/ d�.y/; f 2 Hd;2n:
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Obviously, if f D 0 on Sd�1 for some f 2 Hd;2n, then f D 0 on Rd and so f D 0.
That is, the map f 7! f dSd�1 of Hd;2n is injective. Setting X D Sd�1 and E Š
Hd;2n we are in the setup of Sect. 1.2 and L is a moment functional on E. Clearly,
if L. f / D 0 for some f 2 EC Š Pos.Hd;2n; Sd�1/, then f D 0. That is, L is strictly
EC-positive. Therefore, by Theorem 1.30(ii), L has a k-atomic representing measure
� DPk

jD1mjıtj which has u as an atom, say t1 D u. Then

L. f / D
kX

jD1
mj f .tj/ D

kX
jD1

f .m1=2nj tj/: (19.32)

Specializing to f .y/ D .y �x/2n we get L. f / D h.x/ D ckxk2n DPk
jD1.mj

1=2n tj �x/2n
by (19.31) and (19.32). Setting yj D c�1=2n m1=2nj tj the last equation yields (19.30).
By construction, y1ky1k�1 D t1 D u. ut

For many pairs .d; n/ explicit representations (19.30) of hd;2n are known by
classical formulas [Re1, Nat]. For instance, the following polynomial identities
hold:

12 h3;4 D 8x41 C 8x42 C 8x43C
.x1 C x2 C x3/

4 C .x1 � x2 C x3/
4 C .x1 C x2 � x3/

4 C .x1 � x2 � x3/
4;

6 h4;4 D .x1 C x2/
4 C .x1 � x2/

4 C .x1 C x3/
4 C .x1 � x3/

4 C .x1 C x4/
4 C .x1 � x4/

4C
.x2 C x3/

4 C .x2 � x3/
4 C .x2 C x4/

4 C .x2 � x4/
4 C .x3 C x4/

4 C .x3 � x4/
4;

60 h3;6 D 40x61 C 40x62 C 40x63C
4.x1 C x2/

6 C 4.x1 � x2/
6 C 4.x1 C x3/

6 C 4.x1 � x3/
6C

.x1 C x2 C x3/
6 C .x1 � x2 C x3/

6 C .x1 C x2 � x3/
6 C .x1 � x2 � x3/

6:

As usual, let � D . @
@x1
/2 C � � � C . @

@xd
/2 denote the Laplacian.

Theorem 19.16 Let d; n 2 N. There is a truncated Sd�1-moment functional on
Hd;2n defined by

L. p/ D 1

.2n/Š
�np D Œ p; .x21 C � � � C x2d/

n�; p 2 Hd;2n: (19.33)

For each representation (19.30) of hd;2n.x/ 2 Qd;2n we have

L. p/ D
kX

jD1
p.yj/; p 2 Hd;2n: (19.34)
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The functional L is strictly Pos.Hd;2n; Sd�1/-positive, that is, L. f / > 0 for each
polynomial f 2 Pos.Hd;2n; Sd�1/; f ¤ 0.
Proof Since hd;2n 2 Qd;2n by Theorem 19.15, it follows from Theorem 19.14 that
L � Lhd;2n is a truncated Sd�1-moment functional and (19.30) implies (19.34).

We show that L is strictly positive. Suppose that f 2 Pos.Hd;2n; Sd�1/; f ¤ 0.
Then there is a u 2 Sd�1 such that f .u/ > 0. By Theorem 19.15, there exists a
representation (19.30) such that y1 D ky1ku ¤ 0. Then, by (19.30),

L. f / D
kX

jD1
f .yj/ � f .y1/ D ky1k2nf .u/ > 0: ut

At the end of this section, we turn briefly to Carathéodory numbers.

Definition 19.17 For f 2 Qd;m the width w. f / of f is the smallest number k among
all possible representations (19.27) of f , where we set w. f / D 0 for f D 0.

For instance,w.h3;6/ D 11 andw.h3;8/ D 16, see [Re1, Theorems 9.28 and 9.37].
Let L be a moment functional on Hm;d. Then, by Theorem 19.14, L D Lf for

some unique function f 2 Qd;m. We define w.L/ WD w. f /. Further, let C.L/ denote
the smallest number k for all k-atomic representing measures � 2 MC.Rd/ of L.

From Definition 18.7 we recall that the Carathéodory number

Cd;m WD C.Hd;m;R
d/

is the maximum of the numbers C.L/ for all moment functionals L on Hd;m.

Proposition 19.18 For each moment functional L on Hd;m we have w.L/ D C.L/:
The number Cd;m is the largest width w.L/ for all moment functionals L onHd;m.

Proof By definition, C.L/ D w.L/ D 0 if L D 0. Hence we can assume that L ¤ 0.
Throughout this proof, we abbreviate k WD C.L/ and r WD w.L/.

Let � be a k-atomic representing measure of L, say � DPk
jD1 cjıyj , where cj >

0, yj 2 Rd for j D 1; : : : ; k. Then f .x/ WDPk
jD1 cj.yj � x/m 2 Qd;m and

L. p/ D
Z

p.x/d� D
kX

jD1
cjp.yj/ D Lf . p/ for p 2 Hd;m;

so that L D Lf . Hence r D w. f / � k.
Conversely, let L be a moment functional. By Theorem 19.14, L D Lf for some

f 2 Qd;m. We can write f .x/ DPr
jD1 cj.yj � x/m with yj 2 Rd; j D 1; : : : ;w. f / D r.

Then, by Theorem 19.14, � WD Pr
jD1 cjıyj is a representing measure for Lf D L

and � is k-atomic with k � r. Hence k � r. Thus we have proved that r D k.
The second assertion follows at once from the equality w.L/ D C.L/: ut

As noted above, each moment functional of Hd;m is a truncated Sd�1-moment
functional and Pos.Hd;m;R

d/ D Pos.Hd;m; Sd�1/. Hence, Theorem 18.43(ii),
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applied with K D Sd�1, and (19.1) yield the following result: If the equality

Pos.Hd;2n;R
d/ D

X
H2

d;n; (19.35)

that is, Pd;2n DP2
d;2n; is satisfied, then Cd;2n D jNd;nj D

�nCd�1
d�1

�
:

Unfortunately, (19.35) holds only in very few cases. D. Hilbert [H1] has shown
that the equality (19.35) is fulfilled if and only if n D 1 or d D 2 or .d; n/ D .3; 2/.

It is not difficult to verify (see Exercises 19.7–19.9) that (19.35) holds if n D 1

or d D 2 and that (19.35) does not hold if d � 3; n � 3 or d � 4; n � 2.
The remaining case .d; n/ D .3; 2/ is more difficult. A simple proof of the fact

that polynomials of Pos.H3;4;R
3/ are sums of squares can be found in [CL].

Taking these results for granted we get

Cd;2 D d; C2;2n D nC 1; C3;4 D 6:

The general formula for Cd;2n is not yet known.

19.4 Robinson’s Polynomial and Some Examples

For typographical simplicity we write x; y; z instead of x0; x1; x2 in this section. Our
aim is to investigate the (homogeneous) Robinson polynomial

R.x; y; z/ WD x6 C y6 C z6 � x4y2 � x4z2 � x2y4 � y4z2 � x2z4 � y2z4 C 3x2y2z2:

Clearly, R 2 H3;6 and R is symmetric in all three variables x; y; z: It is convenient to
write R in two other forms:

R D x2.x2 � z2/2 C y2.y2 � z2/2 � .x2 � z2/.y2 � z2/.x2 C y2 � z2/ (19.36)

D .x2 C y2 � z2/.x2 � y2/2 C .x2 � z2/.y2 � z2/z2: (19.37)

Proposition 19.19

(i) R 2 Pos.R3/.
(ii) Let .x; y; z/T 2 R3. Then we have R.x; y; z/ D 0 if and only if x D 0; y2 D z2

or y D 0; x2 D z2 or z D 0; x2 D z2 or x2 D y2 D z2.
(iii) R is not a sum of squares in RŒx; y; z�.

Proof

(i) If .x2 � z2/.y2 � z2/.x2 C y2 � z2/ � 0, then it is obvious from (19.36) that
R.x; y; z/ � 0: Thus it remains to consider the case when

.x2 � z2/.y2 � z2/.x2 C y2 � z2/ � 0:
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Then we have x2 C y2 � z2 � 0 and .x2 � z2/.y2 � z2/ � 0. But in this
case (19.37) implies that R.x; y; z/ � 0: (Another way to prove (i) is to verify
the identity

.x2 C y2/R D x2z2.x2 � z2/2 C y2z2.y2 � z2/2 C .x2 � y2/2.x2 C y2 � z2/2:

Obviously, this implies that R � 0 on R3.)
(ii) The if part is clear from (19.36). Conversely, suppose that R.x; y; z/ D 0. If

x D 0, then (19.36) yields y2.y2 � z2/2 C z2.y2 � z2/2 D 0 and hence y2 D z2.
Similarly, since R is symmetric, y D 0 implies x2 D z2 and z D 0 implies
x2 D y2.

Suppose now that x ¤ 0; y ¤ 0; z ¤ 0. Assume to the contrary that x2 D
y2 D z2 does not hold. By symmetry we can assume without loss of generality
that x2 > z2. Then .x2�z2/.x2Cy2�z2/ > 0: Therefore, since x2.x2�z2/2 > 0,
the last term in (19.36) must be negative, which implies that z2 < y2. Then it
follows from (19.37) that R.x; y; z/ > 0, which is a contradiction.

(iii) Assume to the contrary that R D P
j f
2
j . Clearly, deg. fj/ � 3. We write fj as

fj D xpj C qj, where pj and qj contain only even powers of x. Then

R D
X

j
.x2p2j C 2xpjqj C q2j /: (19.38)

Comparing the coefficients of x6 we conclude that

1 D
X

j
pj.1; 0; 0/

2: (19.39)

Since R has only even powers of x, the odd powers of x on the right-hand side
of (19.38) vanish. Thus,

P
j 2xpjqj D 0: Then (19.38) implies that R � x2p2j

on R3 for all j. Setting y D x and writing pj.x; x; z/ D aix2 C bixzC ciz2 this
yields

R.x; x; z/ D z2.z2 � x2/2 � x2pj.x; x; z/
2 D x2.aix

2 C bixzC ciz
2/2:

Choosing x large, it follows that ai D 0. Then z2.z2 � x2/2 � x2.bix C ciz/2:
Hence bix C ciz D 0 if x ˙ z D 0; x ¤ 0. Therefore, bi D ci D 0; so that
pj.x; x; z/ D 0. Similarly, p.x;�x; z/ D 0. These relations imply that pj.x; y; z/
is divisible by x� y and xC y. Replacing y by z in the preceding, pj is divisible
by x � z and xC z. Thus,

pj.x; y; z/ D .x2 � y2/.x � z2/gj:

Since deg. pj/ � 2, gj � 0 and pj.1; 0; 0/ D 0 for all j which contra-
dicts (19.39).

An elegant and short proof of assertion (iii) can be given by using a basic
result from the theory of cubics, see Example 19.36 below. ut
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As discussed in Sect. 17.2, the subset S2C of the unit sphere S2 can be considered
as a realization of the projective space P2.R/. From the description of the zero
set of R given in Proposition 19.19(ii) it follows that R has exactly 10 zeros in the
projective space P2.R/. The corresponding points of S2C are

t1 D 1p
3
.1; 1; 1/; t2 D 1p

3
.1; 1;�1/; t3 D 1p

3
.1;�1; 1/; t4 D 1p

3
.1;�1;�1/;

t5 D 1p
2
.1; 0; 1/; t6 D 1p

2
.1; 0;�1/; t7 D 1p

2
.1; 1; 0/; t8 D 1p

2
.1;�1; 0/;

t9 D 1p
2
.0; 1; 1/; t10 D 1p

2
.0; 1;�1/:

Proposition 19.20 Let p.x; y; z/ 2 H3;6: Then we have p 2 Pos.R3/ and p.tj/ D 0

for j D 1; 2; : : : ; 9 if and only if p 2 RC � RCRC � h210, where

h10.x; y; z/ D y3 � z3 C .z � y/x2 D .y � z/.y2 C yzC z2 � x2/:

Proof The if part is easily verified. It suffices to prove the only if part.
Suppose that p 2 Pos.R3/ and p.tj/ D 0 for j D 1; 2; : : : ; 9: Write

p.x; y; z/ D
6X

j;k;lD0
ajklx

jykzl:

Since p � 0 on R3, each zero tj is a local minimum of p, so all first-order partial
derivatives of p at tj vanish as well (see also Lemma 19.26 below). Thus

p.tj/ D @p

@x
.tj/ D @p

@y
.tj/ D @p

@z
.tj/ D 0 for j D 1; : : : ; 9: (19.40)

These are 36 homogeneous linear equations for the 28 variables ajkl. It can be
shown (for instance, by using a computer program such as Mathematica) that the
corresponding matrix has rank 26. Hence the dimension of the solution space is 2.
Since R and h210 are in Pos.R3/ and vanish at t1; : : : ; t9, the coefficient vectors of R
and h210 are solutions of (19.40). Hence p D �1R C �2h210 with �1; �2 2 R: Since
R.t10/ D 0 and h10.t10/2 > 0, we get p.t10/ D �2h10.t10/2 � 0, so that �2 � 0. For
t D .2; 1; 1/ we have h10.t/ D 0 and R.t/ ¤ 0. Then, p.t/ D �1R.t/ � 0 and hence
�1 � 0. ut
Remark 19.21 Let i 2 f1; : : : ; 10g:The assertion of Proposition 19.20 remains valid
if t10 is replaced by ti: There is a polynomial hi 2 H3;3 such that p 2 Pos.H3;6;R

3/

vanish on tj for j D 1; : : : ; 10; j ¤ i; if and only if p 2 RC � RCRC � h2i : We have

h1 D x.y2 C z2 � x2/C y.z2 C x2 � y2/C z.x2 C y2 � z2/ � xyz:
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All other polynomials hi can be obtained by symmetry from h10 and h1; for instance,
h5.x; y; z/ D h10.y; x;�z/; h2.x; y; z/ D h1.x; y;�z/ etc. ı
Corollary 19.22 Let p 2 Pos.H3;6;R

3/. The following are equivalent:

(i) p.tj/ D 0 for j D 1; : : : ; 10:
(ii) p D �R for some number � � 0:

(iii) .�R � p/ 2 Pos.R3/ for some number � � 0:
Proof

(i)!(ii) By Proposition 19.20, (i) implies p D �1RC�2h210 with �1 � 0, �2 � 0.
Since h10.t10/ ¤ 0 and R.t10/ D 0, we obtain �2 D 0; so that p D �1R:

(ii)!(iii) is trivial by setting � D �.
(iii)!(i) Since 0 � p � �R on R3 and R.tj/ D 0 for j D 1; : : : ; 10, p vanishes

at t1; : : : ; t10 as well. ut
From Corollary 19.22 (iii)!(ii) it follows that the Robinson polynomial R spans

an extreme ray of the cone Pos.H3;6;R
3/:

Now we turn to the truncated moment problem on P2.R/ Š S2C and set

N WD f˛ D .˛0; ˛1; ˛2/ 2 N3
0 W ˛0 C ˛1 C ˛2 D 6g:

Then Lin fx˛ W ˛ 2 Ng is the vector space H3;6 of 3-forms of degree 6.
We fix a point t0 2 S2C such that t0 ¤ tj for j D 1; : : : ; 10. Then R.t0/ ¤ 0. Put

� D
10X
jD1

mjıtj ; � D � Cm0ıt0 D
10X
jD0

miıti ; where mj � 0; j D 0; : : : ; 10;

and let L� and L� denote the corresponding truncated moment functionals on the
projective space P2.R/ Š S2C. The following simple fact will be used several times.

Lemma 19.23 Let p 2 H3;6. If p.x/ � 0 on S2C, then p.x/ � 0 on R3.

Proof The equalities R3 D [c2R c S2C and p.cx/ D c6p.x/ give the assertion. ut
In the following proofs we use the projective versions of the notions and results.

Proposition 19.24 L� is a determinate truncated moment functional on P2.R/ Š
S2C and � is a maximal mass measure. Further, if mj > 0 for j D 1; : : : ; 10, then

NC.L�; S2C/ D RC � R and VC.L� ; S2C/ D supp � D ft1; : : : ; t10g: (19.41)

Proof By straightforward computations we verify that the polynomials

q1 D x2y.xC y/z.xC z/; q2 D x2.x � y/yz.x � z/;

q3 D x2y.xC y/z.x � z/; q4 D x2y.x � y/z.xC z/;
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q5 D x2.x2 � y2/z.xC z/; q6 D x2.x2 � y2/z.x � z/;

q7 D x2.x � y/.x2 � z2/; q8 D x2.xC y/.x2 � z2/;

q9 D .x2 � y2/.x2 � z2/.y � z/2; q10 D .x2 � y2/.x2 � z2/.yC z/2

of H3;6 satisfy qj.ti/ D 0 for j ¤ i and qj.tj/ ¤ 0, where i; j D 1 : : : ; 10: From this
it follows that the points t1; : : : ; t10 obey property .SP/H3;6 , see Definition 18.11.
Hence L� is determinate by Proposition 18.12. In particular, � is maximal mass.

We abbreviate NC WD NC.L� ; S2C/ and prove that NC D RC � R: Since mj > 0

for j D 1; : : : ; 10, NC consists of p 2 Pos.H3;6; S2C/ that vanish at t1; : : : ; t10,
see (18.11). Hence R 2 NC. Conversely, let p 2 NC. Then p � 0 on S2C. Hence
p � 0 on R3 by Lemma 19.23, so p 2 RC � R by Corollary 19.22 (i)!(ii). Thus,
NC D RC � R:

Since ft1; : : : ; t10g is the zero set of R on the projective space, the second equality
of (19.41) follows at once from the first. ut
Proposition 19.25 Suppose that mj > 0 for j D 0; 1; : : : ; 10. Then the measure� is
ordered maximal mass. If h.t0/ ¤ 0 and R.t0/ > 0 (for instance, if t0 D .1; 0; 0/),
then � is not maximal mass.

Proof In this proof we abbreviate L D L�.
Put p WD R.t0/�1R: Then p � 0 on S2C, p.t0/ D 1, and p.tj/ D 0 for j D 1; : : : ; 10:

Hence 	L.t0/ D m0 by Proposition 18.31(iii). Since ��m0ıt0 D � by definition and
� is maximal mass by Proposition 19.24, � is ordered maximal mass.

Let f 2 Pos.H3;6; S2C/ and suppose that L. f / D 0. Then f � 0 on S2C and hence
f � 0 on R3 by Lemma 19.23. From L. f / D 0 and mj > 0 we obtain f .tj/ D 0

for j D 0; 1; : : : ; 10. Therefore, by Corollary 19.22, f D �R with � � 0. Since
f .t0/ D 0 and R.t0/ ¤ 0, f D 0. This shows that L is strictly Pos.H3;6; S2C/-
positive. Therefore, by Proposition 18.28(iii), the infimum in (18.23) is attained for
each point x.

Assume to the contrary that � is maximal mass. Then Theorem 18.33(ii) applies
to the compact set K D P2.R/ Š S2C; so there exists a polynomial p 2 H3;6 such
that p � 0 on S2C, hence p � 0 on R3 by Lemma 19.23, and p.t10/ D 1, p.tj/ D 0 for
j D 0; : : : ; 9. From Proposition 19.20 we obtain p D �1RC�2h210 with �1; �2 2 RC:
Since R.t0/ > 0 and h10.t0/ ¤ 0 by assumption, p.t0/ D �1R.t0/ C �2h.t0/2 D 0

implies that �1 D �2 D 0. Thus, p D 0 and p.t10/ D 0: This is a contradiction. ut

19.5 Zeros of Positive Homogeneous Polynomials

Zeros of positive polynomials play a crucial role for the truncated moment problem.
They appeared in the definition of the subcone NC.L;K/ (see (18.11)) and in the
study of maximal masses (see Definition 18.32). In this section, we develop some
basic results on zeros of positive polynomials of H3;2n.
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We begin with two simple preliminary lemmas.

Lemma 19.26 Let U be an open subset of Rd, u 2 U, and f 2 RdŒ x �. Suppose
that f .u/ D 0 and f .x/ � 0 for all x 2 U. Then we have @f

@xi
.u/ D 0 for i D 1; : : : ; d

and the Hessian matrix
�
@2f
@xi@xj

.u/
�d
i;jD1 is positive semidefinite.

Proof Upon translation we can assume that u D 0. Let t D .t1; : : : ; td/ 2 U. Since
f .0/ D 0, the Taylor expansion of f at 0 is

f .t/ D
dX

iD1
ti
@f

@xi
.0/C

dX
i;jD1

titj
@2f

@xi@xj
.0/C

dX
i;j;kD1

titjtl
@3f

@xi@xj@xk
.0/C � � � :

We set tj D 0 for j ¤ i and consider small jtij. Since f .t/ � 0 on U, this expansion
implies that @f

@xi
.u/ D 0. Thus the linear part of the Taylor expansion disappears.

Using again that f .t/ � 0 on U and taking all jtij small we conclude that the
quadratic part is nonnegative. Hence the Hessian is a positive semidefinite matrix.

ut
Lemma 19.27 Let f 2 RdŒ x �. Suppose that f is irreducible inRdŒ x �, but reducible
in CdŒ x �. Then there exist polynomials g1; g2 2 RdŒ x � such that f D �.g21 C g22/,
where � D 1 or � D �1.
Proof Since f is reducible in CdŒ x �, there is a nontrivial factorization f D qp with
p; q 2 CdŒ x �. Taking complex conjugates and using that f 2 RdŒ x � we get f D q p.
Hence f � f D .qq/ � . pp/: Since f is irreducible in RdŒ x � and qq; pp 2 RdŒ x �, the
uniqueness of irreducible factorizations implies that f D a.q q/ for some nonzero
real number a:We write

pjaj q D g1C ig2 with g1; g2 2 RdŒ x � and set � D ajaj�1.
Then f D a .q q/ D �.g21 C g22/. ut

Next we collect some facts on plane curves. We will need only a few elementary
notions and some basic results stated as Lemmas 19.28, 19.29, and 19.38.

Let f 2 H3;m: Then the set

ZP. f / D ft 2 P2.R/ W f .t/ D 0g

is called the real projective curve associated with f , or briefly, the curve f D 0. Note
that the equation f .t/ D 0 is well-defined for t 2 P2.R/, since f is homogeneous.

A point t of the curve ZP. f / is called singular if @f
@x1
.t/ D @f

@x2
.t/ D @f

@x3
.t/ D 0:

Let t D Œt1 W t2 W t3� 2 ZP. f /. If f � 0 in some neighbourhood U 	 R3 of
.t1; t2; t3/ 2 R3, Lemma 19.26 implies that t is a singular point of the curve ZP. f /.

Lemma 19.28 If f 2 H3;m is irreducible in C3Œ x �, then the curve ZP. f / has at
most 1

2
m.m � 1/ singular points.

Proof See e.g. [Wr, II, Theorem 4.4]. ut
Let f 2 H3;m and g 2 H3;n. For each point t 2 ZP. f / \ ZP.g/ the intersection

multiplicity It. f ; g/ 2 N of the curves f D 0 and g D 0 at t is defined in
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[Wr, III, Section 2.2] or in [Fn, Chapter 3, Section 3.3]. We do not restate the
precise definition here. In what follows we use only the fact that It. f ; g/ � 2 if
t 2 ZP. f / \ZP.g/ is a singular point of one of the curves f D 0 or g D 0.

Also, we will need Bezout’s theorem. For complex projective curves we even
have equality in (19.42), but for our applications the following simple version is
sufficient. The symbol jZj denotes the number of points of a set Z.

Lemma 19.29 Suppose that the polynomials f 2 H3;n and g 2 H3;m are relatively
prime in R3Œ x �, that is, f and g have no common factor of positive degree. Then
jZP. f / \ZP.g/j � nm: More precisely,

X
t2ZP. f /\ZP.g/

It. f ; g/ � nm: (19.42)

Proof See e.g. [Wr, p. 59] or [Fn, p. 57]. ut
Having finished the preparations we turn to zeros of positive polynomials.

Proposition 19.30 Let f 2 H3;2n be irreducible in R3Œ x �. If f 2 Pos.R3/, then

jZP. f /j � ˛.n/ WD max.n2; .2n � 1/.n � 1//: (19.43)

Proof First assume that f is also irreducible in C3Œ x �. Since f 2 Pos.R3/, by
Lemma 19.26 all zeros of f are singular points of the curve f D 0. Since f is
irreducible in C3Œ x �, this curve has at most 1

2
.2n � 1/.2n � 2/ D .2n � 1/.n � 1/

singular points by Lemma 19.28. Therefore, jZP. f /j � .2n� 1/.n� 1/:
Now let f be reducible in C3Œ x �: Then Lemma 19.27 applies. Since f � 0 on R3,

we have f D g21 C g22 with g1; g2 2 R3Œ x �. Clearly, g1; g2 are also homogeneous,
ZP. f / D ZP.g1/ \ ZP.g2/, and deg.gj/ � n for j D 1; 2. We verify that g1 and
g2 are relatively prime in C3Œ x �. Indeed, if h 2 C3Œ x � is a common factor of g1
and g2, then h � h is a common factor of g21 and g22 and so of f : Therefore, h � h, and
hence h, is constant, because f is irreducible in R3Œ x �. That is, the assumptions of
Bezout’s theorem (Lemma 19.29) are satisfied, so the real projective curves defined
by g1 D 0 and g2 D 0 intersect in at most n � n points. Thus, jZP. f /j � n2: ut
Lemma 19.31 The function ˛.n/ onN defined by (19.43) is subadditive, that is,

˛.n1/C ˛.n2/C � � � C ˛.nr/ � ˛.n1 C � � � C nr/ for n1; : : : ; nr 2 N:

(19.44)

Proof Note that ˛.n/n is monotone increasing on N. Therefore, ˛.nj/nj
� ˛.n1Cn2/

n1Cn2
for

j D 1; 2 and hence

˛.n1/C ˛.n2/ � n1˛.n1 C n2/

n1 C n2
C n2˛.n1 C n2/

n1 C n2
D ˛.n1 C n2/:

Formula (19.44) follows by induction on r. ut
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Clearly, ˛.1/ D 1; ˛.2/ D 4; ˛.3/ D 10, and ˛.n/ D .2n � 1/.n� 1/ for n � 3.
Note that the Robinson polynomial R 2 H3;6 has exactly ˛.3/ D 10 zeros in P2.R/.

Let us call a polynomial f 2 RdŒ x � indefinite if neither f nor �f is in Pos.Rd/,
that is, there exist points t1; t2 2 Rd such that f .t1/ < 0 and f .t2/ > 0.

Our main result in this section is the following theorem.

Theorem 19.32 Let n 2 N and f 2 H3;2n: Suppose that f .x/ � 0 on R3 and
jZP. f /j > ˛.n/: Then jZP. f /j is infinite and there are polynomials p 2 H3;2n1 ,
q 2 H3;n2 such that f D pq2, where n1 C n2 D n, p 2 Pos.R3/, jZP. p/j <1, q is
indefinite, and jZP.q/j is infinite. Moreover, q is a product of indefinite irreducible
polynomials in R3Œ x � and p and q are relatively prime in R3Œ x �: (It is possible that
p is a positive real constant; in this case n1 D 0 and we set H3;0 WD R.)

Proof Since the assertion trivially holds for f D 0, we can assume that f ¤ 0. Let
f D f1 � � � fr be a factorization of f as a product of irreducible factors in R3Œ x �: Since
f is homogeneous, so are all factors fj. Set mj D deg. fj/.

Assume first that no factor fj is indefinite. Then mj D 2nj is even. Multiplying by
�1 if necessary, we can suppose that fj 2 Pos.R3/2nj . Then, by (19.43) and (19.44),

jZP. f /j �
X

j
jZP. fj/j �

X
j
˛.nj/ � ˛.n1 C � � � C nr/ D ˛.n/;

which contradicts the assumption jZP. f /j > ˛.n/:
As shown in the preceding paragraph, there is at least one indefinite factor, say f1.

It suffices to show that jZP. f1/j is infinite and that f 21 divides f . Indeed, then f D f 21 h
with h 2 H3;2k; k < n. Clearly, h � 0 on R3. If ZP.h/ is finite, we are finished; if
not, we proceed by induction.

Set g D f2 � � � fr: Then f D f1g. Since f1 is indefinite, there are t1; t2 2 R3 such
that f1.t1/ < 0 and f1.t2/ > 0. After affine changes of coordinates we can assume
that t1 D .1; 0; a/, t2 D .1; 0; b/, a < b. By continuity, there is a ı > 0 such that
f1.1; u; a/ < 0 and f1.1; u; b/ > 0 for juj < ı: Fix u 2 .�ı; ı/: Since f1.1; u; y/
is a nonconstant polynomial in y, by the intermediate value theorem there exists a
cu 2 .a; b/ such that f1.1; u; cu/ D 0 and f1.1; u; y/ < 0 for y < cu, f1.1; u; y/ > 0

for y > cu in a neighbourhood of cu. From f .1; u; y/ D f1.1; u; y/g.1; u; y/ � 0 we
get g.1; u; y/ � 0 if y < uc, g.1; u; y/ � 0 if y > uc in a neighbourhood of cu. Hence
g.1; u; cu/ D 0; so that .1 W u W cu/ 2 ZP. f1/ \ ZP.g/. Thus, ZP. f1/ \ ZP.g/,
hence ZP. f1/, is infinite. Clearly, f1 and g are not relatively prime, because this
would imply that their curves have only finitely many common points by Bezout’s
theorem. Since f1 is irreducible, f1 divides g. Because f D f1g, then f 21 divides f .

By construction, q is a product of irreducible indefinite factors fi. Since ZP. p/ is
finite and each ZP. fi/ is infinite, p and q are relatively prime in R3Œ x �: ut

The reasoning concerning f1 in the preceding proof yields the following.

Corollary 19.33 For each indefinite polynomial f 2 H3;m the set ZP. f / is infinite.

Remark 19.34 As noted in [CLR, p. 13], Theorem 19.32 remains valid if ˛.n/ is
replaced by Ǫ .n/ WD 3

2
n.n�1/C1: This stronger statement is based on deep results
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of I.G. Petrovskii and O.A. Oleinik on ovals of plane curves [PO]. Let ˇ.n/ denote
the maximum of jZP. f /j, where f 2 H3;2n and ZP. f / is finite. Then

n2 � ˇ.n/ � Ǫ .n/ D 3

2
n.n � 1/C 1: ı

19.6 Applications to the Truncated Moment Problem on R2

In this section, we suppose that t1; : : : ; tk are pairwise distinct points of R2,
c1; : : : ; ck are positive numbers and L denotes the truncated moment functional on
R2Œ x �2n; where n D 2; 3, given by the k-atomic measure � DPk

jD1 cjıtj :

L. f / D
Z

f d� �
kX

jD1
cj f .tj/; f 2 R2Œ x �2n: (19.45)

Then the vector space NL and the cone NC.L/ from Definitions 17.16 and 18.13 are

NL D fp 2 R2Œ x �n W p.t1/ D � � � D p.tk/ D 0 g; (19.46)

NC.L/ D fp 2 Pos.R2/2n W p.t1/ D � � � D p.tk/ D 0 g; (19.47)

and VL and VC.L/ are the real algebraic sets in R2 defined by NL and NC.L/,
respectively.

Our aim is to illustrate the usefulness of Theorem 19.32 by developing some
results on VL and VC.L/ for n D 2; 3. Since Theorem 19.32 deals with forms, we
have to switch between polynomials of R2Œ x �2n and forms of H3;2n.

Let q 2 R2Œ x �m be of degree m and let p 2 H3;m. We define the homogenization
qh 2 H3;m and the dehomogenization Op 2 R2Œ x �m by

qh.x1; x2; x3/ WD xm1 q

�
x2
x1
;
x3
x1

�
and Op.x1; x2/ WD p.1; x1; x2/: (19.48)

Then bqh D q and deg.qh/ D deg.q/ D m. Clearly, deg.Op/ � m, but it may happen
that deg.Op/ < m; for instance, if p.x1; x2; x3/ D x21 and m D 2, then Op D 1: If
deg.Op/ D m, then .Op/h D p: If pj 2 H3;mj for j D 1; 2, then p1p2 2 H3;m1Cm2 and
bp1p2 D bp1bp2. For even m, it is obvious that q 2 Pos.R2/ if and only if qh 2 Pos.R3/.

The zero set Z.q/ in R2 is a subset of the zero set ZP.qh/ in P2.R/. In general,
ZP.qh/ is larger than Z.q/, because it contains possible zeros of q at “infinity”.

We will use the following version of Bezout’s theorem for real curves in R2

which follows from Lemma 19.29: Let f ; g 2 R2Œ x �; deg. f / D m1, and deg.g/ D
m2. If f and g are relatively prime in R2Œ x �, then jZ. f /\ Z.g/j � m1m2 and

X
t2Z. f /\Z.g/ It. f ; g/ � m1m2: (19.49)
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By a quadratic or a cubic we mean a real curve Z. p/ in R2 for some polynomial
p 2 R2Œ x � of degree 2 or 3, respectively.

Proposition 19.35 Let n D 2 and k D 5. Suppose that t1; : : : ; t5 are distinct points
of R2, no three are collinear. There exists a unique, up to a constant multiple,
polynomial f 2 R2Œ x � of degree 2 such that t1; : : : ; t5 lie on the quadratic Z. f /.
Then

NC.L/ D RC � f 2 and VC.L/ D Z. f /: (19.50)

Proof The existence and uniqueness of f 2 R2Œ x �2 satisfying t1; : : : ; t5 2 Z. f / is a
classical result in curve theory, see e.g. [Bx, Theorem 5.10].

Let g 2 NC.L/, g ¤ 0. Then, by (19.47), g 2 Pos.R2/ and g vanishes at
t1; : : : ; t5. If deg.g/ D 2, then g is a sum of squares of linear polynomials and
all tj are collinear, a contradiction. Hence deg.g/ D 4, so that gh 2 H3;4. We
have gh 2 Pos.R3/ and jZP.gh/j � jZ.g/j � 5 > 4 D ˛.2/. Therefore, by
Theorem 19.32, we can write gh D pq2, where q is indefinite, p 2 Pos.R3/ and
ZP. p/ is finite. Then g D Op Oq2:

Since q is indefinite, q is not constant. Assume that deg.q/ D 1. Then p 2 H3;2

and deg.Oq/ � 1. Thus, Oq ¤ 0 (by g ¤ 0) is either constant or Oq D 0 is a line.
Since g.tj/ D Op.tj/Oq.tj/2 D 0 for j D 1; : : : ; 5 and no three points of the tj are
on a line, Op vanishes on at least three points, so that jZP.Op/j � 3 > ˛.1/ D 1:

From Theorem 19.32, applied to p, it follows that ZP. p/ is infinite, which is a
contradiction.

Thus, q 2 H3;2 and p is a nonzero constant. Then gh is a multiple of q2, so g is a
multiple of Oq2: Since g 2 NC.L/ vanishes on t1; : : : ; t5, so does Oq2 and hence Oq. The
uniqueness assertion concerning f implies that Oq D cf for some c 2 R. Therefore,
g 2 RC � f 2: This proves that NC.L/ 	 RC � f 2: The converse inclusion and the
equality VC.L/ D Z. f / are obvious. ut

The case of cubics is more subtle. In the following discussion we use some
classical results on cubics (see e.g. [Bx]) and we state some facts without proof.

Case 1: k D 8.

Suppose Z8 WD ft1; : : : ; t8g is set of pairwise distinct points of R2 such that no
four of them are collinear and no seven lie on a quadratic. Then NL is the vector
space of polynomials p 2 R2Œ x �3 of degree 3 vanishing on Z8 and this space has
dimension 2. There is a point t9 in the projective zero set of NL which has the
following property: For each t10 2 R2, different from t1; : : : ; t9, there is a unique, up
to a constant, cubic which contains the points t1; : : : ; t8; t10: Note t9 may or may not
be in the set Z8. (All preceding results follow from Theorems 13.4, 13.6, and 13.7
in [Bx].)

Assume that t9 2 R2 and t9 … Z8: Let the cubics f ; g form a basis of NL: Then

Z. f /\Z.g/ D Z9 WD ft1; : : : ; t9g; (19.51)
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that is, both cubics intersect in exactly 9 points of R2, and VL D Z. f /\Z.g/ D Z9.
It is not difficult to verify that (19.51) implies that f and g are relatively prime.

As proved by B. Reznick [Re4, Theorem 3.4 and 4.1], there exists a polynomial
p 2 Pos.R2/ such that p.tj/ D 0 for j D 1; : : : ; 8 and p.t9/ > 0. Then p 2 NC.L/
and t9 … VC.L/. From Z8 D supp� 	 VC.L/ 	 VL D Z9 we get VC.L/ D Z8:
Thus,

VC.L/ D Z8 ¨ Z9 D VL: (19.52)

We illustrate this with an example.

Example 19.36 The cubics f D x1.1 � x21/; g D x2.1 � x22/ satisfy (19.51),
where the points t1; : : : ; t8 are .˙1;˙1/; .˙1; 0/; .0;˙1/ and t9 D .0; 0/. The
dehomogenized Robinson polynomial p WD OR is in Pos.R2/, vanishes at t1; : : : ; t8,
and satisfies p.t9/ > 0. Hence (19.52) holds.

By Proposition 19.19(iii), Robinson’s polynomial R 2 H3;6 is not a sum of
squares. The preceding yields a very short proof of this fact. Indeed, assume that
R D P

j f
2
j with fj 2 R3Œ x �. Then OR D P

j.
Ofj/2 and Ofj 2 R2Œ x �3: Clearly, each

Ofj vanish at all zeros of OR. Therefore, since OR vanishes at Z8, Ofj 2 NL; so that
Ofj 2 Lin f f ; gg. Then, (19.51) implies that Ofj.t9/ D 0 for all j: Hence OR.t9/ D 0.
But OR.t9/ D R.1; 0; 0/ D 1, a contradiction. ı

Case 2: k D 9.

Retain the assumptions and the notation of Case 1. Since NL is spanned by
f ; g, (19.51) yields VL D Z9. From Z9 D supp� 	 VC.L/ 	 VL we get
Z9 D VC.L/ D VL.

Case 3: k � 10.

There exists a truncated moment functional L such that VC.L/ consists of 10
points, see (19.41). (This example is on P2.R/, but by a linear transformation we
obtain such a measure on R2, see Exercise 19.12.)

In the next proposition the real algebraic set VC.L/ is a cubic.

Proposition 19.37 Suppose that k � 10. Let tj; j D 1; : : : ; k; be pairwise distinct
points in R2 of a cubic Z. f /, f 2 R2Œ x �3: Suppose that no four of the points
t1; : : : ; t8 are collinear and no seven of them are on a quadratic. Let � DPk

jD1 cjıtj
be a k-atomic measure and let L be its moment functional defined by (19.45). Then,

NC.L/ D RC � f 2 and VC.L/ D Z. f /:

Proof As in the proof of Proposition 19.35 it suffices to show that NC.L/ 	 RC �f 2:
Let g 2 NC.L/; g ¤ 0. Then g 2 Pos.R2/, so that gh 2 Pos.R3/, and g.tj/ D 0

for j D 1; : : : ; k: By Lemma 19.26, each tj is a singular point of Z.g/, so that
Itj. f ; g/ � 2. Therefore,

P
j Itj. f ; g/ � k � 2 � 20 > 18 � deg.g/ deg. f /. Hence

Bezout’s theorem (19.49) implies that f and g are not relatively prime.
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Let r be a nonconstant common factor of f and g, say f D ru and g D rv.
We show that Z.gh/ is infinite. Since gh D rhvh, by Corollary 19.33 it suffices to
show that rh is indefinite. This is obvious if deg.r/ is odd. Let deg.r/ D 2. Then
deg.u/ D 1. We have f .tj/ D r.tj/u.tj/ D 0 for j D 1; : : : ; 9. Since no four of
t1; : : : ; t9 lie on the line u D 0, r vanishes at 6 points ti. The polynomial r is not in
Pos.R2/, since then rh 2 Pos.R3/ and hence 6 � jZ.r/j � jZP.rh/j � ˛.2/ D 4

by Theorem 19.32, a contradiction. Similarly, �r is not in Pos.R2/. Thus, r, and
hence rh, is indefinite.

Since ZP.gh/ is infinite, by Theorem 19.32 there is a factorization gh D q2p,
where q is indefinite, p 2 Pos.R3/ and ZP. p/ is finite. Note that q is not constant,
since g ¤ 0 and hence gh ¤ 0. Further, g D OpOq2: Thus, Oq ¤ 0, because g ¤ 0.

Case I: deg.q/ D 1:
Then deg. p/ � 4, so that p 2 H3;2k for k 2 f0; 1; 2g: Since p 2 Pos.R3/ and

ZP. p/ is finite, we conclude from Theorem 19.32 that jZ.Op/j � jZP. p/j � ˛.2/ D
4: We have g.tj/ D Op.tj/Oq.tj/2 D 0 for j D 1; : : : ; 8: Therefore, at least four of the
points t1; : : : ; t8 lie on the curve Oq D 0. Since deg.Oq/ � deg.q/ D 1; Oq is either a
nonzero constant or Oq D 0 is a line and we obtain a contradiction to our assumption.

Case II: deg.q/ D 2:
Then deg. p/ � 2, so that jZ.Op/j � ˛.1/ D 1: Hence, since g.tj/ D Op.tj/Oq.tj/2 D

0 for j D 1; : : : ; 8; seven of the points t1; : : : ; t8 lie on the curve Oq D 0. Since
deg.Oq/ � 2, Oq is a nonzero constant or Oq D 0 is a line or a quadratic, again a
contradiction.

From the preceding two cases it follows that deg.q/ D 3 and p is constant.
Therefore deg.Oq/ D 3. Since g D OpOq2, Oq vanishes at all 10 points t1; : : : ; t10. These
points determine the cubic uniquely [Bx, Theorem 13.7], so Oq is a constant multiple
of f . Hence g D OpOq2 is a nonnegative multiple of f 2, that is, g 2 RC � f 2: ut

The next lemma is Chasles’ theorem. In the literature this result or its general-
ization to curves of higher degrees is also called the Cayley–Bacharach theorem.

Lemma 19.38 Let t1; : : : ; t9 be pairwise distinct points of R2 and suppose that
f ; g 2 R2Œ x �3 define two cubics satisfying Z. f / \ Z.g/ D ft1; : : : ; t9g. Let
h 2 R2Œ x �3. If the points t1; : : : ; t8 lie on the cubic Z.h/, then also t9 2 Z.h/.

Proof [EGH, Theorem CB3], see also [SR, Chapter V, Section 1.1] and [RRS].
From the assumptions and Bezout’s theorem one easily derives that no four of the
points tj are collinear and no seven are on a quadratic. Using this fact the assertion
of Lemma 19.38 follows from [Bx, Theorem 13.7] as well. ut

Recall that a positive functional on R2Œ x � that is not a moment functional was
given in Proposition 13.5. Now we use the preceding setup to construct another
positive functional on R2Œ x �6 that is not a truncated moment functional. Let

t1 D .1; 1/; t2 D .1;�1/; t3 D .�1; 1/; t4 D .�1;�1/; (19.53)

t5 D .0; 1/; t6 D .0;�1/; t7 D .1; 0/; t8 D .�1; 0/; t9 D .0; 0/: (19.54)
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The first 8 points t1; : : : ; t8 are zeros of the dehomogenized Robinson polynomial

OR.x1; x2/ WD R.1; x1; x2/ D x61 C x62 C 1 � x41.x
2
2 C 1/ � x42.x

2
1 C 1/ � x41 � x42 C 3x21x22

and OR.t9/ D 1. For c 2 R, we define Lc DP8
jD1 ltj � clt9 .

Proposition 19.39 Let 0 < c � 4
5
. Then Lc is a positive functional onR2Œ x �6 (that

is, Lc. p2/ � 0 for p 2 R2Œ x �3) which is not a truncated moment functional.

Proof Recall that t1; : : : ; t9 are the points satisfying (19.36) for the two cubics f D
x1.1 � x21/ and g D x2.1 � x22/ from Example 19.36. Hence Lemma 19.38 applies.

First we show that the point evaluations lt1 ; : : : ; lt9 are linearly dependent on
R2Œ x �3. Assume the contrary and let L be the linear span of these functionals. Then
there is a linear functional F on L such that F.ltj/ D 0, j D 1; : : : ; 8; and F.lt9 / D 1.
Since L 	 .R2Œ x �3/�, the functional F is given by some polynomial p 2 R2Œ x �3,
that is, F.l/ D l. p/ for l 2 L. Then F.ltj/ D p.tj/. Hence t1; : : : ; t8 2 Z. p/.
Since t1; : : : ; t8 do not lie on a quadratic, deg. p/ D 3 and t1; : : : ; t8 are on the cubic
Z. p/. Hence, by Chasles’ theorem (Lemma 19.38), p.t9/ D 0 which contradicts
p.t9/ D F.lt9 / D 1:

Since the functionals lt1 ; : : : ; lt9 are linearly dependent, there are real numbers
�1; : : : ; �9, not all zero, such that

9X
jD1

�jltj. p/ D
9X

jD1
�jp.tj/ D 0 for p 2 R2Œ x �3: (19.55)

Setting p D .1�x21/.1˙x2/ and p D .1�x1/x2.1˙x2/ in (19.55) yields 2�6C�9 D
2�5C�9 D 0 and 2�3C�5 D 2�4C�6 D 0. If we interchange the role of x1 and x2,
we have 2�7 C �9 D 2�8 C �9 D 0 and 2�2 C �7 D 0: For p D .1C x1/x2.1C x2/
we get 2�1 C �5 D 0. Therefore, putting �9 D 1, we obtain on R2Œ x �3,

lt9 C
1

4

�
lt1 C lt2 C lt3 C lt4

� � 1
2

�
lt5 C lt6 C lt7 C lt8

� D 0: (19.56)

(We could have avoided Chasles’ theorem by verifying this identity on R2Œ x �3 by a
direct computation.) Let p 2 R2Œ x �3. By (19.56),

p.t9/
2 D

�
� 1
4

4X
jD1

p.tj/C 1

2

8X
jD5

p.tj/

�2
� 5

4

8X
jD1

:p.tj/
2: (19.57)

Then Lc is a positive functional, since 0 < c � 4
5

and hence

Lc. p
2/ D

8X
jD1

p.tj/
2 � cp.t9/

2 � �1 � 5c=4�
8X

jD1
p.tj/

2 � 0:
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Since t1; � � � ; t8 are zeros of OR and OR.t9/ D 1, we have Lc. OR/ D �c < 0:

Thus, Lc is not a truncated moment functional, since R 2 Pos.R3/ and hence
OR 2 Pos.R2/: ut

19.7 Exercises

1. (Covariance of the apolar scalar product)
Let p; q 2 Hd;m and A 2 Md.R/. Define . p ı A/.x/ D p.Ax/; x 2 Rd; where
x 2 Rd is a column vector. Prove that pıA 2 Hd;m and Œ pıA; q� D Œ p; qıAT�.
Hint: It suffices to verify the latter for p D .a�/m; q D .b�/m, where a; b 2 Rd.

2. Let p 2 Hd;2n. Show that p ıU D p for all orthogonal transformations U if and
only if there is a number c 2 R such that p.x/ D ckxk2n.

3. Define Da WD a1@1C� � �Cad@d for a D .a1; : : : ; ad/ 2 Rd. Let y1; : : : ; ym 2 Rd.
Show that 1

mŠDy1 � � �Dymf D Œ f ; .y1�/ � � � .ym�/� for f 2 Hd;m:

4. Let p 2 Hd;m;m 2 N; and x 2 Rd: Suppose that @p
@xj
.x/ D 0 for j D 1; : : : ; d:

Use Euler’s identity to show that p.x/ D 0.
5. Show that the polynomial f .x1; x2/ D x21x

2
2 2 H2;4 is not in Q2;4.

6. Let f".x1; x2/ D x21x
2
2 C ".x21 C x22/

2 2 H2;4 for " > 0. Note that f" is positive on
R2nf0g. Show that f" is not in Q2;4 if 0 < " < 1

4
.

Hint: Assume the contrary. Write f" D P5
jD1.ajx1 C bjx2/4 by Carathéodory’s

theorem. Compare first the coefficients of x41, x
4
2, and finally of x21x

2
2.

7. Let d D 2 or n D 1. Let p be a homogeneous polynomial of Hd;2n such that
p � 0 on Rd: Show that p is a sum of squares of elements of Hd;n.

8. Find polynomials p 2 H3;6 and q 2 H4;4 which are not sums of squares of
elements of H3;3 and H4;2, respectively.
Hint: Use homogenized Motzkin and Choi–Lam polynomials, (13.6)
and (13.41).

9. Suppose that d � 3; n � 3 or d � 4; n � 2. Show that
P

H2
d;n ¤

Pos.Hd;2n;R
d/:

10. Find a polynomial p 2 H2;2 such that p2 does not span an extreme ray of
P2

2;4.
11. Let t1; : : : ; t8 be the points of R2 given by (19.53) and (19.54) and let L DP8

jD1mjltj , where mj � 0 for j D 1; : : : ; 8:
a. Show the truncated moment functional L on R2Œ x �6 is determinate.
b. Let t9 2 R2 be such that t9 ¤ tj for j D 1; : : : ; 8. Show that � D ıt9 CP8

jD1mjıtj is an ordered maximal mass measure.

12. Let R be the Robinson polynomial. Find a linear transformation A of R3 such
that p 2 H3;6 defined by p.x/ WD R.Ax/ has exactly 10 zeros in R2.
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13. (Hessians at zeros for sums of squares)
Let f1; : : : ; fk 2 H2;n and f D f 21 C � � � C f 2k . Suppose that t 2 Z. f /. Show that

dX
i;jD1

�i�j
@2f

@xi@xj
.t/ D 2

kX
lD1

� dX
i

�i
@fl
@xi
.t/

�2
� 2

kX
lD1
.� � rfl.t//2

for � D .�1; : : : ; �d/T 2 Rd, where r D . @
@x1
; : : : ; @

@xd
/T .

Hint: First verify that @2f 2l
@xi@xj

.t/ D 2 @fl
@xi
.t/ @fl

@xj
.t/:

14. Let t1; : : : ; t9 be pairwise distinct points of R2 and let f ; g 2 R2Œ x �3 be two
cubics satisfying Z. f / \ Z.g/ D ft1; : : : ; t9g. Show that no four of the points
t1; : : : ; t9 are collinear and no seven are on a quadratic.

15. ([Re1]) Suppose that a > 0; a ¤ p2: Let L be the moment functional
of the measure � D P8

jD1 ıtj on R2Œ x �6, where the eight points tj are
.˙1;˙1/; .˙a; 0/; .0;˙a/:
a. Show that f D x1.x21�a2 C .a2�1/x22/; g D x2.x22�a2 C .a2�1/x21/ form a

basis of the vector space NL:

b. What happens to NL in the case a D p2?
c. Show that Z. f / \Z.g/ D ft1; : : : ; t8; t9g, where t9 WD .0; 0/.
d. Let L0 WD L C lt9 and L00 D L0 C ıt10 , where t10 D .2; 1 � 3.1 � a2/�1/ if

a ¤ 1 or t10 D .3; 3/: Determine NL0 , NL00 , NC.L0/, NC.L00/, VC.L0/, and
VC.L00/:

19.8 Notes

The apolar scalar product goes back to the 19th century, see [Re1] for some
historical discussion and [Veg], [Re3]. Representing homogeneous polynomials of
degree m as finite sums of m-th powers of linear forms is called Waring’s problem,
see [El1, El2]. Hilbert’s Theorem 19.15 was proved in [H2]. It is developed in [Nat]
where explicit formulas for h4;2n; n D 2; 3; 4; 5; are given.

Robinson’s polynomial was discovered by R.M. Robinson in [Rb]. Its extremal-
ity (Corollary 19.22) was shown in [CL]. Proposition 19.25 is taken from [Sm10].

Theorem 19.32 is due to M.D. Choi, T.Y. Lam and B.Reznick [CLR]. Recent
results on Carathéodory numbers can be found in [RiS] and [DSm2].

The construction method of a positive functional that is not a moment functional
in Proposition 19.39 (with a more complicated polynomial) was invented by the
author [Sm2]. It was elaborated in [Bl1]. Formulas (19.56) and (19.57) appeared in
[BW, Exercise 1.6.28].



Appendix

A.1 Measure Theory

For all notions and results on measure theory we refer to [Ba, BCRl], and [Ru2].
Throughout this appendix, X is a locally compact Hausdorff space.
We denote by Cc.X / the continuous functions on X with compact support, by

Cc.X IR/ the real-valued functions in Cc.X /, by Cc.X /C the nonnegative functions
in Cc.X /, and by C0.X / the functions f 2 C.X / which vanish at infinity, or
equivalently, for which the set fx 2 X W jf .x/j � "g is compact for all " > 0.

The Borel algebraB.X / is the �-algebra generated by the open subsets of X . A
B.X /-measurable function on X is called a Borel function.

Definition A.1 A Radon measure on X is a measure � W B.X / ! Œ0;C1� such
that �.K/ <1 for each compact subset K of X and

�.M/ D sup f�.K/ W K 	 M; K compactg for all M 2 B.X /: (A.1)

Thus, in our terminology Radon measures are always nonnegative!
Condition (A.1) is the regularity of �. If the locally compact space X is �-

compact (that is, X is a countable union of compact sets), then each Radon measure
is also outer regular (see e.g. [Ba, Corollary 29.7])

�.M/ D inf f�.U/ W M 	 U; U openg for M 2 B.X /:

Closed subsets of Rd are obviously �-compact. All measures for moment problems
occuring in this book are Radon measures on �-compact locally compact Hausdorff
spaces; in most cases they are supported on closed subsets of Rd:

Let MC.X / denote the set of Radon measures on X , M1C.X / the subset of
probability measures in MC.X /, and MbC.X / the subset of finite measures in
MC.X /.
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A complex Radon measure on X is a map � W B.X / ! C which is of the form
� D �1 � �2 C i.�3 � �4/, where �1; �2; �3; �4 2 MbC.X /: The set of complex
Radon measures on X is denoted by M.X /:

For � 2 MC.X / we denote the �-integrable Borel functions on X by L1.X ; �/,
that is, a Borel function f on X is in L1.X ; �/ if and only if

R jf .x/j d� <1.
We say that a measure � 2 MC.X / is supported on a set M 2 B.X / if

�.XnM/ D 0. The support of � 2 MC.X /, denoted by supp �, is the smallest
closed subset M of X such that X is supported on M. By this definition, x0 2 X is
in supp� if and only if �.U/ > 0 for each open subset U of X containing x0.

Theorem A.2 (Lebesgue’s Dominated Convergence Theorem) Suppose that
� 2 MC.X /: Let fn; n 2 N, and f be complex Borel functions on X and let
g W X ! Œ0;C1� be a �-integrable function. Suppose that

lim
n!1 fn.x/ D f .x/ and jfn.x/j � g.x/; n 2 N; �-a.e. on X : (A.2)

Then the functions f and fn are �-integrable,

lim
n!1

Z
˝

jfn � f j d� D 0; and lim
n!1

Z
˝

fn d� D
Z
˝

f d�:

Proof [Ru2, Theorem 1.34]. ut
Theorem A.3 (Radon–Nikodym Theorem) Let �; � 2 MC.X /. Suppose that �
is �-finite (that is, X is a countable union of sets which have finite �-measure). If �
is absolutely continuous with respect to � (that is, each �-null set is also a �-null
set), then there exists a nonnegative function h 2 L1.X ; �/ such that d� D h.x/d�.

Proof [Ba, Theorem 17.10] or [Ru2, Theorem 6.9]. ut
Theorem A.4 (Riesz’ Representation Theorem) For each linear functional L on
Cc.X IR/ such that L. f / � 0 for all f 2 Cc.X /C there exists a unique (positive)
Radon measure � on X such that

F. f / D
Z
X
f d�; f 2 Cc.X IR/:

Proof [Ru2, Theorem 2.14], [Ba, Theorems 29.1 and 29.3], or [BCRl, Chapter 2,
Corollary 2.3]. ut

Now we develop some basics on the vague convergence of measures, see e.g.
[Ba, � 30 and 31] or [BCRl, Chapter 2, � 3 and 4] for more details.

The vague topology on MC.X / is the coarsest topology for which all mappings
� 7! R

fd�, where f 2 Cc.X /; are continuous. A net .�i/i2I fromMC.X / converges
vaguely to � 2 MC.X / if and only if for all f 2 Cc.X IR/ we have

lim
i

R
fd�i D

R
fd�: (A.3)
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Proposition A.5 A net .�i/i2I of measures �i 2 MC.X / converges vaguely to
� 2 MC.X / if and only if

lim sup
i

�i.K/ � �.K/ and lim inf
i

�i.A/ � �.A/

for every compact subset K and every relatively compact open subset A of X .

Proof [Ba, Theorem 30.2], see also [BCRl, Chapter 2, Exercise 4.11]. ut
Theorem A.6 A subset M of MC.X / is relatively compact in the vague topology
(that is, its closure is vaguely compact) if and only if it is vaguely bounded, that is,

sup
�2M

ˇ̌ R
f d�

ˇ̌
<1 for all f 2 Cc.X IR/:

For any a > 0 the set f� 2 MC.X / W �.X / � ag is vaguely compact.
Proof [Ba, Theorem 31.2 and Corollary 31.3] or [BCRl, Chapter 2, Theorem 4.5
and Proposition 4.6]. ut
Proposition A.7 If Cc.X IR/ is separable with respect to the supremum norm, then
the vague topology on MC.X / is metrizable.

Proof [Ba, Lemma 31.4 and Theorem 31.5]. ut
A function h W X ! Œ�1;C1� is called upper semicontinuous (resp. lower
semicontinuous) if for each number a 2 R the set fx 2 X W f .x/ < ag (resp.
fx 2 X W f .x/ > ag) is open in X , or equivalently, if for each convergent net .xi/i2I
in X we have

lim supi f .xi/ � f .lim
i
xi/ .resp: f .lim

i
xi/ � lim infi f .xi//:

The following result is called the portmanteau theorem.

Proposition A.8 Let .�i/i2I be a net of measures �i 2 MbC.X / and � 2 MbC.X /.
Then the following five statements are equivalent:

(i) lim supi �i D � in the vague convergence and limi �i.X / D �.X /:
(ii) lim supi �i.A/ � �.A/ for all closed subsets A of X and limi �i.X / D �.X /:

(iii) lim supi
R
h d�i �

R
h d� for all upper semicontinuous bounded real func-

tions h on X :
(iv) lim infi �i.A/ � �.A/ for all open subsets A of X and limi �i.X / D �.X /:
(v) lim infi

R
h d�i �

R
h d� for all lower semicontinuous bounded real functions

h on X :

Proof By [BCRl, Chapter 2, Proposition 4.2] or [Ba, Theorem 30.8], (i) holds if and
only if the net .�i/ converges weakly to �. Using this result the assertion follows
from [BCRl, Chapter 2, Theorem 3.1]; for (i) and (iii), see [Ba, Theorem 30.10]. ut
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Proposition A.9 Let .�i/i2I be a net from MbC.X / satisfying supi2I �i.X / <1: If
this net converges vaguely to � 2 MbC.X /, then (A.3) holds for all f 2 C0.X /.

Proof [Ba, Theorem 30.6] or [BCRl, Chapter 2, Proposition 4.4]. ut

A.2 Pick Functions and Stieltjes Transforms

Let CCDfz 2 C W Im z > 0g denote the upper half-plane.

Definition A.10 A holomorphic function f W CC ! C is a Pick function if

Im f .z/ � 0 for all z 2 CC:

We denote the set of Pick functions by P. In the literature Pick functions are also
called Nevanlinna functions.

Examples of Pick functions are tan z or the principal logarithm Log z.
If f 2 P and f .z0/ is real for some point z0 2 CC, then f is not open and hence a

constant. That is, all nonconstant Pick functions map CC into CC.
Each Pick function f can be extended to a holomorphic function on CnR by

setting f .z/ WD f .z/ for z 2 CC.

Theorem A.11 (Canonical Integral Representation of Pick Functions) For each
Pick function f there exist numbers a; b 2 R, b � 0; and a finite Radon measure �
on the real line such that

f .z/ D aC bzC
Z
R

1C zt

t�z d�.t/; z 2 C=R; (A.4)

where the numbers a; b and the measure � are uniquely determined by f .
Conversely, any function f of this form is a Pick function.

Proof [AG, Nr. 69, Theorem 2] or [Dn, p. 20, Theorem 1]. ut
Often the canonical representation (A.4) is written in the form

f .z/ D aC bzC
Z
R

�
1

t�z �
t

1C t2

�
d�.t/; z 2 C=R; (A.5)

where � is a Radon measure on R such that
R
.1 C t2/�1d�.t/ < 1. The two

canonical representations (A.4) and (A.5) are related by the formula

d�.t/ D .1C t2/�1d�.t/:

Moreover, a D Re. f .i// and b D limy!1 f .iy/
iy . It should be emphasized that the

function t.1C t2/�1 in (A.5) is not necessarily �-integrable.
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Definition A.12 The Stieltjes transform of a complex Radon measure� 2 M.R/ is

I�.z/ D
Z
R

1

t � z
d�.t/; z 2 CnR: (A.6)

Stieltjes transforms are also called Cauchy transforms or Borel transforms.

Theorem A.13 (Stieltjes–Perron Inversion Formula) Each complex Radon mea-
sure � 2 M.R/ is uniquely determined by the values of its Stieltjes transform I�.z/
on CnR. In fact, for a; b 2 R; a < b, we have

�..a; b//C 1
2
�.fag/C 1

2
�.fbg/ D lim

"!C0
1
2� i

Z b

a
ŒI�.tCi"/�I�.t�i"/� dt;

(A.7)

�.fag/ D lim
"!C0 � i" I�.aCi"/: (A.8)

In particular, if I�.z/ D 0 for all z 2 CnR, then � D 0.
Proof By definition � 2 M.R/ is a linear combination of measures from MbC.R/.
Hence one can assume without loss of generality that � 2 MbC.R/. In this case
proofs are given (for instance) in [AG, Nr. 69] and [Wei, Appendix B]. ut

Note that there exist complex Radon measures � ¤ 0 for which I� D 0 on CC.
Now suppose that � 2 MC.R/. Then I�.z/ D I�.z/ for all z 2 C nR. Hence the

measure � is uniquely determined by the values of its Stieltjes transform I�.z/ on
CC and the formulas (A.7) and (A.8) can be written as

�..a; b//C 1
2
�.fag/C 1

2
�.fbg/ D lim

"!C0
1
�

Z b

a
Im I�.tCi"/ dt; (A.9)

�.fag/ D lim
"!C0 " Im I�.aCi"/: (A.10)

The Stieltjes transform I� of � 2 MC.R/ is a Pick function, since

Im I�.z/ D Im z
Z
R

1

jt � zj2 d�.t/; z 2 CnR:

The next result characterizes these Stieltjes transforms among Pick functions.

Theorem A.14 A Pick function f is the Stieltjes transform I� of a measure � 2
MC.R/ if and only if

sup f jyf .iy/j W y 2 R; y � 1g <1: (A.11)

Proof [AG, Nr. 69, Theorem 3]. ut
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Proposition A.15 Let K be a closed subset of R and � 2 MC.R/. The Stieltjes
transform I�.z/ has a holomorphic extension to CnK if and only if supp � 	 K.

Proof [Dn, Lemma 2, p. 26]. ut
Let us sketch the proof of Proposition A.15:
If supp� 	 K, then (A.6) with z 2 CnK defines a holomorphic extension of I� to

CnK. Conversely, suppose that I� has a holomorphic extension, say f , to CnK. Then
lim
"!C0 I�.t ˙ i"/ D f .t/ and hence lim

"!C0 Im I�.tCi"/ D 0 for t 2 RnK. Therefore,

by (A.9) and (A.10), we have supp � 	 K:

A.3 Positive Semidefinite and Positive Definite Matrices

Let K be either the real field R or the complex field C. If not stated otherwise, h�; �i
and k � k denote the standard scalar product and the Euclidean norm of Kn.

Let Mn;m.K/ be the .n;m/-matrices over K and Mn.K/ WD Mn;n.K/. For a matrix
A D .ajk/ 2 Mn;m.K/we denote by A the matrix A D .ajk/ and by AT the transposed
matrix. A matrix A D .ajk/nj;kD1 is called Hermitian if ajk D akj for j; k D 1; : : : ; n.

Proofs of the following Propositions A.16 and A.18–A.20 and the corresponding
notions can be found in standard texts on matrices such as [Gn, Zh].

Proposition A.16 (Spectral theorem for Hermitian matrices) Let A 2 Mn.K/ be
Hermitian. There exist an orthonormal basis u1; : : : ; un of Kn and reals �1; : : : ; �n
such that Auj D �juj, j D 1; : : : ; n. If D denotes the diagonal matrix with diagonal
entries �1; : : : ; �n and U the matrix with columns u1; : : : ; un, then

A D
nX

jD1
�juj.uj/

T D UDU�1: (A.12)

Given a Hermitian matrix A D .ajk/nj;kD1, the expression

QA.�/ D hA�; �i D
nX

j;kD1
ajk�j�k for � D .�1; : : : ; �n/T 2 Kn

is called the Hermitian form associated with A or briefly a Hermitian form.

Definition A.17 A Hermitian matrix A and the Hermitian form QA are called

� positive semidefinite if QA.�/ � 0 for all � 2 Kn,
� positive definite if QA.�/ > 0 for all � 2 Kn; � ¤ 0:
We write A � 0 if A is positive semidefinite and A � 0 if A is positive definite.

Given integers ij, j D 1; : : : ; k � n; such that 1 � i1 < i2 < � � � < ik � n
let D.i1; : : : ; ik/ denote the determinant of the k � k-submatrix of A formed by the
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ij-th rows and columns of A: Then D.i1; : : : ; ik/ is called a principal minor of A and
D.1; : : : ; k/ is a main principal minor of A:

Proposition A.18 For a Hermitian matrix A 2 Mn.K/ the following are equiva-
lent:

(i) A is positive semidefinite.
(ii) All principal minors D.i1; : : : ; ik/ are nonnegative.

(iii) All eigenvalues of A are nonnegative.
(iv) There exist vectors v1; : : : ; vn 2 Kn such that A DPn

jD1 vj.vj/T .

Proposition A.19 For a Hermitian matrix A 2 Mn.K/ the following are equiva-
lent:

(i) A is positive definite.
(ii) All main principal minors D.1; : : : ; k/, k D 1; : : : ; n, are positive.

(iii) All eigenvalues of A are positive.
(iv) There are linearly independent vectors v1; : : : ; vn 2 Kn such that A DPk

jD1 vj.vj/T .
(v) A is positive semidefinite and detA ¤ 0:

(vi) A is positive semidefinite and rankA D n.

For each positive semidefinite matrix A there is a unique positive semidefinite
matrix B, denoted by A1=2, such that B2 D A. If A is of the form (A.12) and D1=2

denotes the diagonal matrix with entries �1=21 ; : : : ; �
1=2
n , then A1=2 D UD1=2U�1.

The trace Tr A of a matrix A 2 Mn.K/ is the sum of all diagonal entries of A.

Proposition A.20 For A;B 2 Mn.K/ we have:

(i) TrAB D TrBA.
(ii) TrA � 0 if A � 0. In particular, TrA

T
A � 0:

(iii) A � 0 and TrA D 0 imply that A D 0. In particular, TrA
T
A D 0 implies

A D 0.
Let Symn denote the real vector space of symmetric matrices in Mn.R/. There is

a scalar product h�; �i on Symn defined by

hA;Bi WD TrAB D
nX

i;jD1
aijbij for A D .aij/; B D .bij/ 2 Symn:

For matrices from Symn we have the following basic properties.

Proposition A.21

(i) If A � 0 and B � 0, then hA;Bi D TrAB � 0:
(ii) If A � 0; B � 0, and hA;Bi D 0, then AB D 0.

(iii) If hA;Bi � 0 for all B � 0, then A � 0.
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Proof

(i) As noted above, each positive semidefinite matrix C 2 Symn has a unique
positive semidefinite square root C1=2. Then we derive

TrAB D TrA1=2A1=2B1=2B1=2 D TrB1=2A1=2A1=2B1=2 D Tr .A1=2B1=2/T .A1=2B1=2/:

Since .A1=2B1=2/T.A1=2B1=2/ � 0, this yields TrAB � 0.
(ii) By the preceding equality, we have 0 D hA;Bi D Tr .A1=2B1=2/T.A1=2B1=2/.

Therefore, .A1=2B1=2/T.A1=2B1=2/ D 0 and hence A1=2B1=2 D 0. Thus we
obtain AB D A1=2.A1=2B1=2/B1=2 D 0:

(iii) Assume to the contrary that A is not positive semidefinite. Then, by Proposi-
tion A.18, A admits an eigenvalue � < 0, so Au D �u with u 2 Rn, u ¤ 0:

Then B WD uuT � 0 and TrAB D Tr .�uuT/ D �Tr uuT . Since uuT � 0

and uuT ¤ 0, Tr uuT > 0 and hence TrAB < 0, which contradicts the
assumption. ut

A.4 Positive Semidefinite Block Matrices and Flat Extensions

Suppose that A D AT 2 Mn.R/, B 2 Mn;m.R/, C D CT 2 Mm.R/, where n;m 2 N.
We consider the symmetric block matrix X 2 MnCm.R/ defined by

X D
�
A B
BT C

�
: (A.13)

Definition A.22 The block matrix X is called a flat extension of A if

rankX D rankA:

Proposition A.23 The block matrix X is a flat extension of A if and only if there
exists a matrix U 2 Mn;m.R/ such that B D AU and C D UTAU.

Proof The proof is based essentially on the well-known fact that the rank of a
matrix is the maximal number of linearly independent columns. First suppose that
rankX D rankA. Then each column of

�
B
C

�
is in the span of columns of

�
A
BT

�
. Hence�

B
C

�
is of the form

�
AU
BTU

�
, so that B D AU and C D BTU D UTAU.

Conversely, if X is of the prescribed form, one easily verifies that the dimensions
of the ranges of X and A are equal; hence rankX D rankA. ut

The following description of positive semidefinite block matrices is due to J.L.
Shmuljan [Sh].

Theorem A.24 Suppose that A � 0:
(i) X � 0 if and only if B D AU for some matrix U 2 Mn;m.R/ and C � UTAU.
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(ii) Suppose that B D AU with U 2 Mn;m.R/: Then X is a flat extension of A if and
only if C D UTAU.

(iii) If X is an arbitrary flat extension of A, then X � 0.
Proof

(i) First suppose that B D AU with U 2 Mn;m.R/. Then we have the identity

X D
�

A AU
UTA C

�
D (A.14)

�
A1=2 A1=2U
0 0

�T �
A1=2 A1=2U
0 0

�
C
�
0 0

0 C �UTAU

�
: (A.15)

If C � UTAU, both summands in (A.15) are positive semidefinite, so that
X � 0.

Conversely, assume that X � 0: We show that B can be written as B D AU
with U 2 Mn;m.R/. Since X � 0, it has a positive square root. If X1 and X2
denote the rows of X1=2 we write

X1=2 D
�
X1
X2

�
:

Comparing the square of X1=2 with X yields A D X1XT
1 ;B D X1XT

2 ;C D X2XT
2 :

For v 2 Rn we have hAv; vi D hX1XT
1 v; vi D kXT

1 vk2: Therefore, Av D 0

implies that XT
1 v D 0. Hence there exists a well-defined (!) linear operator

V1 W Rn ! RnCm such that V1Av D XT
1 v for v 2 Rn. Then V1A D XT

1 :

Similarly, there is a linear operator V2 W Rm ! RnCm such that V2C D XT
2 :

Then VT
1 V2C W Rm ! Rn is given by a matrix U 2 Mn;m.R/ and we compute

B D X1XT
2 D .V1A/TV2C D AVT

1 V2C D AU:
For v 2 Rm, we have h.C � UTAU/v; vi D hX � 0v � ; � 0v �i � 0: Thus,

C � UTAU.
(ii) By the assumption of (ii), B D AU. Therefore, if C D UTAU, then X is a flat

extension of A by Proposition A.23.
Conversely, suppose C ¤ UTAU. Let P W RnCm ! Rn be the canonical

projection given by P.x; y/ D x, x 2 Rn; y 2 Rm. From (A.14) it follows that
P is a surjection of the range of X on the range of A. We choose v 2 Rm such
that Cv ¤ UTAUv. Set u WD �Uv and w WD Cv � UTAUv. From (A.14) we
derive X . uv / D

�
0
w

�
. Since w ¤ 0, P is not injective. Therefore, rankX D

dim imX > dim imA D rankA, so X is not a flat extension of A.
(iii) By Proposition A.23, each flat extension X of A is of the form (A.13) with

B D AU and C D UTAU. Hence X � 0 by (A.14) and (A.15). ut



508 Appendix

Proposition A.25 Suppose that A � 0. Then the matrix X given by (A.13) is a flat
extension of A if and only if

RnCm D .Rn; 0/C kerX: (A.16)

If this holds and x 2 Rn, then x 2 kerA if and only if .x; 0/ 2 kerX.

Proof First suppose that X is a flat extension of A. Then, by Proposition A.23, there
is a matrixU 2 Mn;m.R/ such thatB D AU andC D UTAU. Let x 2 Rn and y 2 Rm.
Then X.�Uy; y/ D 0, so that .x; y/ D .xCUy; 0/C .�Uy; y/ 2 RnCmCkerX: This
proves (A.16).

Now assume that (A.16) holds. By reordering the canonical basis of Rn, we may
assume that the first n0 canonical basis elements of Rn are linearly independent of
kerX and that, together with a basis of kerX, they form a basis of RnCm. Then

RnCm D .Rn0

; 0/˚ kerX: (A.17)

Let m0 WD dim ker X. Clearly, n0 C m0 D nC m by (A.17). From (A.16) it follows
that n0 � n. We write X as block matrix of the form (A.13) with respect to the
decomposion (A.17). Let A0;B0; .B0/T ;C0 denote the corresponding matrix entries.
The matrix of change of bases between the canonical basis of RnCm and this new
basis is of the form

�
I �U0
0 I

�

for some matrix U0 2 Mn0;m0.R/: Then the matrix of the symmetric operator
corresponding to X on RnCm in the new basis is

�
A0 0
0 0

�
D
�

I 0

�.U0/T I

��
A0 B0
.B0/T C0

��
I � U0
0 I

�

D
�

A0 B0 � A0 U0
.B0/T � .U0/T A0 C0�.U0/TB0 � .B0/TU0 C .U0/TA0 U0

�
:

Thus, B0 D A0 U0, .B0/T D .U0/T A0; and C0�.U0/TB0 � .B0/TU0C .U0/TA0 U0 D 0:
We insert the first two relations into the last and obtain C0 D .U0/TA0 U0. Hence, by
Proposition A.23, X is a flat extension of A0, so that rankX D rankA0: Since n0 � n
as noted above, A0 corresponds to a submatrix of A in the new basis. Therefore,
rankA0 � rankA � rankX: Hence rankX D rankA; so X is a flat extension of A.

We verify the last assertion. We write X as in Proposition A.23 and compute
X.x; 0/ D .Ax;BTx/ D .Ax;UTAx/: Hence .x; 0/ 2 kerX if and only if
x 2 kerA. ut
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A.5 Locally Convex Topologies

Introductions to locally convex spaces are given in [Ru1] and [Cw].
In this section, K D R or K D C and V is a K-vector space.
A map p W V ! RC is called a seminorm on the vector space V if p.�x/ D

j�jp.x/ and p.xC y/ � p.x/C p.y/ for all � 2 K and x; y 2 V:
Let P be a family of seminorms on V such that p.x/ D 0 for p 2 P implies x D 0.

The locally convex topology defined by P is the topology on V for which the sets

fy 2 V W p1.x � y/ � "; : : : ; pk.x � y/ � "g

where p1; : : : ; pk 2 P; k 2 N; " > 0, form a base of neighbourhoods of x 2 V .

Theorem A.26 (Separation Theorem for Convex Sets) Suppose that V is real
vector space equipped with a locally convex topology. Let X and Y be nonempty
disjoint convex subsets of V.

(i) If Y is open, then there exist a linear functional L W V ! R and an a 2 R such
that L.x/ � a < L.y/ for x 2 X and y 2 Y.

(ii) If X is compact and Y is closed, then there are a linear functional L W V ! R

and numbers a; b 2 R such that L.x/ � a < b � L.y/ for all x 2 X and y 2 Y.

If Y is a cone, then a < 0 in (i) and (ii).

Proof [Ru1, Part 1, Theorem 3.4]. ut
The following algebraic version of the separation theorem is Eidelheit’s theorem.

A point x0 of a set X in a real vector space V is called an internal point if, given
v 2 V , there exists a ıv > 0 such that x0 C ıv 2 X for all ı 2 R; jıj � ıv .
Theorem A.27 Let X and Y be nonempty disjoint convex sets in a real vector
space V. Suppose that Y has at least one internal point. Then there exists a linear
functional L on V such that L.x/ � L.y/ for x 2 X, y 2 Y. If Y is a cone, then L is
Y-positive.

Proof [KNa, Theorem 3.8] or [Kö], � 17, (3), p. 187. ut
If the vector space V is finite-dimensional, it has a unique locally convex

topology; we call it the natural topology of V . It can be given by any norm on V .
Let �f denote the finest locally convex topology on V . It is obtained by taking

the family of all seminorms on V as P. A neighbourhood base of zero is given
by the absolutely convex absorbing subsets of V . All linear functionals on V and
all seminorms on V are continuous in the topology �f . The topology �f induces
the natural topology on each finite-dimensional linear subspace. If V has countable
vector space dimension, we have the following characterization of closed subsets.

Proposition A.28 Suppose that V is a K-vector space of at most countable
dimension. A subset C of V is closed in the topology �f if and only C \ E is closed
in V for each finite-dimensional subspace E of V.
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Proof The assertion follows from the Krein–Smuljan theorem [KNa, Theorem 22.6]
applied to the dual locally convex space of V . We include a direct “elementary”
proof following [Ms1, Section 3.6].

If C is �f -closed, then C \ E is closed in the induced topology. Since the finite-
dimensional space E has a unique locally convex topology, the induced topology of
�f is the natural topology of E.

We prove the converse implication. Since the assertion is trivial if V has finite
dimension, we can assume that V has a countable basis, say fvn W n 2 Ng. Let Vn be
the linear span of v1; : : : ; vn. For numbers "1 > 0; : : : ; "n > 0 we abbreviate

U."1; : : : ; "n/ WD
˚
v D

nX
jD1

�jej W j�jj � "j for j D 1; : : : ; n �:

It suffices to show that the complement M WD VnC of C is open, that is, for each
point v 2 M there exists a �f -neighbourhood U such that U 	 M. Upon translation
we can assume without loss of generality that v D 0.

We prove by induction that there is a positive sequence " D ."n/n2N such that

U."1; : : : ; "n/ 	 M \ Vn: (A.18)

Clearly, since M\V1 is open, there is an "1 > 0 such that U."1/ 	 M\V1: Suppose
that "1; : : : ; "n are constructed such that (A.18) is satisfied.

Assume to the contrary that there is no number "nC1 > 0 such that (A.18) holds
for nC 1. Then for each k 2 N there exists an xk DPnC1

jD1 �k;jvj 2 U."1; : : : ; "n;
1
k /

such that xk … M. Since all “coordinates” �k;j of xk are bounded, the sequence
.xk/k2N has a convergent subsequence in VnC1. Let x be the limit of such a
subsequence. By xk 2 U."1; : : : ; "n;

1
k /, we have j�k;jj � "j for j D 1; : : : ; n and

j�k;nC1j � 1
k . Therefore, x 2 Vn and x 2 U."1; : : : ; "n/; so that x 2 M\Vn by (A.18)

and hence x … C \ Vn. But xk 2 C \ Vn, since xk … M: Since x is the limit of a
subsequence of .xk/, this contradicts the assumption that C \ Vn is closed.

Thus, by induction there exists a positive sequence " satisfying (A.18). Since
U D [1

nD1U."1; : : : ; "n/ is an absolutely convex and absorbing set, U is a
neighbourhood of zero in the topology �f . By (A.18) we have U 	 M. ut
Remark A.29 The preceding proof shows the following result: Let .Vn/n2N be a
sequence of finite-dimensional subspaces of V such that Vn 	 VnC1 for n 2 N and
V D [1

nD1Vn. Then M is closed in the finest locally convex topology of V if and
only if M \ Vn is closed in Vn for all n 2 N. ı

A.6 Convex Sets and Cones

The basics of convex sets are developed in the monographs [Sn, Rf], and [Bv].
Let E be a real vector space. We denoted its dual vector space by E�.



Appendix 511

Definition A.30 A subset C of E is called

� convex if �xC .1 � �/y 2 C for x; y 2 C and � 2 Œ0; 1�,
� a cone if xC y 2 C and �x 2 C for x; y 2 C and � � 0:
Definition A.31 For a cone C in E the dual cone of C is the set

C^ D fF 2 E� W L.x/ � 0 for x 2 Cg: (A.19)

Clearly, C^ is a cone in the real vector space E�.
By the convex hull resp. conic hull of a subset X of E we mean the smallest

convex set resp. cone which contains X .
From now on we assume that E is a finite-dimensional real vector space. All

topological notions refer to the unique norm topology of E.

Proposition A.32 If C is a closed cone of E, then C D C^^.

Proof This is a special case of the bipolar theorem [Cw, Theorem V.1.8]. It follows
at once from separation of convex sets. Obviously, C 	 C^^ by definition.
Assume to the contrary that there exists an x 2 C^^nC. Since C is closed, by
Theorem A.26(ii) there is a linear functional L on E such that L.x/ < 0 and
L.y/ � 0 for y 2 C. Then L 2 C^ and hence L.x/ � 0, because x 2 C^^. This
is a contradiction. ut

A point x 2 E is called a relatively interior point of a set C if x is in the interior
of C in the vector space spanned by C.

Proposition A.33 Suppose that C is a non-empty convex subset of E.

(i) S has relatively interior points. If E is the span of C, then C has interior points.
(ii) The set C and its closure C have the same interior points.

Proof

(i) [Rf, Theorem 6.2] or [Sn, Theorem 1.1.13].
(ii) [Rf, Theorem 6.3] or [Sn, Theorem 1.1.15(a)]. ut
Proposition A.34 Suppose that C is a cone in E.

(i) If C is closed and x0 2 E is not in C, then there exists a linear functional F on
E such that F.x0/ < 0 and F.x/ � 0 for x 2 C.

(ii) A point x0 2 E is a boundary point of C if and only if there exists a linear
functional F ¤ 0 on E such that F.x0/ D 0 and F.x/ � 0 for x 2 C. Such a
functional is called a supporting functional of C at x0.

Proof

(i) [Sn, Theorem 1.3.9] or [Rf, Corollary 11.4.2].
(ii) The if part is almost obvious; for the only if part we refer to [Sn, Theorems 1.3.2

and 1.3.9] or [Rf, Theorem 11.6].
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Clearly, (i) is a special case of Theorem A.26(ii). In [Rf] both results are stated
for convex sets; since C is a cone, the corresponding hyperplanes pass the origin
which yields the results as stated above. ut

The following result is Carathéodory’s theorem [Ca1]. Since it is used in a crucial
manner in this book, we include a proof of it.

Proposition A.35 Let d D dimE and let X be a non-empty subset of E.

(i) Each point of the conic hull of X is a nonnegative combination of at most d
points of X.

(ii) Each point of the convex hull of X is a convex combination of at most d C 1
points of X.

Proof

(i) Each point x in the conic hull of X can be represented as

x D
kX

jD1
�jxj with �j � 0; xj 2 X; j D 1; : : : ; k: (A.20)

Suppose that (A.20) is a corresponding representation of x with minimal k.
Assume to the contrary that k > d D dimE. Then x1; : : : ; xk are linearly
dependent. Hence there are reals �1; : : : ; �k such that at least one is positive
and

kX
jD1

�jxj D 0: (A.21)

Upon renumbering the points we can assume �1��1
1 > 0 is the minimum of all

�j�
�1
j , where �j > 0. By (A.20) and (A.21) we have

x D
kX

jD1
�jxj � �1��1

1

kX
jD1

�jxj D
kX

jD2
.�j � �1��1

1 �j/xj: (A.22)

Then �j � �1��1
1 �j � 0 for all j. Indeed, if �j > 0, then �1��1

1 � �j�
�1
j by

construction. If �j < 0, this is trivial. Hence (A.22) is a representation (A.20)
with k � 1 summands which contradicts the minimality of k.

(ii) The assertion follows by a similar reasoning as (i) (employing the linear
dependence of xj � x1, j D 2; : : : ; k) or directly from (i) by using that x is
in the convex hull of X if and only if .1; x/T is in the conic hull of .1;X/T in
R˚ E. ut



Appendix 513

Next we turn to extreme rays, faces, and extreme points.

Definition A.36 A subset F of the cone C is called

� a face of C if F is a subcone such that x D yC z 2 F with y; z 2 C implies that
y; z 2 F:

� an extreme ray of C if F is a face of the form F D RC � x for some x 2 C; x ¤ 0:
� an exposed face of C if there exists a linear functional L 2 C^ such that

F D FL WD fc 2 C W L.c/ D 0g: (A.23)

It is easily seen that an exposed face is indeed a face. The empty set ; and the
cone C are faces. A face F ¤ ;;C is called a proper face. In general, not all proper
faces are exposed faces, but they are if the cone C is finitely generated.

Let L 2 C^ and let c0 be an element of the exposed face FL defined by (A.23).
Then L.c/ � 0 for all c 2 C (by L 2 C^) and L.c0/ D 0 (by c0 2 FL). Therefore, if
L ¤ 0, then L is a supporting hyperplane of C at c0 and c0 is a boundary point of C.

The extreme rays are the one-dimensional faces. Restating the definition, an
extreme ray of C is a subset F D RC � x, where x 2 C; x ¤ 0; such that x D x1 C x2
with x1; x2 2 C implies that x1; x2 2 RC � x: In this case, we say that the vector x
spans an extreme ray of C. Let Exr.C/ denote the set of elements of all extreme
rays of C.

A cone C is called pointed if C \ .�C/ D f0g, or equivalently, if C does not
contain a line.

Proposition A.37 Suppose C ¤ f0g is a pointed closed cone of a finite-
dimensional real vector space. Then each point of C is a finite sum of elements
of Exr.C/.

Proof [Sn, Theorem 1.4.3] or [Bv, II, Corollary 8.5 and problem 3]; see also [Rf,
Corollary 18.7.1]. ut
Often it is convenient to study cones by means of bases.

Definition A.38 A base of a cone C is a convex subset B of C such that for each
x 2 C; x ¤ 0; there exists a unique number �x > 0 satisfying �x x 2 B.

A linear functional L on E is strictly C-positive if L.c/ > 0 for all c 2 C; c ¤ 0.

Let L be a strictly C-positive linear functional. Then it is easily verified that

B.L/ WD fc 2 C W L.c/ D 1g (A.24)

is a base of C. It can be shown that each base of C is of this form. For x 2 C; x ¤ 0;
the corresponding number L.x/ is given by L.x/ D ��1

x , where �x > 0 and �x x 2 B:
If E D C�C, then the map L 7! B.L/ yields a one-to-one correspondence between
bases of C and strictly C-positive linear functionals on E.

Definition A.39 A point x 2 B is called an extreme point of a convex set B if
whenever x D �yC .1 � �/z with y; z 2 B and 0 < � < 1, then y D z D x:
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Suppose that B is a base of C. We record some basic facts. A point x 2 B is an
extreme point of the convex set B if and only if x spans an extreme ray of C, see
[Bv, II, Lemma 8.4]. Further, if B is compact, C is closed [Bv, II, Lemma 8.6].

By a classical result of H. Minkowski, each compact convex set B in the finite-
dimensional real vector space E is the convex hull of its extreme points.

Finally, we turn to conic optimization. Let L1 and L0 be linear functionals on E.
A linear conic optimization problem is given by

c WD inf fL1. f / W f 2 C;L0. f / D 1g (A.25)

and the corresponding dual problem to (A.25) is

c� WD sup f� 2 R W .L1 � �L0/ 2 C^g: (A.26)

Lemma A.40 Suppose that L1;L0 2 C^ and there exists an element f0 2 C such
that L0. f0/ > 0. Then c D c�:

Proof The set V WD ff 2 C W L0. f / D 1g is not empty, since L0. f0/�1f0 2 V . Hence
c is defined. Let f 2 C. From L1.g/ � c for g 2 V and L0. f / � 0 (by L0 2 C^) we
conclude that L1. f / � cL0. f /. Therefore, .L1 � cL0/ 2 C^ and hence c � c�.

Since L1 2 C^, .L1�0�L0/ 2 C^, so the corresponding set in (A.26) is not empty.
Fix � � c� such that .L1��L0/ 2 C^. Then, for f 2 C, we have L1. f /��L0. f / � 0,
so that L1.g/ � � for g 2 V . Taking the infimum over g 2 V and then the supremum
over such � we get c � c�. ut

A.7 Symmetric and Self-Adjoint Operators on Hilbert Space

All operator-theoretic facts in this appendix can be found in most books on Hilbert
space operators such as [RS2], [AG], and [Sm9].

Suppose that H is a complex Hilbert space with scalar product h�; �i.
By an operator on H we mean a linear mapping T of a linear subspace D.T/,

called the domain of T, into H. The kernel of T is N .T/ D f' 2 D.T/ W T' D 0g.
The bounded operators defined on H are denoted by B.H/.

An operator T is called symmetric if hT'; i D h';T i for '; 2 D.T/:
If T1 and T2 are linear operators on H, we say that T2 is an extension of T1 and

write T1 	 T2 if D.T1/ 	 D.T2/ and T1' D T2' for ' 2 D.T1/.
An operator T is called closed if for each sequence .'n/ from D.T/ such that

'n ! ' and T'n !  in H then ' 2 D.T/;  D T'. If T has a closed extension,
it has a smallest closed extension, called the closure of T and denoted by T.

For a closed operator T the resolvent set 	.T/ is the set of numbers z 2 C for
which the operator T � zI has a bounded inverse .T � zI/�1 that is defined on the
whole Hilbert space H. The set �.T/ WD Cn	.T/ is the spectrum of T.
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Suppose that D.T/ is dense in H. Then the adjoint operator T� of T is defined:
Its domain D.T�/ is the set of vectors  2 H for which there exists an 
 2 H such
that hT'; i D h'; 
i for all ' 2 D.T/; in this case T� D 
.

The operator T is symmetric if and only T 	 T�:
A densely defined operator T is called self-adjoint if T D T� and essentially

self-adjoint if its closure T is self-adjoint, or equivalently, if T D T�.
Let us turn to self-adjoint extensions of a densely defined symmetric operator T.

The deficiency indices of T is the pair .dC.T/; d�.T// of (cardinal) numbers

dC.T/ D dimN .T� � zI/ for Im z > 0; d�.T/ D dimN .T� � zI/ for Im z < 0:

These numbers are independent of the choice of z satisfying Im z > 0 resp. Im z < 0.

Proposition A.41 Let T be a densely defined symmetric operator onH. Then

dim .D.T�/=D.T// D dC.T/C d�.T/: (A.27)

The operator T has a self-adjoint extension on H if and only if it has equal
deficiency indices, that is, dC.T/ D d�.T/.

Proof [Sm9, Proposition 3.7 and Theorem 13.10]. ut
If dC.T/ D d�.T/ ¤ 0, then T has “many” different self-adjoint extension on H,

see [Sm9, Theorem 13.10]. Further, each densely defined symmetric operator has a
self-adjoint extension on a possibly larger Hilbert space [Sm9, Proposition 3.17].

Proposition A.42 For any densely defined symmetric operator T on H the follow-
ing are equivalent:

(i) T is essentially self-adjoint.
(ii) T has a unique self-adjoint extension onH.

(iii) .T � zCI/D.T/ and .T � z�I/D.T/ are dense in H for some (then for all)
zC; z� 2 C such that Im zC > 0 and Im z� < 0.

(iv) dC.T/ D d�.T/ D 0.
If the symmetric operator T is positive, these conditions are equivalent to
(v) .T � xI/D.T/ is dense inH for one (then for all) x < 0.

Proof [Sm9, Propositions 3.8 and 3.15 and Theorem 13.10]. ut
A conjugation is a mapping J W H! H such that for ˛; ˇ 2 C and x; y 2 H;

J.˛xC ˇy/ D ˛J.x/C ˇJ.y/; hJx; Jyi D hy; xi; and J2x D x: (A.28)

Proposition A.43 Let T be a densely defined symmetric operator on H. If there
exists a conjugation J such that JD.T/ 	 D.T/ and JTxDTJx for all x 2 D.T/,
then T has a self-adjoint extension onH.

Proof [Sm9, Theorem 13.25]. ut
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Suppose that T is a self-adjoint operator. By the spectral theorem, there exists
a unique projection-valued measure ET on the Borel �-algebra B.R/ such that
T D R

R
�dET.�/: The support of ET is the spectrum �.T/: For each Borel function

f on the spectrum of T there exists an operator f .T/ D R f .�/ dET.�/ defined by

f .T/' D
Z

f .�/ dET.�/'; where ' 2 H and
Z
jf .�/j2dhET.�/'; 'i <1:

The assignment f 7! f .T/ is the functional calculus of T, see [Sm9, Chapter 5].
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